MICROCHIP

ANG22

Sepper Motor Microstepping with PIC18C452

Authors: Padmaraja Yedamale
Sandip Chattopadhyay
Microchip Technology Inc.

INTRODUCTION

A stepper motor, as its name suggests, moves one step
at a time, unlike those conventional motors, which spin
continuously. If we command a stepper motor to move
some specific number of steps, it rotates incrementally
that many number of steps and stops. Because of this
basic nature of a stepper motor, it is widely used in low
cost, open loop position control systems. Open loop
control means no feedback information about the posi-
tion is needed. This eliminates the need for expensive
sensing and feedback devices, such as optical encod-
ers. Motor position is known simply by keeping track of
the number of input step pulses.

STEPPER MOTOR BASICS

Now let’s take a closer look at a stepper motor. The first
thing that we notice is that it has more than two wires
leading into it. In fact, various versions have four, five,
six, and sometimes more wires. Also, when we manu-
ally rotate the shaft, we get a ‘notched’ feeling. The sim-
plest way to think about a stepper motor is as a bar
magnet that pivots about its center with four individual,
but exactly identical electromagnets, as shown in
Figure 1A. If we manually rotate the magnet without
energizing any coils, we get the ‘notched’ feeling when-
ever a relatively larger magnetic force is generated,
because of the alignment of the permanent magnet
with the core of the electromagnets, as in Figure 1A.
This force is termed ‘detent torque’. Let's assume that
the initial position of the magnetic rotor is as shown in
Figure 1A. Now turn on coil A, i.e., flow current through
it to create an electromagnet, as shown in Figure 1B.
The motor does not rotate, but we cannot move it freely
by hand (more torque has to be applied to move it now),
because of a larger ‘holding torque’. This torque is gen-
erated by the attraction of the north and south poles of
the rotor magnet and the electromagnet produced in
the stator by the current.

FIGURE 1: NON-ENERGIZED AND CLOCKWISE CURRENT IN COIL A
A B
A A
O— o—
dq q
q <« 9
O— o— s
N N
D B D B
S S
O— o—
q q
dq q
O— o—
c C
NON-ENERGIZED CLOCKWISE CURRENT IN COIL A

© 2002 Microchip Technology Inc.

DS00822A-page 1

ANB822

FIGURE 2:

FIRST STEP MOVEMENT AND NEXT STEP

A

[S—
L«
q
O

D

o0

FIRST STEP

B

3
:

COUNTER-CLOCKWISE CURRENT IN COIL C

To move the motor in a clockwise direction from its ini-
tial stop position, we need to generate torque in the
clockwise direction. This is done by turning off coil A,
and turning on coil B. The electromagnet in coil B pulls
the magnetized rotor and the rotor aligns itself with coil
B, as shown in Figure 2A. Turning off coil B and turning
on coil C will move the rotor one step further, as shown
in Figure 2B.

Comparing Figure 1B and Figure 2B, we understand
that the direction of current flow in coil C is exactly
opposite to the direction of flow in coil A. This is
required to generate an electromagnet of correct polar-
ity, which will pull the rotor in the clockwise direction. By
the same logic, the direction of current in coil D will be
opposite to coil B when the rotor takes the next step
(due to turning off coil C and turning on coil D).

A 360 degree rotation of the rotor will be completed if
you turn off coil D and turn on coil A. The coil operation
sequence (B, C, D, A), described is responsible for the
clockwise rotation of the motor. The rotor will move
counter-clockwise from its initial position at Figure 1B if

we follow the opposite sequence (D, C, B, A).

DS00822A-page 2

© 2002 Microchip Technology Inc.

ANB822

UNIPOLAR AND BIPOLAR

Two leads on each of the four coils of a stepper motor
can be brought out in different ways. All eight leads can
be taken out of the motor separately. Alternatively, con-
necting A and C together, and B and D together, as
shown in Figure 3, can form two coils. Leads of these
two windings can be brought out of the motor in three
different ways, as shown in Figure 3, Figure 4, and
Figure 5.

If the coil ends are brought out as shown in Figure 3,
then the motor is called a bipolar motor, and if the wires
are brought out as shown in Figure 4 or Figure 5, with
one or two center tap(s), it is called a unipolar motor.

FIGURE 3: BIPOLAR (4-WIRE)

FIGURE 4: UNIPOLAR (5-WIRE)

FIGURE 5: UNIPOLAR (6-WIRE)

AN ACTUAL PERMANENT MAGNET
(PM) STEPPER MOTOR

The simple stepper motor described, moves in very
coarse steps of 90 degrees. How do actual motors
achieve movements as low as 7.5 degrees? The stator
(the stationary electromagnets) of a real motor has
more segments on it. A typical stator arrangement with
eight stators is shown in Figure 6.

FIGURE 6: STATOR WINDING
ARRANGEMENTS IN A
PERMANENT MAGNET
STEPPER MOTOR

45°

The rotor is also different and a typical cylindrical rotor
with 6 poles is shown in Figure 6. There are 45 degrees
between each stator section and 60 degrees between
each rotor pole. Using the principle of vernier mecha-
nism, the actual movement of the rotor for each step is
60 minus 45 or 15 degrees. In this case, also, there are
only two coils: one connects pole sections A, C, E and
G, and the other connects B, D, F, H. Let us assume
that current is flowing in a certain direction through the
first coil only, and pole sections are wired in such a
fashion that:

* A and C have S-polarity

« E and G have N-polarity

The rotor will be lined up accordingly, as shown in
Figure 6. Let's say that we want the rotor to move 15
degrees clockwise. We would remove the current
applied to the first winding and energize the second
winding. The pole sections B, D, F, H are wired together
with the second winding in such a way that:

¢ B and D have S-polarity

* F and H have N-polarity

© 2002 Microchip Technology Inc.

DS00822A-page 3

ANB822

In the next step, current through winding 2 is removed
and reverse polarity current is applied in winding 1.
This time A and C have N-polarity, and E and G have
S-polarity; so the rotor will take a further 15 degree step
in the clockwise direction. The principle of operation is
the same as the basic stepper motor with a bar magnet
as rotor and four individual electromagnets as stators,
but in this construction, 15 degrees per step is
achieved. Different 'step angles’ (i.e., angular displace-
ment in degrees per step) can be obtained by varying
the design with different numbers of stators and rotor
poles. In an actual motor, both rotor and stators are
cylindrical, as shown in Figure 7. This type of motor is
called a permanent magnet (PM) stepper because the
rotor is a permanent magnet. These are low cost
motors with typical step angles of 7.5 degrees to 15
degrees.

FIGURE 7:

VARIABLE RELUCTANCE (VR)
STEPPER MOTOR

There is a type of motor where the rotor is not cylindri-
cal, but looks like bars with a number of teeth on it, as
shown in Figure 8. The rotor teeth are made of soft
iron. The electromagnet produced by activating stator
coils in sequence, attracts the metal bar (rotor) towards
the minimum reluctance path in the magnetic circuit.
We don't get a notched feeling when we try to rotate it
manually in the non-energized condition. In the
non-energized condition, there is no magnetic flux in
the air gap, as the stator is an electromagnet and the
rotor is a piece of soft iron; hence, there is no detent
torque. This type of stepper motor is called a variable
reluctance stepper (VR). The motor shown in Figure 8
has four rotor teeth, 90 degrees apart and six stator
poles, 60 degrees apart. So when the windings are
energized in a reoccurring sequence of 2, 3, 1, and so
on, the motor will rotate in a 30 degree step angle.
These motors provide less holding torque at standstill
compared to the PM type, but the dynamic torque char-
acteristics are better.

Variable reluctance motors are normally constructed
with three or five stator windings, as opposed to the two
windings in the PM motors.

A BIPOLAR PERMANENT MAGNET STEPPER MOTOR

Permanent Magnet
Rotor

Stator Winding

FIGURE 8: A VARIABLE RELUCTANCE MOTOR

Soft Iron Rotor

Stator Winding

DS00822A-page 4

© 2002 Microchip Technology Inc.

ANB822

HYBRID (HB) STEPPER MOTOR

Construction of permanent magnet motors becomes
very complex below 7.5 degrees step angles. Smaller
step angles can be realized by combining the variable
reluctance motor and the permanent magnet motor
principles. Such motors are called hybrid motors (HB),
which give much smaller step angles, as small as 0.9
degrees per step.

A typical hybrid motor is shown in Figure 9. The stator
construction is similar to the permanent magnet motor,
and the rotor is cylindrical and magnetized like the PM
motor with multiple teeth like a VR motor. The teeth on
the rotor provide a better path for the flux to flow
through the preferred locations in the air gap. This
increases the detent, holding, and dynamic torque
characteristics of the motor compared to the other two
types of motors.

Hybrid motors have a smaller step angle compared to
the permanent magnet motor, but they are very expen-
sive. In low cost applications, the step angle of a per-
manent magnet motor is divided into smaller angles
using better control techniques.

Permanent magnet motors and hybrid motors are more
popular than the variable reluctance motor, and since
the stator construction of these motors is very similar, a
common control circuit can easily drive both types of
motors.

FIGURE 9:

HOW TO IDENTIFY THE PERMANENT
MAGNET/HYBRID MOTOR LEADS

The color code of the wires coming out of the motor are
not standard; however, using a multimeter/ohmmeter, it
is easy to identify the winding ends and center tap.

If only four leads are coming out of the motor, then the
motor is a bipolar motor. If the resistance measured
across two terminals, say terminals 1 and 2 in Figure 3,
is finite, then those are ends of a coil. If the multimeter
shows an open circuit (i.e., if you are trying to measure
across the terminals 1 and 3, or 1 and 4, or 2 and 3, or
2 and 4), then the terminals are of different windings.
Change your lead to another terminal and check again
to find a finite resistance.

If there are five leads coming out of the motor, then the
resistance across one terminal and all other terminals
will be almost equal. This common terminal is the cen-
ter tap and the other terminals are the ends of different
windings. Figure 4 shows terminal 5 is the common ter-
minal, while 1, 2, 3, and 4 are the ends of the windings.

In the case of a motor with six leads as in Figure 5,
resistance across terminals 1 and 2 should be approx-
imately double the resistance measured across termi-
nals 1 and 3, and 2 and 3. The same is applicable for
the other winding (the remaining 3 wires).

In all the above cases, once the terminals are identi-
fied, it is important to know the sequence in which the
windings should be energized. This is done by energiz-
ing the terminals one after the other, by rated voltage.
If the motor smoothly moves in a particular direction,
say clockwise, when the windings are energized, then
the energizing sequence is correct. If the motor hunts
or moves in a jerky manner, then the sequence of wind-
ing segments has to be changed and checked again for
smooth movement.

CONSTRUCTION OF A HYBRID MOTOR

Permanent magnet

rotor with teeth

Stator Winding

© 2002 Microchip Technology Inc.

DS00822A-page 5

ANB822

TORQUE AND SPEED

The speed of a stepper motor depends on the rate at
which you turn on and off the coils, and is termed the
'step-rate’. The maximum step-rate, and hence, the
maximum speed, depends upon the inductance of the
stator coils. Figure 10 shows the equivalent circuit of a
stator winding and the relation between current rise
and winding inductance. It takes a longer time to build
the rated current in a winding with greater inductance
compared to a winding with lesser inductance. So,
when using a motor with higher winding inductance,
sufficient time needs to be given for current to build up
before the next step command is issued. If the time
between two step commands is less than the current
build-up time, it results in a 'slip’, i.e., the motor misses
a step. Unfortunately, the inductance of the winding is
not well documented in most of the stepper motor data
sheets. In general, for smaller motors, the inductance
of the coil is much less than its resistance, and the time

constant is less. With a lower time constant, current rise
in the coil will be faster, which enables a higher
step-rate. Using a Resistance-Inductance (RL) drive
can achieve a higher step rate in motors with higher
inductance, which is discussed in the next section.

The best way to decide the maximum speed is by
studying the torque vs. step-rate (expressed in pulse
per second or pps) characteristics of a particular step-
per motor (shown in Figure 11). 'Pull-in’ torque is the
maximum load torque that the motor can start or stop
instantaneously without mis-stepping. 'Pull-out’ torque
is the torque available when the motor is continuously
accelerated to the operating point. From the graph, we
can conclude that for this particular motor, the ‘maxi-
mum self-starting frequency’ is 200 pps. The term
‘maximum self-starting frequency’ is the maximum
step-rate at which the motor can start instantaneously
at no-load without mis-stepping. While at no-load, this
motor can be accelerated up to 275 pps.

FIGURE 10: MOTOR EQUIVALENT CIRCUIT AND CURRENT RISE RATE IN STATOR WINDING
! Lower
: Inductance
Y : EI\E/Iotc_)r
+ : : Equivalent Higher
_ . ' H B]
. % L §C|rcun Indugctance
! . E
o
5
o)
REXT >
Tme —»
FIGURE 11: A TYPICAL SPEED VS. TORQUE CURVE

A

Torque in-0z

o

Pull-out torque

Pull-in torque

-

200 275 —» Step-raﬁe in pps

DS00822A-page 6

© 2002 Microchip Technology Inc.

ANB822

DRIVE CIRCUITS

The drive mechanism for 5-wire and 6-wire unipolar
motors is fairly simple and is shown in Figure 12 (A and
B). Only one coil is shown in this figure, but the other
will be connected in the same way.

By comparing Figure 12A and Figure 12B, we see the
direction of current flow is opposite in sections A and C
of the coil, as per our explanation earlier. But the cur-
rent flow in a particular section of the coil is always uni-
directional, hence the name ‘unipolar motor’.

Bipolar stepper motors do not have the center tap. That
makes the motor construction easier, but it needs a dif-
ferent type of driver circuit, which reverses the current
flow through the entire coil by alternating the polarity of
the terminals, giving us the name ‘bipolar’.

A bipolar motor is capable of higher torque since the
entire coil is energized, not just half. Let's look at the
mechanism for reversing the voltage across one of the
coils, as shown in Figure 13.

This circuit is called an H-bridge, because it resembles
a letter ‘H'. The current can be reversed through the
coil by closing the appropriate switches. If switches A
and D are closed, then current flows in one direction,
and if switches B and C are closed, then current flows
in the opposite direction.

FIGURE 12:

As the rating of the motor increases, the winding induc-
tance also increases. This higher inductance results in
a sluggish current rise in the windings, which limits the
step-rate, as explained in the previous section. We can
reduce the time constant by externally adding a suit-
able resistor in series with the coil and applying more
than the rated voltage. The resistor should be chosen
in such a way that the voltage across the coil does not
exceed the rated voltage, and the additional voltage is
dropped across the resistor. This method is also useful
if we have a fixed power supply with an output of more
than the rated coil-voltage specified. This type of drive
is called a resistance-inductive (RL) drive. Electronic
circuitry can be added to vary this resistor value
dynamically to get the best result. The main disadvan-
tage of this drive is that, since they are used with
motors with large torque ratings, current flowing
through the series resistor is large, resulting in higher
heat dissipation and, hence, the size of the drive
becomes bulky.

This resistor can be avoided by using PWM current
control in the windings. In PWM control, current
through the winding can be controlled by modulating
the ‘ON’ time and ‘OFF’ time of the switches with PWM
pulses, thus ensuring that only the required current
flows through the coil, as shown in Figure 14.

SIMPLIFIED DRIVES FOR THE UNIPOLAR MOTOR

T

ONE STEP MOVEMENT

COUNTER-CLOCKWISE CURRENT INCOIL C

FIGURE 13:

SIMPLIFIED H-BRIDGE CONFIGURATION

+Supply

[e]

© 2002 Microchip Technology Inc.

DS00822A-page 7

ANB822

FIGURE 14: CURRENT WAVE FORM WITH

PWM SWITCHING

A _>ton<_ —p loff ¢

Time

A

Current

v

<
<

v Time

STEPPER MOTOR CONTROL

To control a stepper motor, we need a proper driver cir-
cuit as discussed earlier. Unipolar drive can be used
with unipolar motors only. In this application note, a
bipolar drive is discussed, as this can be used to con-
trol both bipolar and unipolar motors. Unipolar motors
can be connected to a bipolar driver by simply ignoring
the center taps (by doing this, the motor becomes bipo-
lar). Next we need a sequencer to issue proper signals
in a required sequence to the H-bridges. A controller is
built around the PIC18C452. Two H-bridges are used
to control two windings of the stepper motors. Func-
tional block diagram is shown in Figure 15. Example 1
shows the code required for full step control written for
P1C18C452:

FIGURE 15: BLOCK DIAGRAM OF FULL
STEP CONTROL
RB2 R
RB3
PIC18C452| rB4 Motor
» Driver
RB5

Code which configures PORTB<5:2> as output pins is
not given in the example.

The code makes RB<5:2> outputs either ‘0’ or ‘1’
sequentially, which switches off or applies positive (+)
or negative (-) polarity to Winding A and Winding B, as
shown below:

Winding A Winding B
+ 0 step 1
0 + step 2
- 0 step 3
0 - step 4
Legend:
¢ 0 = coil OFF

« + = current flows in one direction
« - =current flows in the opposite direction

Note: Step 1 follows after step 4 and the cycle
continues.

DS00822A-page 8

© 2002 Microchip Technology Inc.

ANB822

EXAMPLE 1: FULL STEP WITH ‘ONE PHASE ON’ AT A TIME
#define STEP_ONE b’00100000" ; PortB<5:2> are used to connect the
#define STEP_TWO b’00010000" ; switches
#define STEP_THREE b’00001000"
#define STEP_FOUR b’00000100"

clrf STEP_NUMBER H

org 2000h

UPDATE_STEP
incf STEP_NUMBER, F ;
btfsc STEP_NUMBER, 2 ;
clrf STEP_NUMBER
movE STEP_NUMBER, W ;
call OUTPUT_STEP ;
movwt PORTB H
return

OUTPUT_STEP
addwf PCL,F ;
retlw STEP_ONE ;
retlw STEP_TWO
retlw STEP_THREE
retlw STEP_FOUR

Initialize start of step sequence

;***

Initialize here TMRO module, enable TMRO interrupt and load a value in TMRO

;***

;**

; Routine in TMRO ISR which updates the current sequence for the next steps
;**

Increment step number
If Step number = 4h then clear the count

Load the step number to Working register
Load the sequence from the table
to Port B

Add Wreg content to PC and
return the corresponding sequence in Wreg

The step command sequence is updated in the Timer0
overflow Interrupt Service Routine. After issuing each
step command in the sequence, PIC18C452 waits for
the Timer O overflow interrupt to issue the next step
sequence. This waiting time can be programmed by
loading different values in the TMRO register. Motor
speed depends upon this value in the TMRO register.
EQUATION 1: CALCULATE STEP
COMMAND WAITING
PERIOD

No. Seps per Revolution = 360/Motor Sep Angle
pps = (rpm/60) * No. Seps per Revolution
Twait = 1/pps

For example, to turn a PM motor with a 7.5 degree step
angle at a speed of 120 revolutions per minute (rpm),
96 pulses per second (pps) is required. This means
that the waiting period should be 1/96 second to
achieve this speed.

Instead of creating a software delay loop, Timer O mod-
ule of PIC18C452 is loaded with an appropriate value
to interrupt the processor every 1/96 second. Steps are
updated in the Timer O Interrupt Service Routine. By
loading different values in the Timer 0 module, the
speed of the motor can be changed. The current
through the two coils looks like a wave, as shown in
Figure 16, so this is termed ‘wave drive’.

This controller drives current through only one winding
at a given time, so it is also termed ‘One Phase On
control’. This is the simplest kind of controller. The
torque generated in this mode is less, as only one wind-
ing at a time is used. For the same stepper motor, we
can improve the torque characteristics, by designing a
better controller and thereby improving the drive
capability.

The following are the most common drive types:

* ‘Two Phase On’ full step drive

< Half step drive, where the motor moves half of the
full step angle (7.5/2 degrees in the case of a motor
with 7.5 degrees of step angle)

* Microstepping (which requires unequal current flow
in two windings), where the rotor moves a fraction of
the full step angle (1/4, 1/8, 1/16 or 1/32).

© 2002 Microchip Technology Inc.

DS00822A-page 9

ANB822

FIGURE 16: FULL STEP ‘ONE PHASE ON’ OR WAVE CONTROL

4 i \ . | i i
+ . .
winding A ; ' !>=
WindingB . : : »
v : f f ! f f
1 2 3 4 1 2
Steps -
‘TWO PHASE ON’ FULL STEPPING The code written for ‘One Phase On’ control is modi-
fied, as shown below in Example 2, to achieve ‘Two
In this method, both windings of the motor are always Phase On’ control.

energized. Instead of making one winding off and
another on, in sequence, only the polarity of one wind-
ing at a time is changed as shown:

The UPDATE_STEP function is the same as in
Example 1, but in the oUTPUT_STEP function, two
- steps are AND’d (i.e., simultaneously two outputs of
Winding A: + - - + + o port B are ‘1’), which makes the two coils ‘ON’ simulta-
Winding B: + + - - + . neously. The energizing sequence for both windings is
shown in Figure 17.

EXAMPLE 2: ‘TWO PHASE ON’ CONTROL
#define STEP_ONE b’00100000" ; PortB<5:2> are used to connect the
#define STEP_TWO b’00010000" ; switches
#define STEP_THREE b’00001000"
#define STEP_FOUR b’00000100"
clrf STEP_NUMBER ; Initialize start of step sequence

;***

Initialize here TMRO module, enable TMRO interrupt and load a value in TMRO

;***

;**

; Routine in ISR which updates the current sequence for the next steps
;**

org 2000h
UPDATE_STEP
incf STEP_NUMBER, F ; Increment step number
btfsc STEP_NUMBER, 2 ; If Step number = 4h then clear the count
clrf STEP_NUMBER
movE STEP_NUMBER, W ; Load the step number to Working register
call OUTPUT_STEP ; Load the sequence from the table
movwt PORTB ; to PortB
return

OUTPUT_STEP
addwf PCL,F ; Add Wreg content to PC and
retlw STEP ONE | STEP_TWO ; return the corresponding sequence in Wreg
retlw STEP _TWO | STEP_ THREE
retlw STEP_THREE | STEP_FOUR
retlw STEP_FOUR | STEP ONE

DS00822A-page 10 © 2002 Microchip Technology Inc.

ANB822

FIGURE 17: VOLTAGE SEQUENCE WITH ‘TWO PHASE ON’ AT A TIME
A ; '
+ -
Winding A
Winding B B _
\j : ' |
1 2 3 4 1 2 3 4
Steps >
FIGURE 18: MOTOR ROTATION SEQUENCE WITH ‘TWO PHASE ON’ AT A TIME

Phase A

~

faa
A
P

Fhaze B

z@m]
E:;:g

Step 3

Fhase B

Fhase B

Phase A

—F -

=
2
E::—;_g
et

—3

!

[l

K
Fhaze B

i
(]

UU =
N
=
s

-
=
[
]
o
I

With the current flowing in both windings simulta-
neously, the rotor aligns itself between the ‘average
north’ and ‘average south’ magnetic poles, as shown in
Figure 18. Since both phases are always ‘ON’, this
method gives 41.4 percent more torque than ‘One
Phase On’ stepping.

One drawback of a stepper motor is that it has a natural
resonant frequency. When the step-rate equals this fre-
quency, we experience an audible change in the noise
made by the motor, as well as an increase in vibration.
The resonance point varies with the application and
load, and typically occurs at low speed. In severe
cases, the motor may lose steps at the resonant fre-
quency. The best way to reduce the problem is to drive
the motor in Half Step mode or Microstep mode.

© 2002 Microchip Technology Inc.

DS00822A-page 11

ANB822

HALF STEPPING

This is actually a combination of ‘One Phase On’ and
‘Two Phase On’ full step control, as shown in Table 1.

TABLE 1: HALF STEP CONTROL
STEP_NUMBER 1 2 3 4 5 6 7 8 (0)
Rotor position Y 1 1% 2 2Y> 3 3% 4/0
Current in Winding A + 0 - - - 0 + +
Current in Winding B + + + 0 - - - 0

FIGURE 19: MOTOR ROTATION SEQUENCE FOR HALF STEP

Phase A Fhase A Phaze &
7 Ls ﬁ“« o]
m i o My o o o
e N S0 T A D
= -= _£“ -= -= -=
o = o o o o
H g
1 step1 + Step2 3 Step3
FPhaze A FPhase A Phase
Phase A Fhaze A Phase A
o o a a a
) s 7 e E A
o M o o [T - o
K ; r/
—f Stepd [} Step6
Phase A Phaze &
Phase & Fhaze A

Fhase B
f
3
fll,llr Z|E|‘° H
Fhaze B

s
] Step7 b stepg®
Fhase A Fhaze A

Note 1: Step 8 is equivalent to Step 0 in the code.

DS00822A-page 12 © 2002 Microchip Technology Inc.

ANB822

When current flows in only one winding, the rotor aligns
with the stator poles in positions 0,1, 2, and 3, as shown
in Figure 19. When current flows in both windings, the
rotor aligns itself between two stator poles in positions
Y, 1%, 2%, and 3%. So we see that, compared to a full
step, the number of steps are doubled. This implies that
a motor with a 7.5 degree step angle can be moved
3.75 degrees per step in Half Step mode and, hence,

will take 96 steps to complete a rotation of 360 degrees,
as compared to 48 steps in Full Step mode. Now, to
rotate this motor at 120 rpm, as discussed earlier, the
step-rate also has to be doubled to 192 pps.

The code to achieve half stepping is given in
Example 3. The energizing sequence for the stator
coils is shown in Figure 20.

EXAMPLE 3: HALF STEPPING
#define STEP_ONE b’00100000" ; PortB<5:2> are used to connect the
#define STEP_TWO b’00010000" ; switches
#define STEP_THREE b’00001000"
#define STEP_FOUR b’00000100"

clrf STEP_NUMBER ;

,-***

Initialize here TMRO module, enable TMRO

;***

,-***

; Routine in ISR which updates the current s
,-***
org 2000h
UPDATE_STEP
Inct STEP_NUMBER, F ;
btfsc STEP_NUMBER, 3 ;
clrf STEP_NUMBER
movE STEP_NUMBER, W ;
call OUTPUT_STEP ;
movwf PORTB ;
return
OUTPUT_STEP
addwf PCL, F ;
retlw STEP_ONE ;
retlw STEP ONE | STEP_TWO
retlw STEP_TWO
retlw STEP _TWO | STEP_ THREE
retlw STEP_THREE
retlw STEP_THREE | STEP_FOUR
retlw STEP_FOUR
retlw STEP_FOUR | STEP ONE

Initialize start of step sequence

EEEEEEEEEEEEEEEEEEEEEEEEEEESES

interrupt and load a value in TMRO
EEEEEE SRS SRR EEE RS

R R R R RS EEEEEEEREEEEEEEEEEEEESEEES]

equence for the next steps
EEE R RS EEEEEEEEEEEEEEEEEEEESEEES]

Increment step number
If Step number = 8h then clear the count

Load the step number to Working register
Load the sequence from the table
to Port B

Add Wreg content to PC and
return the corresponding sequence in Wreg

FIGURE 20: VOLTAGE WAVE FORM FOR HALF STEP CONTROL

Steps

A
+
Winding A
+
Winding B
Y % 1 1% 2 2% 3 34640 % 1 1% 2 2% 3 3% 4/0

-
'

© 2002 Microchip Technology Inc.

DS00822A-page 13

ANB822

MICROSTEPPING

During our earlier discussion, we have mentioned that
halfstepping and microstepping reduces the stepper
motor’s resonance problem. Although the resonance
frequency depends upon the load connected to the
rotor, it typically occurs at a low step-rate. We have
already seen that the step-rate doubles in Half Step
mode compared to Full Step mode. If we move the
motor in microsteps, i.e., a fraction of a full step (1/4,
1/8, 1/16 or 1/32), then the step-rate has to be
increased by a corresponding factor (4, 8, 16 or 32) for
the same rpm. This further improves the stepper perfor-
mance at very low rpm. Moreover, microstepping offers
other advantages as well:

* Smooth movement at low speeds

« Increased step positioning resolution, as a result
of a smaller step angle

* Maximum torque at both low and high step-rates

But microstepping requires more processing power. If
we study the flow diagrams for current (as shown for
full or half steps), we conclude that the value of current
in a particular coil is either ‘no current’ or ‘a rated cur-
rent’. However, in microstepping, the magnitude of cur-
rent varies in the windings.

The function of a microstepping controller is to control
the magnitude of current in both coils in the proper
sequence.

THEORY OF MICROSTEPPING

The current flow diagrams, as well as the sequence of
operations in case of full or half stepping, reveals that
the electrical sequence repeats itself after every fourth
full step. This phenomenon of stepper motor signifies
that one full ‘electrical cycle’ consists of four full steps.
Please note that one full ‘electrical cycle’ (i.e., 360
degrees of ‘electrical angle’) is different from one full
revolution of the rotor (360 degrees of mechanical rota-
tion). One full ‘electrical cycle’ always consists of four
full steps. Hence, one full step of any stepper motor
with any ‘step angle’ corresponds to 360/4 or 90
degrees of ‘electrical angle’. If this ‘electrical angle’ is
divided into smaller, equal angles, and a corresponding
current is given to the stator windings, then it will look
like Figure 21. So we can vary current in one winding
with a sine function of an angle ‘6’ and in the other wind-
ing with a cosine function of ‘0’.

In a stepper motor, the rotor stable positions are in syn-
chronization with the stator flux. When the windings are
energized, each of the windings will produce a flux in
the air gap proportional to the current in that winding.
So the flux in the air gap is directly proportional to the
vector sum of the winding currents, in the resultant vec-
tor direction. In Full Step and Half Step modes, rated
current is supplied to the windings, which rotates the
resultant flux in the air gap in 90 degrees and 45
degrees electrical, respectively, with each change in
sequence. In microstepping, the current is changed in
the windings in fractions of rated current. Therefore, the
resultant direction of flux changes in fractions of 90
degrees electrical. Usually, a full step is further divided
into 4/8/16/32 steps. (A step length shorter than 1/32 of
a full step normally does not make any further improve-
ment in the motion.)

To achieve the required rotating flux, you can calculate
the magnitude of the current in the windings with the
following formula:

EQUATION 2: FLUX FORMULA
la= IPEAK * sinB
Ib = IPEAK * cosH
Where:
la = instantaneous current in stator winding A
Ib = instantaneous current in stator winding B
0 = angle in electrical degrees from a full step
position (OR microstep angle)
IPEAK = rated current of winding

With the above equations, the resultant stator current is
the vector sum of the individual winding currents.

= V((IPEAK * Sin 8)? + (IPEAK * C0S6)2)
= Ipeak * \(sin62 + cos6?) = IPEAK 26 electrical degree

This shows that at any angle 0, the resultant current
remains same and equal to ‘IPEAK’.

DS00822A-page 14

© 2002 Microchip Technology Inc.

ANB822

FIGURE 21: CURRENTS IN STATOR DURING MICROSTEP AND THE RESULTANT CURRENT

Winding A
IPEAK

.. Winding B

Current

Steps

Resultant Current
Trajectory

As shown in Figure 21, current in each winding will vary
resulting in a rotating flux corresponding to IPEAK in the
air gap. So for each increment of electrical angle 6, a
flux and a torque corresponding to IPEAK is produced at
an angle 6, thus producing a constant rotating
flux/torque, which makes microstepping possible.

But in practice, the current in one winding is kept con-
stant over half of the complete step and current in the
other winding is varied as a function of sinf to maximize
the motor torque, as shown in Figure 22.

FIGURE 22: PHASE-CURRENT RELATIONSHIP

Thus, the resultant current is:

= V((IPEAK)? + (IPEAK * SinB)?)
= |PEAK * \}(1 + sinez) > IPEAK £6 electrical degrees

PwindingA © L
."Winding B
2|/
o
S|
© |
0 Y2 1 1% 2 2% 3% 4/0 |
v
Steps >

© 2002 Microchip Technology Inc.

DS00822A-page 15

ANB822

IMPLEMENTATION

The question is how to drive variable currents through
the coil connected to a single supply source. There are
different ways to achieve this, but the best way is:

1. Connectone voltage source across the H-bridge
so that when one pair of opposite switches are
on, rated voltage is applied to the stator coil.

2. Vary the PWM duty cycle to control current
through the coil.

The controller is built around the PIC18C452 microcon-
troller. A block diagram is shown in Figure 23. An actual
circuit schematic is given in Appendix A. Two PWM
modules of PIC18C452 are used to control current
through two windings of the stator, and can be used for
both full or half step.

Added features in the controller are:

« Speed setting through a potentiometer connected
to one of the ADC channels of the PIC18C452.

» A step switch connected to one of the inputs of
PORTB. If this switch is pressed, then the motor
moves only one step (full, half or microstep).

» A toggle switch connected to one of the inputs to
PORTB that decides the direction: forward or
reverse.

* A DIP switch, connected to PORTD, is used to
select the number of microsteps.

¢ DIP4 is used as the “Enable” switch. This has to
be closed to run the motor with microsteps
selected by DIP1-3.

Details of the DIP switches are shown in Table 2.

TABLE 2: DIP SWITCHES

No. of SW4 | Sw3 | sSw2 | swi
Steps (RD5) | (RD2) | (RD1) | (RDO)

Full Step Close Open Open Close

Half Step Close Open Close Open

4 Close Open Close Close
8 Close Close Open Open
16 Close Close Open Close
32 Close Close Close Open

Note: Invalid where switches are all open or all
closed.

Theoretically, the number of microsteps can be even
more than 32, but practically, that does not improve
stepper performance. The motor can be driven in
microsteps by changing the currents in both windings,
as a function of sine and cosine, simultaneously. Alter-
natively, the current is kept constant in one winding,
while it is varied in the other, as shown in Figure 24. In
practice, the second method is followed to maximize
torque. Theoretically, the variation follows a sine curve,
but may vary slightly for different motors to get
improved step accuracy.

Appropriate values of the PWM duty cycle (proportional
to the required coil current) for each step are given in
Appendix B. A table corresponding to the PWM duty
cycle is stored in the program memory of PIC18C452.
The Table Pointer (TBLRD instruction) of PIC18C452 is
used to retrieve the value from the table and load it to
the PWM registers to generate an accurate duty cycle.

The assembly code to realize the microstepping is
given in Appendix C.

The serial interface with a host computer is done using
an USART module on the PIC18C452.

On the Host PC side, "Hyper Terminal" is used for com-
munication. The serial link parameters are:

Baud rate: 9600
Data bits: 8
Parity: none
Stop bit: 1
Flow control: none

The commands shown in Table 3 can be set and run
from the host PC.

Memory Usage

On-chip ROM used: 3580 bytes
On-chip RAM used: 26 bytes

CONCLUSION

Microstepping a stepper motor increases stepping
accuracy and reduces resonance in the motor. The two
PWMs in the PIC18C452 can be used to control the
voltage to the windings of a bipolar stepper motor.

A sine lookup table is entered in the program memory
and accessed using the table read instructions. An
on-chip USART communicates with the host PC for
control parameters, and motor speed can be set using
a potentiometer connected to one of the ADC
channels.

DS00822A-page 16

© 2002 Microchip Technology Inc.

ANB822

TABLE 3: HOST PC COMMANDS
Command Description Range Remarks/Data Value

0 Exit from PC interface — Control goes to the parameters set on the Reference board,
like pot., FWD/REV switch, DIP switch

1 Number of microsteps 1to6 1. Full step
2. Half step
3. 1/4 step
4. 1/8 step
5. 1/16 step
6. 1/32 step

2 Direction of rotation Otol 0 = Forward
1 = Reverse

3 Number of stepstoinch | 110999 |Inches in the selected direction and by selected step length

4 RPM 1to 200 |Rotates at set RPM, in set direction

FIGURE 23: BLOCK DIAGRAM OF CIRCUIT FOR MICROSTEPPING

1 MCLR -
PL PWM1L
Pot 17RC2_CCPL >
ccP2 PWM12
RAO |, 16/RCL > | . B
osc1 36 [RB3_CNTL togic Ipwmar | WindingA
13 Ll >
Crystal OSC2
| {DI Y 14 35/ RB2 CNTz; PWM22 > oo o
DIP1 RDO |19 pic18cas2 otor Driver
DIP2___~, RDL| arlRBe ENI -
DIP3 RD2 |, I
RB5 - inding
FWDREV | RD6 |, 38 ENZ
Inch RD7
- % 25{RE0_TX » Host
Enable RD5 |28 26 RC7 RX Computer
DIP4

FIGURE 24: CURRENT FLOWS IN STATOR WINDINGS

WindingA
IPEAK i

|
|
|
|
|
|
|
|
|
|
|
|
|
|
2

Steps OR Time ——»

© 2002 Microchip Technology Inc. DS00822A-page 17

ANB822

APPENDIX A: SCHEMATIC DETAILS

The control scheme uses PIC18C452 for control and a
driver IC, which has two H-bridges for driving the motor.

Four PWMs required are derived from two CCPs
(CCP1 and CCP2 in PWM mode). Control signals
CNT1 and CNT2 switches CCP1 and CCP2 to
appropriate PWM inputs of Driver IC (U2 and U5).
CNT1 and CNT2 are connected to RB3 (Pin 36)
and RB2 (Pin 35) of microcontroller (U1),
respectively.

EN1 and EN2 signals enable two sets of bridges
in the driver IC (only for U2), connected to RB4
(Pin 37) and RB5 (Pin 38) of U1, respectively.

Current feedbacks from the motor windings are
converted to voltages by resistors R9 and R10,
connected to Pin 1 and 15 of U2. These feed-
backs are connected to AN1 (Pin 3) and AN3
(Pin5).

I/0 pin RD5 (Pin 28) is connected with a SPST
switch for drive enable.

I/0 pin RD6 (Pin 29) is connected to a
push-button switch for motor direction selection
(FWD/REV). Each press of the switch will toggle
the direction.

I/0 pin RD7 (Pin 30) is connected to a
push-button switch for “Inch” movement of the
motor. Each press of this switch will move the
motor by a step, controlled by software.

DIP switches connected to PORT<2:0> select the
number of steps, as explained in the previous
section.

A 20 MHz crystal is used as the main oscillator.

DS00822A-page 18

© 2002 Microchip Technology Inc.

ANB822

FIGURE A-1: CIRCUIT DIAGRAM (SHEET 1 OF 2)
5V ui
+5V 11 fvoo RE2HLO
- 32 lyvpp RE1}Z—
8
c1 lcz 1 REO -~
1wl L uF (MCLR MCLR RD7?@
r1 M M RD6 RD6
swi 47K L L RAO RD522—RD5
1 "?64 >l RA1 RD4=—
) =3 D1 RA2 RD3[22_
21
o3 IN914 RA3 RD2 RD2
= RA4 rD122_{RD1
AwF R2 RA5 RDOF-2—{(RDO
1 10k 26
L — RBO Rc72—@
RB1 RC622
RB2 RCsF24—
— RB3 RC4[23_
RB4 ReaS-
RB5 rRc2| L fccpt
39 IrBs rRc1H8 (Ccp2
40 [rB7 RcoHS—
oscalt4
Y1
| 12 |yss oscit2 [
+5V| 31 fyss 20 MHz
c4 cs
R3 <R4 <<R5 <R6 PIC18C452 ;O 27 oF
2.2k S22k 2.2k = 2.2k
Sw4 — = =
1 7 8 RDO
2 L —l7 RD1
3y 6 RD2)
4l —l5 RDS)
sw2 R7 <R8 imv
il 2.2k = 2.2k
4
LoTo RD7)
2 3 Inch
sw3
1 L4
15010 RD6)
— Fwd/Rev
VR1
CNll L[Mza0T50
O . . IN out . |+5v
c15L icm CoM i
100 uF 1uF 2 (1:tlF @gm
" A\
CN2 T
R13
470

© 2002 Microchip Technology Inc.

DS00822A-page 19

ANB822

FIGURE A-2:

CIRCUIT DIAGRAM (SHEET 2 OF 2)

)4
VS
csr co
1 uﬁr |1 uF|D2|D3 |D4|D5
T =t A A A A
— |9 |8 [4=
5 g 9 @ CN3A
PWMD—ne = G Gural 2 W1/1 . |
PWM2)—iN2 ouT2 W1/2 ©
u2®
PWM3)10n3 outsf2 w2/l 0
2
Hw2/2 O
74HC04 PWMA-L2| s outaftd
CCP2 6 < @ CN3B
END—ENA (3 3
Wew 3 & D6 |D7 |D8| D9
[n 4 4
oo, s AAAA
R1l,,, 2.2k
74HCO08
74HC04 N3 (R12,)7 2.2k | R10 |
i Ro L120Z
cel c7 1.20
+5V 1uF 1 uF
C12 C13
1 uF 1 uF
Us® C16 c14
i E) :UA 1l vee 14 1'?”3; Ak
or an
PWM) 2118 1v|28 i
3 12a 1
u4a.c U4E PWM2)- g 2B 2y 2 fwin -
5 > o8 u 10 613A 1
PWM3) 3B 3Y w2/1
U4:D U4F 8 4n
9 8 13 12 9 10
[PWMgy———2148B 4y W2/2
7
— 74HCO04 — 74HCO04 GND
TC4469 (DIP) —
P3
— e]
Us 2 OPlNGQ
PIN2 7
1 14 PIN7(O—
11N T10UT OPINg_ | g
10 12IN T20UTO7— PIN8
4
1; R1IOUT RIN 12 OpiNg_ | g
PIN9
—2gRr2oUT RN 5
1lcis —Orins
i C1- vee| 16 I+5V
g g§+ GNDILE L OE95-FRS
M
c30 |l ea c34 V-
T TC232
. 2 C33
AuF 1uF 1uF C3 L
LuF AuF
+
v = = Note 1: Vsrange for U2 and U5:
a) 4.5V to 18V — If TC4469 is used
b) 2V to 46V — 1f L298 is used
2: Output current rating for circuit:
a) 250 mA/winding — If TC4469 is used
b) 2A/winding — 1f L298 is used

DS00822A-page 20

© 2002 Microchip Technology Inc.

ANB822

APPENDIX B: PWM DUTY CYCLE VALUES

TABLE B-1: TRUTH TABLE FOR FULL STEP OF A STEPPER MOTOR (BIPOLAR MOTOR)

PWM1 PWM2

Step Currentin [Currentin Duty Duty EN1 EN2 CNT1 CNT2 PORTB
Number |Winding 1|Winding 2| Cycle Cycle RB4 RB5 RB3 RB2 Value
CCP1 CCP2
0 +1 0 100% 0% H L H L 0x18
1 0 +1 0% 100% L H L H 0x24
2 -1 0 100% 0% H L L L 0x10
3 0 -1 0% 100% L H L L 0x20

TABLE B-2: TRUTH TABLE FOR MICRO-STEP OF A STEPPER MOTOR (BIPOLAR MOTOR)

Step Number | ~|PwM1 | PWM2 PO U IV
Currentin | Currentin | Duty | Duty | EN1 | EN2
Step Micro Winding 1| Winding 2 | Cycle | Cycle | RB4 | RB5
Range Step CCP1 | cCP2 FWD | REV |FWD|REV | FWD | REV
0 to Half 0 +1 + Sin 5.6° 100% | 9.8% H H H H H L | Ox3C | 0x38
Section 2.1
1 +1 +Sin11.25° | 100% | 20% H H H H H L | Ox3C | 0x38
2 +1 +Sin 16.8° | 100% | 29% H H H H H L | Ox3C | 0x38
3 +1 +Sin 22.5° | 100% | 38% H H H H H L | Ox3C | 0x38
4 +1 + Sin 28° 100% | 47% H H H H H L | Ox3C | 0x38
5 +1 +Sin 33.75°| 100% | 56% H H H H H L | Ox3C | 0x38
6 +1 + Sin 39° 100% | 63% H H H H H L | Ox3C | 0x38
7 +1 + Sin 45° 100% | 71% H H H H H L | Ox3C | 0x38
8 +1 + Sin 50.6° | 100% | 77% H H H H H L | Ox3C | 0x38
9 +1 +Sin 56.25° | 100% | 83% H H H H H L | Ox3C | 0x38
10 +1 +Sin 61.8° | 100% | 88% H H H H H L | Ox3C | 0x38
11 +1 +Sin 67.5° | 100% | 93% H H H H H L | Ox3C | 0x38
12 +1 +Sin 73.1° | 100% | 95.6% | H H H H H L | Ox3C | 0x38
13 +1 +Sin 78.75° | 100% | 98% H H H H H L | Ox3C | 0x38
14 +1 +Sin 84.35°| 100% | 99.5% | H H H H H L | Ox3C | 0x38
15 +1 + Sin 90° 100% | 100% | H H H H H L | Ox3C | 0x38

Note 1: Currentis in one winding constant for a half of the full step and current in other winding varying sinusoidal.
2: Table is direct for 32 microsteps/step.
3: For-16, -8, -4, -2 (half step); 2,4, and 8 microsteps are skipped, respectively, from this table.

© 2002 Microchip Technology Inc. DS00822A-page 21

ANB822

Software License Agreement

ucts.

liability for the breach of the terms and conditions of this license.

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company'’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR

APPENDIX C: ASSEMBLY CODE FOR MICROSTEPPING

;**

; PROGRAM : STEPPER MOTOR CONTROL
;MICROCONTROLLER : 18C452

;CRYSTAL FREQUENCY : 20MHz

;DRIVER IC USED : TC4469/ST's L298

;**
;Documents to be refered with this

; a) Diagram of control circuit

; b) Application note: Microstepping of stepper motor using 18CXXX

;**

;AUTHOR : Padmaraja Yedamale , IDC
; DATE
;Version : V1.0

;**
;Description: -

;This module controls Stepper motor in Full steps, Half steps and
;microsteps of -4,-8,-16,-32 per full step.

;Timer0 is used for Speed control,which is rate of change of steps.

;Speed of the motor is varied by a potentiometer connected to the

;ADC channel0O, which is loaded to TMRO.

;Direction of motor rotation can be changed using the Tact switch (FWD/REV)
jconnected to PORTD<6>(Pin29). An internal buffer toggles and changes the
;direction with each press.

;Motor can be "Inched"(i.e. moved in steps) by using the switch(INCH)
jconnected to the PORTD<7>(Pin30). Each press of this switch will move
;the motor by one step(full,half or the selected microstep), in the
;selected direction of FWD/REV.

;The DIP swithes DIP1 (PORTD<0>,Pinl9),DIP2 (PORTD<1>,Pin20),DIP3 (PORTD<0>,Pin21)
jare used to select number of steps as shown in the following table

; S1 no. No. of Steps DIP3 (RD2) DIP2 (RD1) DIP1 (RDO)
; 1 Full step (1) Open Open Close

; 2 Half step(2) Open Close Open

; 3 4 Open Close Close

i 4 8 Close Open Open

; 5 16 Close Open Close

; 6 32 Close Close Open

;DIP4 connected to PORT<5>,pin 28 is used as "Control enable" switch.
;If this is open, motor is inhibited from rotating.

;This module uses CCPx’s in PWM mode

;In this module current in one of the winding is kept constant (rated)
jover half of the complete step and current in the other winding

;is varied sinusoidally, in order to maximize the rotor torque.
;Resultant rotor Torque = sqgrt(l + (Sine(angle)*Sine (angle))

jwhich is always > 1

i

© 2002 Microchip Technology Inc.

DS00822A-page 22

ANB822

;A table with PWM values is stored in the program memory. Table pointers and
;Table access instrucions are used to read the table as required for microstepping.
;An interface with host computer is given through serial port. USART module in the
;PIC18Cxxx is used for the communication. Following commands are implemented.

;0 Exit from PC interface -——- -——- Control goes to the

i parameters set on the

; Reference board, like pot.,
; FWD/REV switch, DIP switch
;01 No. of microsteps 1-Full step 1 to 6 -———-

; 2-Half step

; 3-1/4 step

; 4-1/8 step

; 5-1/16 step

; 6-1/32 step

;2 Direction of rotation 0-Forward 0 tol @ —------

; 1- Reverse

;3 No. of steps to Inch --- 1 to 999 Inches in the selected

; direction and by selected
i step length

;4 RPM ---- 1 to 200 Rotates at set RPM in set
i direction
;***

include <pl8c452.inc>
;**

;Variables definition
;**

UDATA_ACS ;Relocatable variables in access RAM
STEP_NUMBER res 1 ;Used for tracking the microstep counts
MOTOR_DIRECTION res 1 ijMotor direction byte

;0 indicates Reverse rotation
;1 indicates forward

COUNTER res 1 ;Counter used for counting key debounce time
COUNTER1 res 1 ;Counter used for counting key debounce time
SPEED_REF_H res 1 ;Speed referance, read from ADCO, connected
SPEED_REF_L res 1 ;to Preset on the board
FLAG_BYTE res 1 ;Indicates status flags
STEP_JUMP res 1 ;Step jump count based on DIP switch setting
RECIEVED_BYTE res 1 ;Byte recieved from host PC
COMMAND_BYTE res 1 ;Command from host PC
INCH VALUE res 2 ;Inch count from host PC
RPM_VALUE res 4 ;RPM value
MICRO_STEPS res 1 ;No. of microsteps stored
TEMP_RPM res 3 ; Temparary reg
TEMP_LOCATION res 4 ;Temparary reg
TEMP res 1 ;Temparary variable
TEMP1 res 1
#define DEBOUNCE H'02' ;Second bit in the FLAG BYTE
#define TMRO_VALUE L H'O5E’ ;Timer0 Higher byte value
#define TMRO_VALUE H H'O0AA’ ;Timer0 Lower byte value
#define STEPS_PER_ROTATION H'30' ;Full steps per rotation = 360/step angle
;**
STARTUP code 0x00
goto Start ;Reset Vector address
CODE 0x08
goto ISR_HIGH ;jHigher priority ISR at 0x0008

© 2002 Microchip Technology Inc. DS00822A-page 23

ANB822

PRG_LOW

CODE
goto

0x018
ISR _LOW

;Lower priority ISR at 0x0018

;**

PROG1
Start

code

;**

;Used only with MPLAB2000 + PCM18XA0- For Table read/write

;This code is not required when the actual device is used
;**

movlw
movwE

0xb0
0xf9c

;***

;This routine configures the I/O ports.
; PORTB - Outputs

; PORTB<3> -
i

; PORTB<2> -
; PORTB<4> -
; PORTB<5> -

;PORTD<5> - Enable switch connected
;PORTD<6> - Forward/Reverse Tact switch connected
;PORTD<7> - INCH Tact switch connected

CNT1 -

direction

Used for switching PWM1 logic

of current in windingl

CNT2 - Used for switching PWM2 logic

direction

of current in winding2

EN1 - Used for Enabling the H-bridge
EN2 - Used for Enabling the H-bridge
; PORTD - Inputs

to change the
to change the

conrolling windingl
conrolling winding2

;***

I0_PORT Init

movlw
movwE
movliw
movwf
movliw
movwE
movlw
movwE
movliw
movwf
movliw
movwE

0x0
PORTB
0x0
LATB
0x03
TRISB
0x0
PORTD
0x0
LATD
0x0E7
TRISD

;Clear PORTB

;Clear LatchB

;PORTB<2:5> output,rest input
;PORTB<6:7> reserved for ICD

;Clear PORTD

;Clear LatchD

;PORTD<7:6> and <2:0> input,rest output

7

;***

;This routine configures Analog to Digital (ADC)

jReferance voltage from the Preset connected to ADC Ch.O0
;***

ADC Init

movliw
movwf
movliw
movwE
movlw
movwf
movliw
movwf
movlw
movwE
movlw
movwf
movliw
movwf

0x81
ADCONO
0x04
ADCON1
0x00
PORTA
0xO0F
TRISA
0x0
PORTE
0x0
ADRESH
0x0
ADRESL

;ADC Clock=Fosc/32,ADCCh=0, ADON=ON

7

module to read speed

;ADC result left justified,
;ADC 1Ch., (ADO) ;No ref.
;Clear PortA bits

7

;PORTA<O0:3> input,rest output

7

;Clear PORTE

;Clear ADC result higher byte
;At POR AD reult is unknown
;Clear ADC result lower byte
;At POR AD reult is unknown

;**

DS00822A-page 24

© 2002 Microchip Technology Inc.

ANB822

iThis routine configures CCP1 and CCP2 as PWM outputs
;PWM Frequency set to 20KHz (PR2 register)
;**

CCP1_CCP2_Init

movlw 0x00 ;CCP1 & CCP2 are outputs

movwt TRISC,ACCESS

movliw 0x00

movwf TMR2, ACCESS ;clear Timer2

movlw 0xF9 ;PR2=PWM Period;0xF9 corresponds to 20KHz

movwf PR2,ACCESS ;PWM period = [(PR2)+1]*4*Tosc*Tmr2 prescale
; = [0XF9+1] *4*20MHz*16

movlw 0x04 ;Timer2 is ON,prescale = 1:1

movwf T2CON, ACCESS ;Load to Timer2 control register

movliw 0x00c ;Set CCP1l to PWM mode

movwE CCP1CON, ACCESS ;

movlw 0x00c ;Set CCP2 to PWM mode

movwf CCP2CON, ACCESS ;

;***

;This routine initializes USART parameters
;**

INIT_USART
movliw 0x81 ;Baudrate = 9600
movwf SPBRG
movliw 0x24 ;8-bit transmission;Enable Transmission;
movwi TXSTA ;Asynchronous mode with High speed transmission
movliw 0x90 ;Enable the serial port
movwi RCSTA ;with 8-bit continuous reception

;***

;This routine initializes the Interrupts required
;TMRO overflow interrupt is used to change the step sequence
;**

INTERRUPT_ init

movlw 0x020 ;Unmask TimerO interrupt

movwf INTCON ;All other interrupts masked

movlw 0x004 ;TMRO overflow interrupt-High priority

movwE INTCON2

movliw 0x093 ;Power ON reset status bit/Brownout reset status bit
movwi RCON ;and Instruction flag bits are set

;jPriority level on Interrupots enabled

movlw 0x040 ;ADC Interrupt enabled

movwif PIE1

movlw 0x000 ;A/D converter interrupt-Low priority
movwf IPR1

bsf PIE1,5

bcf IPR1,5

bsf TRISC, 7

;**

;Setting of jump count and prescale value based on the DIP switch settings

clrf FLAG_BYTE ;Intialising all local variables

clrf TEMP

call SET_DIP_ PARAMETERS ;Parameters are set based on DIP switches

call STEPPER_COM ;Displays a welcome message on the host PC screen
call send command_request

;**

© 2002 Microchip Technology Inc. DS00822A-page 25

ANB822

;Timre0 Initialization with prescaler
;**

movlw
movwf
movwf
movlw
movwf
movwf

TMRO VALUE H
TMROH
SPEED_REF H
TMRO VALUE L
TMROL
SPEED_REF L

;Timer0 Initialisation

;**

;On POR, Motor is moved to a Full step positon
;**

clrf
bsf

movlw
movwf
movliw
iorwf

movlw
movwf
movlw
movwf

bsf
bsf

STEP_NUMBER
MOTOR_DIRECTION, O

OxOFF
CCPR1L
0x30
CCP1CON, 1

0x000
CCPR2L
0x38
PORTB

INTCON, PEIE
INTCON, GIE

;starting from step0
;motor in fwd direction

;Set CCPR1L 100% duty cycle
;8MSB’s of duty cycle
;2 LSB’s at CCPxCON<5:4>

iset CCPR2L
;8MSB’s of duty cycle
ijset Forward current in Windingl

;Enable all Unmasked peripheral interrupts
;Enable all Unmasked interrupts

;**

;jMain program starts here which does the following

; 1) Checks

MAIN_LOOP
btfsc
goto

call

btfsc
call

btfss
goto
call
call
goto

STOP_MOTOR
clrf
clrf
bcf
bcf
bcf
bcf
clrf
goto

for Key pressed (with debounce)

; a) Motor Forward/Reverse Key connected to RD6

; b) Motor Inch(move by a step) Key connected to RD7

; 2) If the step is updated by Timer0 interrupt, outputs the
; required PWM on to CCP1/CCP2

i 3) 1 and 2 are repeated continuously
;**

PORTD, 5
STOP_MOTOR

check_key

FLAG_BYTE, 4
PROCESS_ COMMAND

PIE1,ADIE
MAIN LOOP
SET_ADC_GO

SET DIP_ PARAMETERS
MAIN LOOP

CCPR1L
CCPR2L
CCP1CON, 4
CCP1CON, 5
CCP2CON, 4
CCP2CON, 5
STEP_NUMBER
MAIN_ LOOP

;Checking for DIP4 (Control enable)closed
;If open, motor will not rotate

;Routine which checks for FWD/REV and INCH keys

;If host PC gives command, process the command

;If not returning from TMRO overflow interrupt
;don’t change the step, loop in Main routine

;Update the PWM duty cycle from the table

;Update the PWM duty cycle from the table

;***

;On TMRO overflow program will execute the higher priority ISR

;Higher priority Interrupt Service Routine will update the Step count based
;on the Speed commanded by the Potentiometer read through ADC ch.0 in

;jLow priority Interrupt

DS00822A-page 26

© 2002 Microchip Technology Inc.

ANB822

;***

ISR_HIGH
btfsc INTCON, TMROIF
goto timer0_int
RETFIE

timer0_int

call UPDATE_STEP_NUMBER
call UPDATE_PWM_STEP
movEf SPEED_REF_H, TMROH
movff SPEED_REF_L, TMROL
btfsc FLAG_BYTE, 6

call DECREMENT_INCH_COUNT
bef INTCON, TMROIF

bef FLAG_BYTE, 0

RETFIE

;Timer0 overflow Interrupt?
;Yes

7

;TMRO overflow ISR
;Upate the u-Step number

;Load the Higher byte of SpeedCommand to TMROH
;Load the Lower byte of SpeedCommand to TMROL

;jClear TMROIF
;Clear the flag for PWM updation

;***

;0n ADC ch.0 interrupt program will execute the lower priority ISR

jLower priority Interrupt Service Routine will read the ADC ch.0 result

;and load to the Speed command variables.
;***

ISR_LOW
btfsc PIR1,ADIF
goto ADC_SPEED READ
btfsc PIR1,RCIF
goto RECIEVE_THE BYTE
RETFIE

ADC_SPEED READ

movif ADRESH, RPM_VALUE+1
bcf STATUS, C

rrcf RPM_VALUE+1,F
movE RPM_VALUE+1,W
btfsc STATUS, Z

incf RPM_VALUE+1,F

becf PIR1,ADIF

RETFIE

RECIEVE_THE_BYTE

movff RCREG, RECIEVED BYTE
movE RECIEVED_BYTE, W

call load_RX REG_from WREG
bsf FLAG_BYTE, 4

becf PIR1,RCIF

RETFIE

;ADC Interrupt?
;Yes

;Recieve Interrupt?
;Yes

;Load AD result

;ADIF flag is cleared for next interrupt

7

;RCIF flag is cleared for next interrupt

;***

;This routine will update the PWM duty cycle on CCPx according to the count
STEP_NUMBER is updated in the Timer0 overflow interrupt

;in STEP_NUMBER.

;***

UPDATE_PWM_STEP

movE STEP_JUMP, W
btfsc WREG, 5
goto FULL_STEP_JUMP

;Checking for full step
;Yes, goto FULL_STEP_JUMP
;No,then Half step/Microstep

;Below is the routine where for microstep(including halfstep)

current (PWM)

values

;from the sine table are taken and loaded to the CCPRxL and CCPxCON<5:4> as per Table-2

;Refer Table-2 Section 2.1

(microstep range from 0 to Half of a complete step)

© 2002 Microchip Technology Inc.

DS00822A-page 27

TBLRD*+
TBLRD*+
call
cont_1_ 15
btfsc
goto
movlw
goto
fwd_1 15
movlw
rev_1 15
movwf
call
return

0x010
STEP_NUMBER
step_half

0x00
STEP_NUMBER
cont_1 15

UPPER sine_ table

TBLPTRU

;Is the u-step>0x10°?
;Yes, goto Step_half

;Initialize Table pointer to the first
;location of the table

HIGH sine_table

TBLPTRH

LOW sine_table

TBLPTRL

table adjust_positive

MOTOR_DIRECTION, O

fwd 1 15
0x38
rev_1 15

0x3C

PORTB

CCP2_INCREASE

;Used for skipping the table contents for
ju-steps < 32

;Is Motor Forward?

iNo Reverse,Wngl current +ve,
;Wngl-PORTB<3>;Wng2-PORTB<2>

Wng2 current -ve

;Yes,Forward,Wngl current +ve,

Wng2 current +ve

;Load the PWM2 values and increment Table pointer

Section 2.2

(microstep range from Half of a complete step to one complete step)

step_half
movlw
cpfslt
goto

movlw
cpfseq
goto
call
cont_16_31
btfsc
goto
movlw
goto
fwd_16_31
movlw
rev_16_31
movwf
call
return

0x020
STEP_NUMBER
step_1full

0x10
STEP_NUMBER
cont_16_31

point_to_end of_ table

;Is the u-step>207

;iYes, goto step_full
;Is the microstep == 10°?
;No, continue loading PWM values

;Yes, Point the Table pointer to end of the Table

MOTOR_DIRECTION, O

fwd_16_31
0x38
rev_16_31
0x3C

PORTB

CCP1_DECREASE

;For Reverse rotation Wngl current +ve

iWng2 -ve

;For forward rotation Wngl current +ve,Wng2 +ve

;Load the PWM1 values and decrement Table pointer

Section 2.3

(microstep range from One complete step to one and half step)

step_1full
movlw
cpfslt
goto

movlw
cpfseq
goto
call
cont_32_47

0x030
STEP_NUMBER
step_1lnhalf

0x20
STEP_NUMBER
cont_32 47

;Is u-step>30h?

;Yes, goto step_lnhalf
;Is the microstep == 20°?
;No, continue loading PWM values

point to begining of table

;Yes, Point the Table pointer to beginning of the Table

DS00822A-page 28

© 2002 Microchip Technology Inc.

ANB822

btfsc MOTOR_DIRECTION, O

goto fwd_32_47 ;

movlw 0x30 ;If Motor is reverse Wngl&Wng2 current -ve

goto rev_32_ 47
fwd_32_47

movliw 0x34 ;If Motor is forward Wngl current -ve,Wng2 +ve
rev_32_ 47

movwf PORTB

call CCP1_INCREASE

return

;Refer Table-2 Section 2.4 (microstep range from One and half step to two complete step)

step_1lnhalf

movlw 0x40

cpfslt STEP_NUMBER

goto step_two

movlw 0x30 ;Is the microstep == 30°?

cpfseq STEP_NUMBER

goto cont_48 63 ;No, continue loading PWM values

call point_to_end_of_table ;Yes,Point the Table pointer to end of the Table
cont_48_63

btfsc MOTOR_DIRECTION, O

goto fwd_48_63

movlw 0x30 ;If Motor is reverse Wngl&Wng2 current -ve

goto rev_48_ 63
fwd_48_63

movlw 0x34 ;If Motor is forward Wngl current -ve,Wng2 +ve
rev_48_ 63

movwf PORTB

call CCP2_DECREASE ;Load the PWM2 values and decrement Table pointer

return

;jRefer Table-2 Section 2.5 (microstep range from Two complete step to two and half step)

step_two
movlw 0x50
cpfslt STEP_NUMBER
goto step_2nhalf
movlw 0x40 ;Is the microstep == 40°?
cpfseq STEP_NUMBER
goto cont_64_79 ;No, continue loading PWM values
call point to begining of table
cont_64_79 ;Yes,Point the Table pointer to begining of the Table
btfsc MOTOR_DIRECTION, O
goto fwd 64 79
movlw 0x34 ;If Motor is reverse Wngl current -ve,Wng2 +ve
goto rev_64_79
fwd_64_ 79
movlw 0x30 ;If Motor is forward Wngl&Wng2 current -ve
rev_64_ 79
movwf PORTB
call CCP2_INCREASE ;Load the PWM2 values and increment Table pointer
return

;Refer Table-2 Section 2.6 (microstep range from two and half step to Three complete step)

step_2nhalf

movlw 0x60
cpfslt STEP_NUMBER
goto step_three

© 2002 Microchip Technology Inc. DS00822A-page 29

ANB822

movlw 0x50 ;Is the microstep == 50°?

cpfseq STEP_NUMBER

goto cont_80_95 ;No, continue loading PWM values

call point_to_end of_ table ;Yes,Point the Table pointer to end of the Table
cont_80_095

btfsc MOTOR_DIRECTION, O

goto fwd_80_95

movlw 0x34 ;If Motor is reverse Wngl current is -ve,Wng2 +ve

goto rev_80_95
fwd_80_95

movlw 0x30 ;If Motor is forward Wngl&Wng2 current -ve
rev_80_095

movwf PORTB

call CCP1_DECREASE ;Load the PWM1 values and decrement Table pointer

return

jRefer Table-2 Section 2.7 (microstep range from 3 complete step to 3 and half step)

step_three

movlw 0x70
cpfslt STEP_NUMBER
goto step_3nhalf
movlw 0x60 ;Is the microstep == 60°?
cpfseq STEP_NUMBER
goto cont_96_111 ;No, continue loading PWM values
call point to begining of table
cont_96_111 ;jYes,Point the Table pointer to begining of the Table
btfsc MOTOR_DIRECTION, O
goto fwd 96 111
movlw 0x3C ;If Motor is reverse Wngl&Wng2 current +ve
goto rev_96_111
fwd 96 111
movlw 0x38 ;If Motor is Forward Wngl current +ve,Wng2 -ve
rev_96_111
movwf PORTB
call CCP1_INCREASE ;Load the PWM1 values and increment Table pointer
return

;Refer Table-2 Section 2.8 (microstep range from 3 and Half step to 4 complete step/0 step)

step_3nhalf

movlw 0x80

cpfslt STEP_NUMBER

goto CLEAR_STEP_NUMBER

movlw 0x70 ;Is the microstep == 70°?

cpfseq STEP_NUMBER

goto cont_112_ 127 ;iNo, continue loading PWM values

call point_to_end of_table ;Yes,Point the Table pointer to end of the Table
cont_112 127

btfsc MOTOR_DIRECTION, O

goto fwd_112_127

movlw 0x3C ;If Motor is reverse Wngl&Wng2 current +ve

goto rev_112 127
fwd_112_127

movliw 0x38 ;If Motor is forward Wngl current +ve,Wng2 -ve
rev_112 127

movwf PORTB

call CCP2_DECREASE ;Load the PWM2 values and decrement Table pointer

return

,-***

;If Full step control is choosen, both PWM’s will be loaded with 100%
;duty cycle during initialisation and current sequence for the steps is

DS00822A-page 30 © 2002 Microchip Technology Inc.

ANB822

jcontrolled by
;CNT1 (RB3) and
;Refer Table-1

Enable signals EN1(RB4) and EN2 (RB5) and PWM switching signals
CNT2 (RB2) .

;***

FULL_STEP_JUMP
movlw
cpfslt
goto
btfsc
goto
movlw
movwf
call
return

FWD_FIRST STEP
movlw
movwf
call
return

SECOND_STEP
movlw
cpfslt
goto
btfsc
goto
movlw
movwf
call
return

FWD_SECOND_STEP

movliw
movwf
call
return
THIRD_STEP
movlw
cpfslt
goto
btfsc
goto
movlw
movwf
call
return
FWD_THIRD STEP
movlw
movwf
call
return
FORTH_STEP
movlw
cpfslt
goto
btfsc
goto
movlw
movwf
call
return
FWD_FORTH_ STEP
movlw
movwf
call
return

0x20 ;check for 1st step
STEP_NUMBER
SECOND_STEP

MOTOR_DIRECTION, 0 ;Test motor direction

FWD_FIRST STEP

0x28 ;If Motor is reverse Wngl=0,Wng2=-1
PORTB

CCP1_LOW_CCP2_HIGH

0x18 ;If Motor is forward Wngl=+1,Wng2=0
PORTB
CCP1_HIGH_CCP2_ LOW

0x40 ;check for 2nd step

STEP_NUMBER

THIRD_STEP

MOTOR_DIRECTION, 0 ;Test motor direction
FWD_SECOND_STEP

0x14 ;If Motor is reverse Wngl=-1,Wng2=0
PORTB

CCP1_HIGH CCP2_LOW

0x24 ;If Motor is forward Wngl=0,Wng2=+1
PORTB
CCP1_LOW_CCP2_HIGH

0x60 ;check for 3rd step

STEP_NUMBER

FORTH_STEP

MOTOR_DIRECTION, 0 ;Test motor direction

FWD_THIRD_ STEP

0x24 ;If Motor is reverse Wngl=0,Wng2=+1
PORTB

CCP1_LOW_CCP2_HIGH

0x14 ;If Motor is forward Wngl=-1,Wng2=0
PORTB
CCP1_HIGH_CCP2_ LOW

0x80 ;check for 4th step
STEP_NUMBER
CLEAR_STEP_NUMBER

MOTOR_DIRECTION, 0 ;Test motor direction
FWD_FORTH_STEP

0x18 ;If Motor is reverse Wngl=+1,Wng2=0
PORTB

CCP1_HIGH CCP2 LOW

0x28 ;If Motor is forward Wngl=0,Wng2=-ve
PORTB
CCP1_LOW_CCP2 HIGH

CLEAR_STEP_NUMBER

© 2002 Microchip Technology Inc.

DS00822A-page 31

ANB822

clrf
return

STEP_NUMBER

;**

;This routine checks for the keys pressed after waiting for the key to debounce
; a) Motor Forward/Reverse Key connected to RD6

; Toggle switch,

toggles between Forward and reverse with each press

; b) Motor Inch Key connected to RD
i Moves the motor by a step with each press in the direction selected

i by Fwd/Rev key previously

;**

check_key
btfsc
goto
call
btfss
return
becf
becf
bcf
call
call
call
bcf
return

PORTD, 7
check_ fwd rev_ key
key_ debounce

FLAG_BYTE, DEBOUNCE

FLAG_BYTE, DEBOUNCE
INTCON, TMROIE
PIE1l,ADIE
UPDATE_STEP_NUMBER
SET_DIP_PARAMETERS
UPDATE_PWM_STEP
FLAG_BYTE, 0

check_fwd_rev_key

btfss
goto
clrf
clrf
return

PORTD, 6

fwd_rev_key pressed
COUNTER

COUNTER1

fwd_rev_key pressed

call
btfss
return
becf
bsf
bsf
btfsc
goto
bsf
return

key_debounce
FLAG_BYTE, DEBOUNCE

FLAG_BYTE, DEBOUNCE
INTCON, TMROIE
PIEl,ADIE
MOTOR_DIRECTION, O
set_revdirction bit
MOTOR_DIRECTION, O

set_revdirction bit

becf
return

MOTOR_DIRECTION, O

;Is key pressed "INCH"?

;Yes, wait for debounce

;If key pressed < debounce time,

;If debounced,Disable Timer0 interrupt

;Update the step

iClear the flag for PWM updation

;Fwd/Rev key pressed?

;No, clear debounce counter

;No, clear debounce counter

;Yes Fwd/Rev key pressed,wait to debounce

;If key pressed < debounce time,
;Enable TimerO0 Interrupt

;Set Motor direction bit to Forward

;Set Motor direction bit to Reverse

;***

;This routine Updates the step count depending upon the Number of Microsteps/step
jentered by the user
;***

UPDATE_STEP_NUMBER

movE
addwf
btfsc
clrf
return

STEP_JUMP, W
STEP_NUMBER, 1
STEP_NUMBER, 7
STEP_NUMBER

;Add step jump count to the present step number
;If Step number = 80h then clear the count

;***

;This routine waits for key to debounce after it is pressed the count value is O0x3ff
;***

key debounce
incf
movlw
cpfseq
goto

COUNTER, 1,ACCESS
0x12

COUNTER, ACCESS
return_from_debounce

;After key press is senced, increment COUNTER
;If counter == OXFF

DS00822A-page 32

© 2002 Microchip Technology Inc.

ANB822

incf COUNTER1, 1,ACCESS

movlw 0x1

cpfseq COUNTER1,ACCESS

goto return_from_ debounce

bsft FLAG_BYTE, DEBOUNCE, ACCESS
return

return_from_debounce
bcf FLAG_BYTE, DEBOUNCE, ACCESS
return

; Increment Counterl
0x3

;If counterl ==

;Set debounce flag(key press success)

;If key pressed < debounce time,
;Key press is not sucessful

;***

;This routine sets the number of microsteps based on the DIP switch settings.

;jAlso this sets the TMRO prescale value based on the number of microsteps.
;***

SET_DIP_ PARAMETERS

movlw 0x07
andwf PORTD, W
movwf TEMP
bsf STATUS, C
movliw 0x7
subfwb TEMP, F
movif TEMP, MICRO_STEPS
SET_MICROSTEPS
movlw 0x01
cpfseq TEMP
goto CHECK_FOR_2
movlw 0x20
movwf STEP_JUMP
movlw 0X86
movwf TOCON
return
CHECK_FOR_2
movlw 0x02
cpfseq TEMP
goto CHECK_FOR_3
movlw 0x10
movwf STEP_JUMP
movlw 0X85
movwf TOCON
return
CHECK_FOR_3
movlw 0x03
cpfseq TEMP
goto CHECK_FOR_4
movlw 0x08
movwf STEP_JUMP
movlw 0X84
movwf TOCON
bsf FLAG_BYTE, 3
return
CHECK_FOR_4
movlw 0x04
cpfseq TEMP
goto CHECK_FOR_5
movlw 0x04
movwf STEP_JUMP
movlw 0X83
movwf TOCON
bsf FLAG_BYTE, 3
return
CHECK_FOR_5
movlw 0x05
cpfseq TEMP
goto CHECK_FOR_6
movlw 0x02

;DIP switches connected to PORTD<2:0>
;Other bits removed

;Is microsteps/step setting==1?

;No, check for next
;Yes, then
;STEP_JUMP = 20h

;Load the TOCON with wvalue
;TMRO ON and prescalar is 1:64

;Is microsteps/step setting==2?

;No, check for next
;Yes, then
;STEP_JUMP = 10h

;Load the TOCON with wvalue
;TMRO ON and prescalar is 1:32

;Is microsteps/step setting==4?

;No, check for next
;Yes, then
;STEP_JUMP = 08h

;Load the TOCON with wvalue
;TMRO ON and prescalar is 1:16
;Set FLAG_BYTE<3> for table manipulation

;Is microsteps/step setting==8?

;No, check for next
;Yes, then
;STEP_JUMP = 4h

;Load the TOCON with wvalue
;TMRO ON and prescalar is 1:8
;Set FLAG_BYTE<3> for table manipulation

;Is microsteps/step setting==16?

check for next
then

iNo,
;Yes,

© 2002 Microchip Technology Inc.

DS00822A-page 33

ANB822

movwf STEP_JUMP ;STEP_JUMP = 2h
movlw 0X82 ;Load the TOCON with wvalue
movwf TOCON ;TMRO ON and prescalar is 1:4
bsf FLAG_BYTE, 3 ;Set FLAG_BYTE<3> for table manipulation
return

CHECK_FOR_6
movlw 0x01 ;Yes, then
movwf STEP_JUMP ;STEP_JUMP = 1h
movlw 0X81 ;Load the TOCON with wvalue
movwf TOCON ;TMRO ON and prescalar is 1:2
return

;***
;This routine reads the PWM values from the table and loads to the CCPR1L and
;CCP1CON<5:4> and increments Table pointer to next value appropriately,

;based on the number of microsteps selected

;***

CCP1_INCREASE

TBLRD*+

movif TABLAT, CCPR1L

TBLRD*+

bcf CCP1CON, 4 ;Update the PWM duty cycle from the table
becf CCP1CON, 5

movE TABLAT, 0

iorwf CCP1CON, 1

btfsc FLAG_BYTE, 3

call table_adjust_positive ;Update the table for next wvalue

return

;***
;This routine reads the PWM values from the table and loads to the CCPR1L and
;CCP1CON<5:4> and decrements Table pointer to next value appropriately,

;based on the number of microsteps selected

;***

CCP1_DECREASE

TBLRD* -

bcf CCP1CON, 4

bcf CCP1CON, 5 ;Update the PWM duty cycle from the table
movE TABLAT, 0

iorwf CCP1CON, 1

TBLRD* -

movif TABLAT, CCPR1L

btfsc FLAG_BYTE, 3

call table_adjust_negative ;Update the table for next value

return

;***
;This routine reads the PWM values from the table and loads to the CCPR2L and
;CCP2CON<5:4> and increments Table pointer to next value appropriately,

;based on the number of microsteps selected

;***

CCP2_INCREASE

TBLRD*+

movif TABLAT, CCPR2L ;jRead the values from Table and update PWM duty cycle
TBLRD*+ ; (10 bits)of CCP2

bcf CCP2CON, 4

bcf CCP2CON, 5

movf TABLAT, 0

iorwf CCP2CON, 1

btfsc FLAG_BYTE, 3

call table adjust positive ;Adjust the table pointer

return

;***

;This routine reads the PWM values from the table and loads to the CCPR2L and
jCCP2CON<5:4> and decrements Table pointer to next value appropriately,

DS00822A-page 34 © 2002 Microchip Technology Inc.

ANB822

;based on the number of microsteps selected
;***

CCP2_DECREASE

TBLRD* -

becf CCP2CON, 4

bcf CCP2CON, 5

movE TABLAT, 0

iorwf CCP2CON, 1

TBLRD* -

movif TABLAT, CCPR2L

btfsc FLAG_BYTE, 3

call table adjust_negative ;Update the table for next value
return

;***

;This routine adjusts the Table pointer to the begining of the Table,
; which is changed due to the previous table operations
;***
point_to_begining of_ table

TBLRD*+

TBLRD*+

TBLRD*+

call table_adjust_positive ;Used for skipping the table contents for

;ustep<lé6

btfsc FLAG_BYTE, 3

call table_adjust_positive ;Update the table for next wvalue

return

;***

;This routine adjusts the Table pointer to the end of the Table,
; which is changed due to the previous table operations
;***
point_to_end of table

TBLRD* -

TBLRD* -

TBLRD* -

call table_adjust_negative ;Used for skipping the table contents for

;justep<l6

btfsc FLAG_BYTE, 3

call table_adjust_negative ;Upadte the table for next value

return

;***

;This routine advances the Table pointer by (STEP_JUMP-1)*2 times,
;used for Table pointer updation for -16,-8,-4,-2 microsteps/step

;***

table_adjust_positive

movE STEP_JUMP, W

dcfsnz WREG, F ;W= STEP_JUMP-1

return

rlncf WREG, W ;W=(STEP_JUMP—1)*2

bcf STATUS, C

addwfc TBLPTRL, F ;TablePointer= Table_ pointer+W
clrf WREG

addwfc TBLPTRH, F

addwfc TBLPTRU, F

return

;***

;This routine updates (subtracts) the Table pointer by (STEP_JUMP-1)*2 times,
;used for Table pointer updation for -16,-8,-4,-2 microsteps/step
;***
table_adjust_negative

movf STEP_JUMP, W

dcfsnz WREG, F W

STEP_JUMP-1

© 2002 Microchip Technology Inc.

DS00822A-page 35

ANB822

return

rlnct WREG, W ;W=(STEP_JUMP—1)*2

bsf STATUS, C

subwfb TBLPTRL, F ;TablePointer= Table_ pointer-w
clrf WREG

subwfb TBLPTRH, F

subwfb TBLPTRU, F

return

;***

ijMake PWM1 high and PWM2 Low

;***

CCP1_HIGH_CCP2_LOW

movlw 0xO0FF ;Set CCPR1L 100% duty cycle
movwf CCPR1L ;8MSB’s of duty cycle
movlw 0x30 ;2 LSB’s at CCPxCON<5:4>
iorwf CCP1CON, F

movlw 0X0 ;Set CCP2 duty cycle to 0%
movwf CCPR2L

movlw 0XOCF

andwf CCP2CON, F

return

;***

ijMake PWM1 Low and PWM2 High

;***

CCP1_LOW _CCP2 HIGH

movlw 0x0 ;Set CCPR1L 0% duty cycle
movwf CCPR1L ;8MSB’s of duty cycle

movlw 0x0CF ;2 LSB’s at CCPxCON<5:4>
andwf CCP1CON, F

movlw 0XOFF ;Set CCP2 duty cycle to 100%
movwf CCPR2L

movlw 0X030

iorwf CCP2CON, F

return

;***

;This routine sets the ADC GO bit high after an aquisition time of 20uS approx.

;***

SET_ADC_GO
call CALCULATE_RPM1
btfss ADCONO, GO
bsft ADCONO, GO ;Set GO bit for ADC conversion start
return

;***

;This routine calculates the RPM with Potentiometer
;***

CALCULATE_RPM1

clrf TEMP

clrf TEMP1

movE RPM_VALUE+1,W

btfsc STATUS, Z

incf RPM_VALUE+1,F

movlw 0x2F

movwf TEMP_LOCATION

movlw 0xAE

movwf TEMP_LOCATION+1
continue subtractionl

bsf STATUS, C

movE RPM_VALUE+1,W

subwfb TEMP_LOCATION+1,F

movlw 0x0

subwfb TEMP_LOCATION, F

DS00822A-page 36 © 2002 Microchip Technology Inc.

ANB822

btfss STATUS, C

goto keep_result_in_rpml
incf TEMP, F

btfsc STATUS, C

incf TEMP1, F

goto continue subtractionl

keep_result_in_rpml

;Timer0 value = FFFF-Timer0
rlcf TEMP, F
rlef TEMP1, F
bcf STATUS, C
rlcf TEMP, F
rlef TEMP1, F
bsf STATUS, C
movlw OxFF
subfwb TEMP, F
subfwb TEMP1,F
movff TEMP1, SPEED_REF_H
movif TEMP, SPEED_REF_L
return

;***
;Table for the microsteps.

;Even numbered values are loaded to CCPRxL and

;0dd numbered values are ORed with CCPxCON (CCPxCON<5:4>)

;to load complete 10 bits of PWMx duty cycle
;***

TABLE code 0x02A0

Sine_table db 0x0,0x00,0x20,0x30,0x34,0x20,0x42,0x10,0x50,0x0, 0x5C,0x10,0x68,0x20
db 0x74,0x30,0x80,0x30,0x8C,0x30,0x98,0x30,0xA4,0x20,0xB0,0x10,0xC3,0x10
db 0xD6,0x20, 0xEA, 0x20, OxFF, 0x30

;***

;This routine loads the data in Wreg to Transmission register (TXREG) after checking
;of completion of previously loaded byte transmission
;***

load_RX REG_from_ WREG

btfss PIR1, TXIF

goto load_RX REG_from WREG
movwf TXREG

return

;***

;This routine processes the command from host PC. If is is command, then
;FLAG_BYTE<5> is set and data is awaited.
;***

PROCESS_ COMMAND

bcf FLAG_BYTE, 4 ;Flag for byte recieved interrupt
btfsc FLAG_BYTE,5 ;Flag for differanciating Command and data
;If set, recieved byte is data
goto CHECK_DATA
movEif RECIEVED BYTE, COMMAND BYTE
bcf PIE1l,ADIE ;Enable Speed ref from Pot
bef INTCON, TMROIE ;Enable Timer0 interrupt
CHECK_DATA
movlw 0x030 ;Is Received command=exit from steup?
cpfseq COMMAND_BYTE
goto CHECK_FOR_STEP_VALUE iNo, check for change of usteps?
call DISPLAY EXIT SETUP ;Display exit from setup
call SET DIP PARAMETERS ;set the microsteps according to the DIP switches
becf FLAG_BYTE, 5

© 2002 Microchip Technology Inc. DS00822A-page 37

ANB822

becf
becf
bsf
bsf
return

FLAG_BYTE, 6
FLAG_BYTE, 0
PIE1l,ADIE
INTCON, TMROIE

CHECK_FOR_STEP_ VALUE

movlw
cpfseq
goto
btfsc
goto
call
bsf
return

SET_MICROSTEPS .
movlw
subwf
movwf
btfsc
goto
movlw
cpfslt
goto
movif
call
movlw
call
bcf
return

CHECK_FOR_DIREC
movlw
cpfseq
goto
btfsc
goto
call
bsf
return

SET_DIRECTION_D.
movlw
cpfseq
goto
clrf
call
bsf
becf
return

test 0x31
movlw
cpfseq
goto
movlw
movwf
call
bsf
bcf
return

0x031

COMMAND_BYTE
CHECK_FOR_DIRECTION
FLAG_BYTE, 5
SET_MICROSTEPS_DATA
DISPLAY STEPS_ VALUE
FLAG_BYTE, 5

DATA

0x30
RECIEVED_BYTE, W
MICRO_STEPS
STATUS, Z
NOT_VALID_ENTRY
0x7

MICRO_STEPS
NOT_VALID_ENTRY
MICRO_STEPS, TEMP
SET_MICROSTEPS
0xA

load_RX REG_from WREG
FLAG_BYTE, 5

TION

0x032

COMMAND BYTE
CHECK_FOR_INCH STEP
FLAG_BYTE, 5
SET_DIRECTION_DATA
DISPLAY STEPS DIRECTION
FLAG_BYTE, 5

ATA

0x30
RECIEVED_BYTE
test_0x31
MOTOR_DIRECTION
MOTOR_RUN_FORWARD
INTCON, TMROIE
FLAG_BYTE, 5

0x31

RECIEVED BYTE

NOT VALID ENTRY
0x1
MOTOR_DIRECTION
MOTOR_RUN_ REVERSE
INTCON, TMROIE
FLAG BYTE, 5

CHECK FOR INCH STEP

movlw
cpfseq

0x033
COMMAND BYTE

;Enable Speed ref from Pot

;Enable Timer0 interrupt

;Is Received command=change no. of usteps?

;No, check for direction change

;Display allowed microstep values

;Data received for microstep

;Set the microsteps according to the data entry

;Is Received command=change of direction?

;No,check for No. of steps to inch

;Display allowed direction values

;Test the recieved data for Forward

;Direction commanded is forward

;Enable Timer0 interrupt

;Check for reverse rotation command

;Yes, set the motor direction to reverse

;Enable Timer0 interrupt

;Is Received command=Inch step?

DS00822A-page 38

© 2002 Microchip Technology Inc.

ANB822

goto CHECK_FOR_RPM ;No,check for RPM of motor
btfsc FLAG_BYTE, 5
goto SET_INCH STEPS_DATA
call DISPLAY_ STEPS_INCH ;Display allowed INCH step values
movlw HIGH (RPM_VALUE+3)
movwf FSR2H
movlw LOW (RPM_VALUE+3)
movwf FSR2L
movlw OXFF ;Allow 3 digits of hata to be entered
movwf POSTDEC2
movwf POSTDEC2
movwf POSTDEC2
movwf INDF2
bsf FLAG_BYTE, 5
return

SET_INCH_STEPS DATA
movlw 0x2F
cpfsgt RECIEVED_ BYTE
goto INCH_COMMAND_READ ;iCheck the data entered >0<9
movliw 0x3A
cpfslt RECIEVED BYTE ;If the data is other than 0-9,
goto INCH_COMMAND_ READ jconsider that data entry is over
movlw 0x30
subwf RECIEVED BYTE,W
movwf POSTINC2 ;Store the data in the RPM_VALUE
return

INCH_COMMAND READ
call MERGE_NUMBERS ;Concatinate the entered numbers
call CONVERT_TO_HEX ;Convert the concatinated nubers to Hex
movff RPM_VALUE, INCH_VALUE ;Load the hex value to the registers INCH_VALUE
movif RPM_VALUE+1, INCH_VALUE+1
bsf INTCON, TMROIE ;Enable Timer0 overflow interrupt
bsf FLAG_BYTE, 6
becf FLAG_BYTE, 5
movlw 0xA
call load RX REG_ from WREG
return

CHECK_FOR_RPM

movlw 0x034 ;Is Received command=set RPM?
cpfseq COMMAND_BYTE
goto NOT_ VALID ENTRY ;No,Not a correct command
btfsc FLAG_BYTE, 5
goto SET_RPM_DATA
call DISPLAY STEPS RPM ;Display allowed RPM range
movlw HIGH(RPM_VALUE+3)
movwf FSR2H
movlw LOW(RPM_VALUE+3)
movwf FSR2L
movlw OxFF
movwf POSTDEC2
movwf POSTDEC2
movwf POSTDEC2
movwf INDF2
bsf FLAG_BYTE, 5
return
SET RPM_DATA
movlw 0x2F ;Check the data entry range 0 to 9
cpfsgt RECIEVED_BYTE
goto RPM_COMMAND_READ
movlw 0x3A
cpfslt RECIEVED_BYTE
goto RPM_COMMAND_READ
movlw 0x30 ;jStore th ereceived data in the RPM_VALUEs
subwf RECIEVED_BYTE, W

© 2002 Microchip Technology Inc. DS00822A-page 39

ANB822

movwf POSTINC2
return
RPM_COMMAND_READ
bcf PIE1l,ADIE ;Disable Speed ref from Pot
call convert_ RPM_to_HEX ;Convert the data to Hex
call CALCULATE_RPM ;Calculate the Timer0O value from the RPM data entered
call display motor_direction
bsf INTCON, TMROIE ;Enable Timer0 ineterrupt
bcf FLAG_BYTE, 5
return

NOT_VALID_ENTRY

call DATA_NOT_VALID ;If the entered command is other than the valid commands,
call send_command_request ; then display the DATA INVALID

bcf FLAG_BYTE, 5

return

;***

;This routine decrements the INCH count given from host PC to move in INCH mode
;***

DECREMENT_ INCH_ COUNT

decf INCH_VALUE+1,F ;Decrement the inching counter

btfss STATUS, C ;after each step movement

decf INCH_VALUE, F

btfsc STATUS, C

return

becf FLAG_BYTE, 5 ;If all steps are over, clear the flag bytes
becf FLAG_BYTE, 6

becf INTCON, TMROIE ;If Inch _count==0,Disable Timer0O interrupt
return

;***
;RPM value from the Host PC is entered in descrete decimal digits.

;This routine merges the digits to get the RPM value and then

jconverts the RPM in decimal value to Hex value

;***

convert RPM_ to HEX

clrf TEMP ;

clrf TEMP1

call MERGE_NUMBERS iMerge the individual digits

call CONVERT_TO_HEX ;Convert the entered number to Hex
movlw 0xC8 ;RPM 1limit set to 200 RPM

cpfslt RPM_VALUE+1 ;

movwf RPM_VALUE+1

return

;***

;RPM value from the Host PC is entered in descrete decimal digits.
;This routine merges the numbers

;***

MERGE_NUMBERS

movlw 0xA ;Third digit is checked for number
cpfslt RPM_VALUE+2

goto check_second ;If it has a valid number, conacatinate
swapf RPM_VALUE+1,W ;RPM_VALUE2 and 3 and keep in RPM_VALUE2
iorwf RPM_VALUE+2,W

movwf RPM_VALUE+1

return

check_second

movlw 0xA ;If second digit is a valid number,

cpfslt RPM_VALUE+1 jconcatinate RPM_VALUE2 and 1 and place in
goto place_number ;RPM_VALUE2

swapf RPM_VALUE, W

iorwf RPM_VALUE+1,F

clrf RPM_VALUE

DS00822A-page 40

© 2002 Microchip Technology Inc.

ANB822

return
place_number
movEif
clrf
return

return
jcheck_second
movlw
cpfslt
goto
swapf
movf
iorwf
clrf
return
iplace_number
movif
clrf
return

RPM_VALUE,RPM_VALUE+1
RPM_VALUE

HIGH (RPM_VALUE+2)
FSR2H

LOW (RPM_VALUE+2)
FSR2L

OxA

POSTDEC2
check_second
POSTINC2,W
POSTDEC2,W

INDF2

OxA

POSTDEC2
place_number
INDF2,F
POSTINC2,W
INDF2,F
RPM_VALUE

RPM_VALUE, RPM_VALUE+1
RPM_VALUE

;If only one digit is entered,keep it in
;RPM_VALUE2 and clear RPM_VALUEL

;Third digit is checked for number

;If it has a valid number, conacatinate
;RPM_VALUE2 and 3 and keep in RPM_VALUE2

;If second digit is a valid number,
jconcatinate RPM_VALUE2 and 1 and place in
;RPM_VALUE2

;If only one digit is entered,keep it in
;RPM_VALUE2 and clear RPM_VALUEL

;***

;This routine converts the decimal RPM value to Hex
;***

CONVERT TO HEX

clrf TEMP
contimue_conversion_hex

bsf STATUS, C

movlw 0x16

subwfb RPM_VALUE+1,F

movlw 0x0

subwfb RPM_VALUE, F

btfss STATUS, C

goto set_LS_nibble

movlw 0x9F

cpfsgt RPM_VALUE+1

goto check_ls_nibble

movlw 0x60

subwf RPM_VALUE+1,F
check_ls_nibble

movEf RPM_VALUE+1,W

andlw 0xO0F

movwE TEMP1

movlw 0x9

cpfsgt TEMP1

goto increment_count

movlw 0x6

subwf RPM_VALUE+1,F

increment count
incf
goto

set LS nibble
movlw

TEMP, F

contimue_conversion_hex

0x16

;Divide the number by 0x16 by
;Subtracting continuously 0x16 from the
;value

;The result is stored in TEMP

© 2002 Microchip Technology Inc.

DS00822A-page 41

ANB822

addwf RPM_VALUE+1,F
movlw 0x9
cpfsgt RPM_VALUE+1
goto set_hex value
movlw 0x6
subwf RPM_VALUE+1,F
set_hex value
swapf TEMP, W ;Set the values in RPM_VALUE (H) and
andlw 0xFO ;RPM_VALUE+1 (L)
iorwf RPM_VALUE+1,F
swapf TEMP, W
andlw 0x0F
movwf RPM_VALUE
return

;***

;Timer0 reload value is calculated from the RPM_VALUE and the microsteps setting
;Calculation of Timer0O reload value:

;Stepl: No. of steps/sec (A) = (RPM/60)* microsteps
;Step2: Time/1 step (B) = 1/A

;Step3: Timer0 counts for B sec (C) B * 20 MHz

;Step4: Divide by Timer0 prescaler (D) = C/Timer0O prescaler
;jStep5: Subtract count from FFFFh, E = FFFF - D

;S0 E is the Timer0O reload value
;***

CALCULATE_RPM

movE RPM_VALUE+1,W
btfsc STATUS, Z
incf WREG, W
mullw STEPS_PER_ROTATION iRPM*No of steps/revolution
movEif PRODL, TEMP_RPM+2
movif PRODH, TEMP_RPM+1
clrf TEMP_RPM
movf TOCON, W ;
andlw 0x07
addwf MICRO_STEPS,W
movwf TEMP
bcf STATUS, C
repeat_shift_ left
rlcf TEMP_RPM+2,F ; (RPM*No of steps/revolution) *
rlcf TEMP_RPM+1,F ; (TMRO prescaler*No. of steps/step)
rlcf TEMP_RPM, F
decfsz TEMP, F
goto repeat_shift_left
call divide_3_8zero_by_ rpm
return

;***

;(60/0.2%10-6)=300000000d = 11E1A300h
;Timer0 value for RPM = 11E1A300h/((steps/revolution*Timer0 prescaler value) * (RPM))

;***

divide_3_8zero_by_ rpm

clrf TEMP
clrf TEMP1
movlw 0x11 ;Temp_loation =0x11ela300
movwf TEMP_LOCATION ; == 60/0.2X(10e-6)
movlw 0xE1l
movwf TEMP_LOCATION+1
movlw 0xA3
movwf TEMP_LOCATION+2
clrf TEMP_LOCATION+3
continue subtraction
movlw HIGH(TEMP_LOCATION+3)
movwf FSROH
movlw LOW(TEMP_LOCATION+3)
movwf FSROL
movlw HIGH (TEMP_RPM+2)

DS00822A-page 42 © 2002 Microchip Technology Inc.

ANB822

movwf
movlw
movwf
bsf
movE
subwfb
movE
subwfb
movf
subwfb
movlw
subwfb
btfss
goto
incf
btfsc
incf
goto

FSR1H

LOW (TEMP_RPM+2)
FSR1L

STATUS, C
POSTDEC1,W
POSTDECO, F
POSTDEC1,W
POSTDECO, F
POSTDEC1,W
POSTDECO, F

0x0

POSTDECO, F
STATUS, C
keep_result_in_rpm
TEMP, F

STATUS, C

TEMP1, F

continue subtraction

keep_result_in_rpm

;Timer0 value

= FFFF-Timero0

bsf STATUS, C

movliw OxFF

subfwb TEMP, F

subfwb TEMP1,F

movif TEMP1, SPEED_REF_H
movif TEMP, SPEED_REF_L
return

;***

;jDisplays the direction of motor on the host PC screen
;***

display motor_direction

movlw 0x0

cpfseq MOTOR_DIRECTION
goto display reverse_dir
call MOTOR_RUN_FORWARD
return

display reverse dir
call MOTOR_RUN_REVERSE
return

;***

;This routine intializes the USART module to communicate with host PC and displays

;a welcome message on the screen
;***

STEPPER_COM

movlw 0xA
movwf TEMP
repeat_send
incf TEMP, F
incf TEMP, F
movlw 0x62
cpfseq TEMP
goto send
return
send
movf TEMP, W
call send_welcome
call load RX REG_ from WREG
goto repeat_ send

send_welcome

becf STATUS, C
addwf PCL,W
movwf TEMP1
movlw 0x0
addwfc PCLATH, F

© 2002 Microchip Technology Inc.

DS00822A-page 43

ANB822

addwfc
movif
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

PCLATU, F
TEMP1, PCL
W
rar
Ill
rar
ot
o’

M
1o
re
o
™
0x0A
0x0D

;***

;This routine displays the list commands with their explanation on the host PC screen
;***

send_command_request

movlw
movwf

0xA
TEMP

repeat_send_com_req

incf
incf
movlw
cpfseq
goto
call
return
send_com_req

movf
call
call
goto

TEMP, F
TEMP, F

0x4A

TEMP
send_com_reqg
show_commands

TEMP, W
send_com_request

load _RX REG from WREG
repeat_send com_req

send_com_request

DS00822A-page 44

© 2002 Microchip Technology Inc.

ANB822

bcf STATUS, C
addwf PCL,W
movwf TEMP1
movlw 0x0
addwfc PCLATH, F
addwfc PCLATU, F
movif TEMP1, PCL
retlw 0x0A
retlw 0x0A
retlw 0x0D
retlw 'E’
retlw 'n’
retlw e’
retlw re’
retlw 'r’
retlw ro
retlw e
retlw "h’
retlw re’
retlw ro
retlw '’
retlw re’
retlw rq’
retlw ru’
retlw rir
retlw '’
retlw re’
retlw rda’
retlw ro
retlw rc’
retlw "o’
retlw ‘m’
retlw ‘m’
retlw ra’
retlw 'n’
retlw ra’
retlw 0x0A
retlw 0x0D

show_commands

movlw 0xA
movwf TEMP
repeat_show_com
incf TEMP, F
incf TEMP, F
movlw OxF6
cpfseq TEMP
goto show_com
return

show_com

movf TEMP, W

call show_command

call load_RX REG_from WREG

goto repeat show_com
show_command

bcf STATUS, C

addwf PCL, W

movwf TEMP1

movlw 0x0

addwfc PCLATH, F

addwfc PCLATU, F

movEff TEMP1, PCL

retlw 0x0A

retlw 0x0D

retlw 'o’

© 2002 Microchip Technology Inc. DS00822A-page 45

ANB822

retlw A=
retlw A=
retlw 'E’
retlw rx!
retlw ri’
retlw Tt
retlw v
retlw rfr
retlw '’
retlw "o’
retlw ‘m’
retlw o
retlw 'S’
retlw e’
retlw Tt
retlw ‘u’
retlw 'p’
retlw 0x0A
retlw 0x0D
retlw 1’
retlw e
retlw e
retlw "N’
retlw ‘u’
retlw ‘m’
retlw re’
retlw o
retlw v
retlw o’
retlw rfr
retlw v
retlw ‘M’
retlw ri
retlw e’
retlw 'r’
retlw o’
retlw 's’
retlw Tt
retlw e’
retlw 'p’
retlw s’
retlw)
retlw 's’
retlw Tt
retlw e’
retlw 'p’
retlw 0x0A
retlw 0x0D
retlw r2
retlw i
retlw i
retlw 'D’
retlw rir
retlw o
retlw re’
retlw e’
retlw e’
retlw rir
retlw o’
retlw n’
retlw ro
retlw o’
retlw rfr

DS00822A-page 46 © 2002 Microchip Technology Inc.

ANB822

retlw v
retlw '’
retlw o’
retlw e
retlw ra’
retlw Tt
retlw rir
retlw "o’
retlw 'n’
retlw 0x0A
retlw 0x0D
retlw '3
retlw A=
retlw -
retlw "N’
retlw ‘u’
retlw ‘m’
retlw e’
retlw '’
retlw ro
retlw "o’
retlw rfr
retlw ro
retlw 'S’
retlw e
retlw re’
retlw 'p’
retlw 's’
retlw ro
retlw Tt
retlw "o’
retlw ro
retlw rT’
retlw 'n’
retlw rc’
retlw "h’
retlw 0x0A
retlw 0x0D
retlw 14
retlw e
retlw N
retlw 'S’
retlw re’
retlw e’
retlw v
retlw 'R’
retlw 'p’
retlw '™’
retlw 0x0A
retlw 0x0A
retlw 0x0D

;***

;This routine displays message during exit from the PC communication on the host PC screen
;***

DISPLAY EXIT_ SETUP

movlw 0xA

movwf TEMP
repeat_show_exit

incf TEMP, F

incf TEMP, F

movlw 0x2E

© 2002 Microchip Technology Inc. DS00822A-page 47

ANB822

cpfseq
goto
return
show_exit
movE
call
call
goto

TEMP
show_exit

TEMP, W

show_exit setup
load_RX REG_from WREG
repeat_show_exit

show_exit_ setup

bcf
addwf
movwf
movlw
addwfc
addwfc
movif
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

STATUS, C
PCL,W
TEMP1
0x0
PCLATH, F
PCLATU, F
TEMP1, PCL
0x0A
0x0D

-V

iy

TR

ro

/B

iy

TR

.
0x0A
0x0D

;***

;This routine displays the list of data available for microstep selection on the host PC screen
;***

DISPLAY STEPS_VALUE

movlw
movwf

OxA
TEMP

repeat_show_step_value

incf
incf
movlw
cpfseq
goto
return
show_step
movE
call
call
goto

TEMP, F
TEMP, F
0xDO0

TEMP
show_step

TEMP, W

show_step_ command

load RX REG_ from WREG
repeat_show_step_value

show_step_ command

bcf
addwf
movwf
movlw
addwfc
addwfc
movEif
retlw
retlw
retlw
retlw
retlw

STATUS, C
PCL,W
TEMP1
0x0
PCLATH, F
PCLATU, F
TEMP1, PCL
0x0A
0x0D

TR

rn’

rer

DS00822A-page 48

© 2002 Microchip Technology Inc.

ANB822

retlw re’
retlw o
retlw ror
retlw e
retlw "h’
retlw re’
retlw v
retlw ‘N’
retlw o’
retlw ro
retlw v
retlw o’
retlw rfr
retlw v
retlw ‘M’
retlw rir
retlw e’
retlw 'r’
retlw "o’
retlw 's’
retlw Tt
retlw e’
retlw 'p’
retlw 's’
retlw 0x0A
retlw 0x0D
retlw 'E’
retlw n’
retlw e
retlw re’
retlw o
retlw v
retlw 1’
retlw v
retlw rfr
retlw o’
retlw o
retlw v
retlw r1’
retlw r,
retlw r2
retlw v
retlw rfr
retlw "o’
retlw 'r’
retlw v
retlw 2
retlw r,t
retlw '3
retlw v
retlw rfr
retlw o’
retlw o
retlw v
retlw "4
retlw r,
retlw r4’
retlw v
retlw rfr
retlw o’
retlw 'r’
retlw v
retlw rg’
retlw rt
retlw '5

© 2002 Microchip Technology Inc. DS00822A-page 49

ANB822

retlw v
retlw rfr
retlw o’
retlw '’
retlw v
retlw 1’
retlw ‘6’
retlw v
retlw ra’
retlw 'n’
retlw ra’
retlw o
retlw ‘6’
retlw v
retlw £
retlw "o’
retlw '’
retlw ro
retlw '3
retlw ra
retlw ro
retlw 's’
retlw e’
retlw re’
retlw 'p’
retlw 's’
retlw 0x0A
retlw 0x0D

;***

;This routine displays the selction of motor direction on the host PC screen
;***

DISPLAY STEPS DIRECTION

movlw OxA
movwf TEMP
repeat show_step direction
incf TEMP, F
incf TEMP, F
movlw 0x7C
cpfseq TEMP
goto show_step_direction
return
show_step_direction
movE TEMP, W
call show _step direction values
call load_RX REG_from WREG
goto repeat_show_step direction
show step direction values
bcf STATUS, C
addwf PCL,W
movwf TEMP1
movlw 0x0
addwfc PCLATH, F
addwfc PCLATU, F
movff TEMP1, PCL
retlw 0x0A
retlw 0x0D
retlw 'E’
retlw ‘n’
retlw e’
retlw ‘e’
retlw 'r’
retlw o
retlw 'D’
retlw rir

DS00822A-page 50

© 2002 Microchip Technology Inc.

ANB822

retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

;***

;This routine displays the message for INCH command on the host PC screen
;***

ra’
rar
re

rer
0x0A
0x0D

DISPLAY STEPS_ INCH

movlw
movwf

0xA
TEMP

repeat_show_step inch

incf
incf
movlw
cpfseq
goto
return
show_step_ inch
movE
call
call
goto

TEMP, F

TEMP, F

0x4E

TEMP
show_step_inch

TEMP, W
show _step inch values
load _RX REG from WREG
repeat_show_step_ inch

© 2002 Microchip Technology Inc.

DS00822A-page 51

ANB822

show_step_inch

becf
addwf
movwf
movlw
addwfc
addwfc
movif
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

values
STATUS, C
PCL,W
TEMP1
0x0
PCLATH, F
PCLATU, F
TEMP1, PCL
0x0A
0x0D

TR

‘n’

re

ret

fpr

ro

N’

Iy

‘m’

Ibl

rer

fpr

o

T
N’
el
Ty
0x0A
0x0D

;***

;This routine displays the message for RPM command on the host PC screen

;***

DISPLAY STEPS_RPM

movlw
movwf

0xA
TEMP

repeat_show_step_rpm

incf
incf
movlw
cpfseq
goto
return
show_step_rpm

movE
call
call
goto

TEMP, F
TEMP, F

0x40

TEMP
show_step rpm

TEMP, W
show_step rpm values
load_RX REG_from WREG
repeat show step rpm

show_step rpm values

bcf

addwf
movwf
movlw

STATUS, C
PCL, W
TEMP1
0x0

DS00822A-page 52

© 2002 Microchip Technology Inc.

ANB822

addwfc
addwfc
movEif
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

;***

;This routine displays the message Motor running Forward on the host PC screen
;***

PCLATH, F
PCLATU, F
TEMP1, PCL
0x0A

0x0D

TR

‘n’

re

rer

fpr

Q0K H .9 0K

IR’
i pr
M
0x0A
0x0D

MOTOR_RUN_FORWARD

movlw
movwf

0xA
TEMP

repeat_ show_motor fwd

incf
incf
movlw
cpfseq
goto
return

TEMP, F
TEMP, F

0x3E

TEMP
show_fwd_running

show_fwd_running

movE
call
call
goto

TEMP, W

show_forward running
load_RX REG_from WREG
repeat_show_motor_ fwd

show_ forward running

bcf
addwf
movwf
movlw
addwfc
addwfc
movEif
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

STATUS, C
PCL,W
TEMP1
0x0
PCLATH, F
PCLATU, F
TEMP1, PCL
0x0A
0x0D

v

Y

e

o’

rpr

IRY

ra

© 2002 Microchip Technology Inc.

DS00822A-page 53

ANB822

retlw 'n’
retlw 'n’
retlw rir
retlw 'n’
retlw g’
retlw o
retlw 'F’
retlw "o’
retlw '’
retlw ‘w’
retlw ra’
retlw 'r’
retlw ra’
retlw 0x0A
retlw 0x0D

;***

;This routine displays the message Motor running Reverse on the host PC screen
;***

MOTOR_RUN_REVERSE

movlw 0xA

movwf TEMP
repeat_show_motor_rev

incf TEMP, F

incf TEMP, F

movlw 0x3E

cpfseq TEMP

goto show_rev_running

return

show_rev_running

movE TEMP, W

call show_reverse_running

call load RX REG_ from WREG

goto repeat_show_motor_rev
show_reverse_ running

bcf STATUS, C

addwf PCL,W

movwf TEMP1

movlw 0x0

addwfc PCLATH, F

addwfc PCLATU, F

movEif TEMP1, PCL

retlw 0x0A

retlw 0x0D

retlw ‘M’

retlw "o’

retlw e

retlw o’

retlw '’

retlw ro

retlw 'R’

retlw ‘u’

retlw 'n’

retlw 'n’

retlw rir

retlw 'n’

retlw g’

retlw ro

retlw 'R’

retlw re’

retlw v’

retlw e’

retlw 'r’

retlw s’

retlw e’

DS00822A-page 54

© 2002 Microchip Technology Inc.

ANB822

retlw 0x0A
retlw 0x0D

;***

;This routine displays the message Data not valid on the host PC screen
;***

DATA NOT VALID

movlw 0xA

movwf TEMP
repeat_ show_data not valid

incf TEMP, F

incf TEMP, F

movlw 0x3E

cpfseq TEMP

goto show_data _not_valid

return
show_data_not_valid

movE TEMP, W

call show _not_valid data

call load_RX REG_from WREG

goto repeat_show_data_not_valid
show _not_valid data

bcf STATUS, C

addwf PCL,W

movwf TEMP1

movlw 0x0

addwfc PCLATH, F

addwfc PCLATU, F

movif TEMP1, PCL

retlw 0x0A

retlw 0x0D

retlw "N’

retlw o’

retlw T

retlw ro

retlw A’

retlw ro

retlw v’

retlw A’

retlw 'L’

retlw rT’

retlw 'D’

retlw ro

retlw 'E’

retlw "N’

retlw T

retlw 'R’

retlw 4

retlw Lt

retlw rLt

retlw rL

retlw rLt

retlw 0x0A

retlw 0x0D

;***

end

© 2002 Microchip Technology Inc. DS00822A-page 55

ANB822

NOTES:

DS00822A-page 56 © 2002 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

The PICmicro family meets the specifications contained in the Microchip Data Sheet.

Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,
when used in the intended manner and under normal conditions.

There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

Microchip is willing to work with the customer who is concerned about the integrity of their code.

Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable”.

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

DNV Certification, Inc. DNV MSC

USA

ANSI+-RAB

Qams
*

>
~
~
=
m
o
-
m
o

1SO 9001 / QS-9000
REGISTERED FIRM

The Netherlands
Accredited by the RvA

DINW (
—

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microlD, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEYV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

Q Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizonain July 1999. The
Company'’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

© 2002 Microchip Technology Inc.

DS00822A - page 57

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627

Web Address: http://www.microchip.com
Rocky Mountain

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307
Boston

2 Lan Drive, Suite 120

Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821
Chicago

333 Pierce Road, Suite 180

Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075
Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924
Detroit

Tri-Atria Office Building

32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334

Tel: 248-538-2250 Fax: 248-538-2260
Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902

Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles

18201 Von Karman, Suite 1090

Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338
New York

150 Motor Parkway, Suite 202
Hauppauge, NY 11788

Tel: 631-273-5305 Fax: 631-273-5335
San Jose

Microchip Technology Inc.

2107 North First Street, Suite 590

San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955
Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd

Suite 22, 41 Rawson Street

Epping 2121, NSW

Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing

Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office

Unit 915

Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie

Beijing, 100027, No. China

Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office

Rm. 2401, 24th Floor,

Ming Xing Financial Tower

No. 88 TIDU Street

Chengdu 610016, China

Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou

Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office

Unit 28F, World Trade Plaza

No. 71 Wusi Road

Fuzhou 350001, China

Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai

Microchip Technology Consulting (Shanghai)
Co., Ltd.

Room 701, Bldg. B

Far East International Plaza

No. 317 Xian Xia Road

Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen

Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office

Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu

Shenzhen 518001, China

Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong

Microchip Technology Hongkong Ltd.

Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431
India

Microchip Technology Inc.

India Liaison Office

Divyasree Chambers

1 Floor, Wing A (A3/A4)

No. 11, O’Shaugnessey Road

Bangalore, 560 025, India

Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K.

Benex S-1 6F

3-18-20, Shinyokohama

Kohoku-Ku, Yokohama-shi

Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road

#07-02 Prime Centre

Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan

Microchip Technology Taiwan

11F-3, No. 207

Tung Hua North Road

Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS

Regus Business Centre

Lautrup hoj 1-3

Ballerup DK-2750 Denmark

Tel: 45 4420 9895 Fax: 45 4420 9910
France

Microchip Technology SARL

Parc d’Activite du Moulin de Massy

43 Rue du Saule Trapu

Batiment A - ler Etage

91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany

Microchip Technology GmbH
Gustav-Heinemann Ring 125

D-81739 Munich, Germany

Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy

Microchip Technology SRL

Centro Direzionale Colleoni

Palazzo Taurus 1 V. Le Colleoni 1

20041 Agrate Brianza

Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom

Arizona Microchip Technology Ltd.

505 Eskdale Road

Winnersh Triangle

Wokingham

Berkshire, England RG41 5TU

Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02

DS00822A-page 58

© 2002 Microchip Technology Inc.

	Introduction
	Stepper Motor Basics
	FIGURE 1: Non-energized and Clockwise current in coil A
	FIGURE 2: First step movement AND Next step

	Unipolar and Bipolar
	FIGURE 3: Bipolar (4-wire)
	FIGURE 4: Unipolar (5-wire)
	FIGURE 5: Unipolar (6-wire)

	An Actual Permanent Magnet (PM) Stepper Motor
	FIGURE 6: Stator winding arrangements in a permanent magnet stepper motor

	Variable Reluctance (VR) Stepper Motor
	FIGURE 7: A bipolar permanent magnet stepper motor
	FIGURE 8: A variable reluctance motor

	Hybrid (HB) Stepper Motor
	How to Identify the Permanent Magnet/Hybrid Motor Leads
	FIGURE 9: Construction of a Hybrid motor

	Torque and Speed
	FIGURE 10: Motor equivalent circuit and current rise rate in stator winding
	FIGURE 11: A typical speed vs. torque curve

	Drive Circuits
	FIGURE 12: Simplified Drives for the Unipolar motor
	FIGURE 13: Simplified H-bridge configuration
	FIGURE 14: Current wave form with PWM switching

	Stepper Motor Control
	FIGURE 15: Block diagram of Full step control
	EXAMPLE 1: full step with ‘One phase ON’ at a time
	EQUATION 1: Calculate Step Command Waiting Period
	FIGURE 16: Full step ‘One phase on’ or wave control

	‘Two Phase On’ Full Stepping
	EXAMPLE 2: ‘two phase on’ Control
	FIGURE 17: Voltage sequence with ‘Two phase ON’ at a time
	FIGURE 18: Motor rotation sequence with ‘Two phase ON’ at a time

	Half Stepping
	TABLE 1: Half Step Control
	FIGURE 19: Motor rotation sequence for Half step
	EXAMPLE 3: Half stepping
	FIGURE 20: Voltage wave form for Half step control

	Microstepping
	Theory of Microstepping
	EQUATION 2: Flux Formula
	FIGURE 21: Currents in stator during microstep and The resultant current
	FIGURE 22: Phase-current Relationship

	Implementation
	TABLE 2: DIP Switches
	Memory Usage

	Conclusion
	TABLE 3: Host PC Commands
	FIGURE 23: Block diagram of circuit for microstepping
	FIGURE 24: Current flows in stator windings

	Appendix A: SCHEMATIC DETAILS
	FIGURE A-1: Circuit diagram (Sheet 1 of 2)
	FIGURE A-2: Circuit diagram (Sheet 2 of 2)

	Appendix B: PWM Duty Cycle Values
	TABLE B-1: Truth table for Full step of a stepper motor (bipolar motor)
	TABLE B-2: Truth table for micro-step of a stepper motor (bipolar motor)

	Appendix C: Assembly Code for Microstepping
	Worldwide Sales and Service

