

Chapter 4. Simplification of Boolean

 FunctionsBoolean Cubes and Boolean Functions

(b) $n=2$

(c) $\mathrm{n}=3$

Figure 1: Boolean cubes [Gajski].

A Boolean n-cube uniquely represents a Boolean function of n variables if each vertex is assigned a 1 (marked) or 0 (unmarked).

Each vertex of the n-cube represents a minterm (a row in the truth table).

Example 1

Fig. 2 shows the truth table and the corresponding cube representations of the carry and sum functions.

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(a) Truth table

(b) Carry function c_{i+1}

(c) Sum function s_{i}

Figure 2: Boolean-cube representations for carry and sum functions [Gajski].
(a) Each m-subcube of the n-cube represents 2^{m} minterms with the same $n-m$ literals, where $m<n$; (b) each m-subcube with $2^{m} 1$-minterms represents a product term of $n-m$ literals.

A prime implicant (PI) is a subcube (of 1-minterms) that is not contained in any other subcube (of 1-minterms); an essential prime implicant (EPI) is a PI that contains a 1-minterm that is not contained in any other PI.

Map Representation

Complexity of digital circuit (gate count) \propto complexity of algebraic expression (literal count).

A function's truth-table representation is unique; its algebraic expression is not. Simplification by algebraic means is awkward (from algorithmic point of view).

A Karnaugh map (K-map) is an array of squares each representing one minterm. Simplification by the map method is straightforward.

(a) $\mathrm{n}=1$

(b) $\mathrm{n}=2$

(c) $\mathrm{n}=3$

(d) $\mathrm{n}=4$

Figure 3: Boolean cubes and corresponding Karnaugh maps [Gajski].

Each K-map defines a unique Boolean function.
\Leftrightarrow A Boolean function can be represented by a truth table, a Boolean expression, an n-cube, or a map.

K-map is in fact a visual diagram of all possible ways a function may be expressed-the simplest one can easily be identified.
\Leftrightarrow K-maps provide visual aid to identify PIs and EPIs.
\Leftrightarrow They are used for manual minimization of Boolean functions.

Exercise 1

How do you transform a K-map into a truth table? Is it unique? How do you transform a K-map into an n-cube? Is it unique?

Two- and Three-Variable Maps

Figure 4: Two-variable maps.

Figure 5: Three-variable maps.

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}

(a)

(b)

Fig. 2-10 Three-Variable Map
Figure 6: Three-variable map simplification [Mano \& Kime].

Minterms are arranged in the Gray-code sequence. (Why?)
Any 2 (horizontally or vertically) adjacent squares differ by exactly 1 variable, which is complemented in one square and uncomplemented in the other.

Any 2 minterms in adjacent squares that are ORed together will cause a removal of the different variable, e.g., $m_{5}+m_{7}=x y^{\prime} z+x y z=x z\left(y^{\prime}+y\right)=$ $x z$, because $y+y^{\prime}=1$.

Figure 7: K-maps for the carry and sum functions [Gajski].

Example 2

Simplify the following Boolean functions: (a) $F_{1}(X, Y, Z)=\sum(3,4,6,7)$; (b) $F_{2}(X, Y, Z)=\sum(0,2,4,5,6)$.

$$
\text { (a) } \begin{aligned}
F_{1}(X, Y, Z) & =\sum m(3,4,6,7) \\
& =Y Z+X \bar{Z}
\end{aligned}
$$

(b) $F_{2}(X, Y, Z)=\Sigma m(0,2,4,5,6)$ $=\bar{Z}+X \bar{Y}$

Fig. 2-14 Maps for Example 2-4

Example 3

Simplify the Boolean function $F(X, Y, Z)=\sum(1,3,4,5,6)$.

Fig. 2-15 $F(X, Y, Z)=\Sigma m(1,3,4,5,6)$

Example 4

Simplify the Boolean function $F=X^{\prime} Z+X^{\prime} Y+X Y^{\prime} Z+Y Z$.

Fig. 2-16 $F(X, Y, Z)=\Sigma m(1,2,3,5,7)$

Four-Variable Maps

wx ${ }^{y z} 000101110$				
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Figure 8: Four-variable maps.

The map is considered to lie on a surface with the top and bottom edges, as well as the right and left edges, touching each other to form adjacent squares.
\Leftrightarrow One square \Rightarrow a minterm of 4 literals.
\Leftrightarrow Two adjacent squares \Rightarrow a term of 3 literals.
\Leftrightarrow Four adjacent squares \Rightarrow a term of 2 literals.
\Leftrightarrow Eight adjacent squares \Rightarrow a term of 1 literal.
\Leftrightarrow Sixteen adjacent squares \Rightarrow the constant ' 1 '.

Example 5

For the maps shown above, $f_{1}(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$ and $f_{2}=w^{\prime} x^{\prime} y^{\prime}+x^{\prime} y z^{\prime}+w^{\prime} x y z^{\prime}+w x^{\prime} y^{\prime}$.

A PI is a product term obtained by combining the maximum possible number of adjacent squares in the map.

Pick the EPIs that minimize the number of literals.

Example 6

Show the region in the K-map that is represented by $X^{\prime} Z^{\prime}$.

(a)

(b)

Fig. 2-18 Four-Variable Map: Flat and on a Torus to Show Adjacencies

Example 7

Simplify the Boolean function $F(W, X, Y, Z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$.

Fig. 2-19 Map for Example 2-5: $F=\bar{Y}+\bar{W} \bar{Z}+\overline{X Z}$

Example 8

Simplify the Boolean function $F=A^{\prime} B^{\prime} C^{\prime}+B^{\prime} C D^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} B C D^{\prime}$.

Fig. 2-20 Map for Example 2-6: $F=\bar{B} \bar{D}+\bar{B} \bar{C}+\bar{A} C \bar{D}$
*Five-Variable Maps

Figure 9: Five-variable maps.

Imagine that the 2 maps are superimposed on one another.
It is possible to construct a 6 -variable map with four 4 -variable maps by following a similar procedure.

Maps of 6 or more variables are hard to read, and thus are impractical.
\Leftrightarrow (1) Variable-entered maps (VEMs); (2) CAD programs.
Any 2^{k} adjacent squares, $k=0,1, \ldots, n$, in an n-variable map represent an area that gives a product term of $n-k$ literals.

Figure 10: Six-variable K-maps [Gajski].

Theorem 1

In a K-map, 2 minterms are adjacent iff they differ in exactly 1 variable.

次 In general, for an n-variable function, where $n=2 k$, we can construct a k-D K-map such that:
it the map is extended in each dimension on 2 of the variables;
A the extension sequence in each dimension is a Gray sequence.

Simplification Using K-Maps

The complement of a function is represented in the map by the squares not marked by 1 s (they usually are marked by 0 s).

${ }_{A B}{ }^{C D} 00001011110$					
00	1	1		1	1
	I	1		t	
	1	1		1	1
10	1	1			

${ }_{A B}{ }^{C D} 00001011110$		
00	0	
01	0	
11	0	
10	0	0

Figure 11: The complement of f^{\prime} gives f in pos.

Example 9

We want to simplify the following function in sop \& pos:

$$
f(A, B, C, D)=\sum(0,1,2,5,8,9,10)
$$

(a) Mark the map with 1 s and 0 s according to the function.
(b) Use the 1 s to determine the EPIs of f, which immediately give the sop form:

$$
f=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D .
$$

(c) Use the 0 s to determine the EPIs of f^{\prime}, and complement it to give the pos form:

$$
f^{\prime}=A B+C D+B D^{\prime} ;
$$

Figure 12: Two-level implementation.

$$
f=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right) .
$$

The 2-level (sop/pos) implementations using the AND/OR gates are shown below.

Note that NOT gates (inverters) are required if complemented inputs are not available.

The 1s of the function in the K-map or the truth table represent the minterms, and the 0 s represent the maxterms.
${ }^{\circ}$ Entering a function in the map:
\Leftrightarrow Entering a function expressed in sop in the map is straightforward.
\Leftrightarrow To enter a function expressed in pos in the map, take the complement of the function (to get sop) and from it find the squares to be marked by 0s. The remaining squares are marked by 1 s .

Simplification procedure:
\Leftrightarrow Obtain truth table, canonical form, or standard form.
\Leftrightarrow Generate K-map.
\Leftrightarrow Determine PIs.
\Leftrightarrow Select EPIs.
\Leftrightarrow Find minimal cover (set) of PIs.

Fig. 2-22 Simplification with Prime Implicants in Example 2-8
Figure 13: Simplification with PIs for $f=\sum(0,5,10,11,12,13,15)$ [Mano \& Kime].

Fig. 2-23 Map for Example 2-9
Figure 14: Simplification with PIs for $f=\sum(0,1,2,4,5,10,11,13,15)$ [Mano \& Kime].

Exercise 2

Does the minimal cover of PIs contain only EPIs?

Example 10

Simplify the following Boolean function in the pos form:

$$
F(A, B, C, D)=\sum(0,1,2,5,8,9,10) .
$$

Fig. 2-24 Map for Example 2-10: $F=(\bar{A}+\bar{B})(\bar{C}+\bar{D})(\bar{B}+D)$

$$
F^{\prime}=A B+C D+B D^{\prime} \therefore F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)
$$

Exercise 3

Simplify $F=\left(A^{\prime}+B^{\prime}+C\right)(B+D)$ in the pos form.

Don't-Care Conditions

In practice, there are applications where the function is not specified for certain combinations of the input variables. For example, in the 4 -bit BCD code for the decimal digits, the outputs are unspecified for the input combinations 1010-1111.

Functions that have unspecified outputs for some input combinations are called incompletely specified functions.

The unspecified minterms of a function are called the don't-care conditions, or simply the don't-cares, and are denoted as Xs.

These don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

Each X can be assigned an arbitrary value, 0 or 1 , to help the simplification procedure.

Example 11

Simplify the Boolean function $f(w, x, y, z)=\sum(1,3,7,11,15)$ that has the don'tcare conditions $d(w, x, y, z)=\sum(0,2,5)$.

$w x^{y z} 000011110$				
00	X	1	T	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0
$f=y z+w$				

$w x^{y z} 00011110$				
00	X	1	T	X
01	0	X	$1)$	0
11	0	0	1	0
10	0	0	1	0
$f=y z+w^{\prime} z$				

Figure 15: Simplification using don't-cares.

Either one of the above expressions satisfies the conditions stated.
Note that the above 2 expressions represent 2 functions that are algebraically unequal: each covers different don't-care terms.

We may or may not include any of the Xs, while all the 1s must be included.
It is also possible to obtain a simplified pos expression using the don't-cares.

Tabulation (Quine-McCluskey) Method

The map method is convenient when the number of variables does not exceed 5 or 6 .

The map method is essentially a trial-and-error method that does not offer any guarantee of producing the best realization.

The map method's dependence on the somewhat intuitive human ability to recognize patterns makes it unsuitable for design automation (programming for a digital computer).

The tabulation method is a specific step-by-step (algorithmic) procedure that is guaranteed to produce a simplified standard-form expression for a function.

It can be applied to problems with any number of variables.
It is suitable for machine computation.
It however is quite tedious for human use.
The tabulation method was first formulated by Quine (1952) and later improved by McCluskey (1956), thus known as the Quine-McCluskey method.
\Leftrightarrow Step 1: Exhaustive search of all PIs.

* Group minterms by number of 1s.

Compare minterms and find pairs with distance 1.
\& Generate subcubes.
\nless Repeat the above procedure on generated subcubes until no more subcubes can be generated.
\Leftrightarrow Step 2: Choose among the PIs which give an expression with the least amount of literals (minimal cover generation).
Δ_{0} Find EPIs through a selection table.
\leftrightarrow Find minimal cover through the pos of the PIs.

Determination of PIs

The goal of the Quine-McCluskey algorithm is a special case of the following: Select the smallest possible subset, D, of a set of objects, A, so that some criterion, f, is satisfied.

The set D will consist of all products in the minimal sop realization of a given Boolean function f, of which the set A contains all possible products.

Let $f=\sum(0,1,2,8,10,11,14,15)$.

(a)			(b)		(c)	
$w x y z$				$w x y z$		$w x y z$
0	0000	\checkmark	0,1	$000-$		$0,2,8,10$
			0,2	$00-0$	\checkmark	$0,8,2,10$
1	0001	\checkmark	0,8	-000	\checkmark	
2	0010	\checkmark				$10,11,14,15$
8	1000	\checkmark	2,10	-010	\checkmark	$10,14,11,15$
			8,10	$10-0$	\checkmark	
10	1010	\checkmark				
			10,11	$101-$	\checkmark	
11	1011	\checkmark	10,14	$1-10$	\checkmark	
14	1110	\checkmark				
			11,15	$1-11$	\checkmark	
15	1111	\checkmark	14,15	$111-$	\checkmark	

(1) Group the minterms according to the number of 1 s (see Column (a)).
(2) Combine any 2 minterms that differ from each other by exactly one variable (i.e., dist-1), the unmatched variable removed (see Column (b)). Try this for all possible pairs of minterms. A check (\checkmark) is placed to the right of both minterms if they have been used in a match.
(3) Repeat the process. Combine any 2 product terms from Step (2) that differ from each other by exactly one variable, the unmatched variable removed (see Column (c)).
(4) The unchecked terms in the table form the PIs. Some of the product terms may appear twice in the table. It of course is unnecessary to use the same term twice.

When comparing 2 terms to decide if they can be combined, the comparison can be done directly on the decimal numbers. We combine 2 terms iff the difference of their corresponding decimal numbers is a power of 2 .

In most cases, the sum of PIs obtained from the procedure shown above is not necessarily a standard form (which is minimized). The reason is that some of the PIs may be redundant.

Exercise 4

Use the map method to simplify $f=\sum(0,1,2,8,10,11,14,15)$, and compare the result with the tabulation method.

Minimal Cover Generation

The selection of PIs that form the minimized function is made from a PI table: each PI is represented in a row and each minterm in a column.

Suppose we have the following PIs: $x^{\prime} y^{\prime} z, w^{\prime} x z^{\prime}, w^{\prime} x y, x y z, w y z$, and $w x^{\prime}$.

	PI	Minterms	1	4	6	7	8	9	10	11	15
\checkmark	$x^{\prime} y^{\prime} z$	1,9	X					X			
\checkmark	$w^{\prime} x z^{\prime}$	4,6		X	X						
	$w^{\prime} x y$	6,7			X	X					
	$x y z$	7,15				X					X
	$w y z$	11,15								X	X
\checkmark	$w x^{\prime}$	$8,9,10,11$					X	X	X	X	
				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		

(1) Check the PIs that cover minterms with a single X in their columns. These PIs are the EPIs.
(2) Check each column whose minterm is covered by the selected EPIs.
(3) If there are minterms left uncovered ($7 \& 15$ in this example), some nonessential PIs have to be selected to cover them. We of course will select the PIs with a smallest total number of literals ($x y z$ in this example).

*Multi-Output Minimization Using Maps

Identify all possible PIs that cover each implicated minterms in each output expression, and search for a minimal cover by using shared terms.

The Quine-McCluskey method also can be extended for this purpose.

$$
\begin{aligned}
& f_{1}(A, B, C)=\sum(0,2,3,5,6) \\
& f_{2}(A, B, C)=\sum(1,2,3,4,7) \\
& f_{3}(A, B, C)=\sum(2,3,4,5,6)
\end{aligned}
$$

Figure 16: Simplification of multiple output functions.

$$
\begin{aligned}
& f_{1}=A^{\prime} C^{\prime}+B C^{\prime}+A^{\prime} B+A B^{\prime} C \\
& f_{2}=A^{\prime} C+B C+A B^{\prime} C^{\prime}+A^{\prime} B \\
& f_{3}=B C^{\prime}+A^{\prime} B+A B^{\prime} C^{\prime}+A B^{\prime} C
\end{aligned}
$$

*XOR \& XNOR Patterns on the Map

Inspect the K-map to detect XOR/XNOR patterns: 1) kitty-corner adjacencies; 2) offset adjacencies.

Figure 17: XOR/XNOR patterns on the map.

$$
\begin{aligned}
f_{1} & =A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B C^{\prime} D^{\prime}+A^{\prime} B C D \\
& =A^{\prime} B^{\prime}(C \oplus D)+A^{\prime} B(C \oplus D)^{\prime} \\
& =A^{\prime}\left[\left(B^{\prime}\right)(C \oplus D)+(B)(C \oplus D)^{\prime}\right] \\
& =A^{\prime}[B \oplus(C \oplus D)] \\
f_{2} & =A^{\prime} C^{\prime} D+A C^{\prime} D^{\prime}+A^{\prime} B C+A B^{\prime} C \\
& =C^{\prime}(A \oplus D)+C(A \oplus B) \\
f_{3} & =A^{\prime} B^{\prime} C D+A^{\prime} B C D^{\prime}+A B C^{\prime} D^{\prime}+A B^{\prime} C^{\prime} D \\
& =(A \oplus C)(B \oplus D)
\end{aligned}
$$

Two-Level Implementations

Digital circuits are more frequently constructed with NAND/NOR gates than with AND/OR/NOT gates due to ease of fabrication. For example, in gate arrays, only NAND (or NOR) gates are used.

The conversion process from an expression/schematic with AND, OR, and NOT gates to one with only NAND or NOR gates is an example of technology mapping.

NAND gate

Or

NOR gate

Figure 18: NAND/NOR gates.
, NAND-NAND implementation:
As Simplify the function and express it in sop:

$$
f=A B+C D+E
$$

A Transfer it to 2-level NAND-NAND expression (DeMorgan's Thm):

$$
f=\left((A B+C D+E)^{\prime}\right)^{\prime}=\left((A B)^{\prime}(C D)^{\prime} E^{\prime}\right)^{\prime}
$$

Draw the corresponding NAND gate implementation. Note that a 1-input NAND gate can replace an inverter.

AND-OR \equiv NAND-NAND
The process can be done directly on the logic diagram.

* NOR-NOR implementation:

Timplify the function and express it in pos:

$$
f=(A+B)(C+D) E .
$$

Transfer it to 2-level NOR-NOR expression (DeMorgan's Thm):

$$
f=\left(((A+B)(C+D) E)^{\prime}\right)^{\prime}=\left((A+B)^{\prime}+(C+D)^{\prime}+E^{\prime}\right)^{\prime} .
$$

Draw the corresponding NOR gate implementation. Note that a 1 -input NOR gate can replace an inverter.

It is the dual of the NAND-NAND implementation.
OR-AND \equiv NOR-NOR
The process can be done directly on the logic diagram.
The types of gates most often found in ICs are NAND \& NOR, so NAND \& NOR logic implementations are the most important from a practical point of view.

* NAND-AND \& AND-NOR implementations:

Both perform the AND-OR-INVERT (AOI) function.

* OR-NAND \& NOR-OR implementations:

B Both perform the OR-AND-INVERT (OAI) function.

Because of the INVERT part in each case, it is convenient to use the simplification of f^{\prime} (the complement of the function) instead of f.

${ }_{x}^{y z} 000011110$					$f=x^{\prime} y^{\prime} z^{\prime}+x y z^{\prime}$
0	1	0	0	0	
1	0	0	0	1	$f^{\prime}=x^{\prime} y+x y^{\prime}+z$

Figure 19: NAND/NOR gates.

Example 12

Consider the function f given in Fig. 19.
AND-OR: $f=x^{\prime} y^{\prime} z^{\prime}+x y z^{\prime}$.
NAND-NAND: $f=\left(f^{\prime}\right)^{\prime}=\left[\left(x^{\prime} y^{\prime} z^{\prime}\right)^{\prime}\left(x y z^{\prime}\right)^{\prime}\right]^{\prime}$.
OR-NAND: $f=\left[(x+y+z)\left(x^{\prime}+y^{\prime}+z\right)\right]^{\prime}$.
NOR-OR: $f=(x+y+z)^{\prime}+\left(x^{\prime}+y^{\prime}+z\right)^{\prime}$.
AND-NOR: $f=\left(f^{\prime}\right)^{\prime}=\left(x^{\prime} y+x y^{\prime}+z\right)^{\prime}$.
NAND-AND: $f=\left(x^{\prime} y\right)^{\prime}\left(x y^{\prime}\right)^{\prime} z^{\prime}$.
OR-AND: $f=\left(x+y^{\prime}\right)\left(x^{\prime}+y\right) z^{\prime}$.
NOR-NOR: $f=\left(f^{\prime}\right)^{\prime}=\left[\left(x+y^{\prime}\right)^{\prime}+\left(x^{\prime}+y\right)^{\prime}+\left(z^{\prime}\right)^{\prime}\right]^{\prime}$.

Example 13

Implement $F(X, Y, Z)=\sum(1,2,3,4,5,7)$ with NAND gates.

(a)

(b)

(c)

Fig. 2-30 Solution to Example 2-12

Example 14

Implement $F=\left(A B^{\prime}+A^{\prime} B\right)\left(E\left(C+D^{\prime}\right)\right)$ with NOR gates．

（a）AND－OR gates

（b）NAND gates
Fig．2－32 Implementing $F=(A \bar{B}+\bar{A} B) E(C+\bar{D})$

Exclusive－OR（XOR）Gates

Some identities for XOR：

$$
\begin{aligned}
& \text { 为 } X \oplus 0=X ; X \oplus 1=X^{\prime} \text {. } \\
& \text { 动 } X \oplus X=0 ; X \oplus X^{\prime}=1 \text {. } \\
& \text { 领 } X \oplus Y^{\prime}=(X \oplus Y)^{\prime} ; X^{\prime} \oplus Y=(X \oplus Y)^{\prime} \text {. }
\end{aligned}
$$

The XOR function is both commutative and associative．
$\star A \oplus B=B \oplus A$ ．
＊$(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$ ．

Exercise 5

（a）How do you implement the Even function with XOR（XNOR）gates？
（b）Design an n－bit even－parity generator．Calculate the hardware cost（in terms of primitive gates）and performance（in terms of primitive－gate delays）．

Fig. 2-37 Exclusive-OR Constructed with NAND Gates
Figure 20: Implementing the XOR function with NAND gates [Mano \& Kime].

Fig. 2-38 Maps for Multiple-Variable Odd Functions
Figure 21: Implementing the Odd function with XOR gates [Mano \& Kime].

*Technology Mapping

A gate array is a 2-dimensional array of cells within which each cell contains a single NAND (NOR) gate that has a fixed number (usually 3) of inputs.

The conversion process from an expression/schematic with AND, OR, and NOT gates to one with only NAND or NOR gates is an example of technology mapping.

$$
\begin{array}{ll}
\text { Rule 1 : } & x y=\left((x y)^{\prime}\right)^{\prime} \\
\text { Rule 2 : } & x+y=\left((x+y)^{\prime}\right)^{\prime}=\left(x^{\prime} y^{\prime}\right)^{\prime} \\
\text { Rule 3 : } & x y=\left((x y)^{\prime}\right)^{\prime}=\left(x^{\prime}+y^{\prime}\right)^{\prime} \\
\text { Rule 4: } & x+y=\left((x+y)^{\prime}\right)^{\prime}
\end{array}
$$

Figure 22: Conversion standard forms to NAND and NOR implementations [Gajski].

Example 15

Consider the carry function again:

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}=\left(x_{i}+y_{i}\right)\left(x_{i}+c_{i}\right)\left(y_{i}+c_{i}\right) .
$$

The NAND and NOR implementations of the carry function are shown in Fig 23.

(c) NAND implementation

(d) NOR implementation

Figure 23: NAND and NOR implementations of the carry function [Gajski].

Replace AND and OR gates with NAND gates by using Rules 1 and 2, and eliminate double inverters whenever possible.

Replace AND and OR gates with NOR gates by using Rules 3 and 4, and eliminate double inverters whenever possible.

Term decomposition: each n-input gate is decomposed into a tree of m-input gates, where $n>m$. For example, Fig 24 shows the decomposition of a 10 -input AND gate into 3-input AND gates.
\Leftrightarrow The tree has $\left\lceil\log _{m} n\right\rceil$ levels and $\lceil(n-1) /(m-1)\rceil m$-input gates.

(b) One possible decomposition

(c) Alternative decomposition

Figure 24: Decomposition of a 10-input AND gate into 3-input AND gates [Gajski].
netiming: performance optimization (delay time minimization)-decomposition of a large gate can produce a tree in which different paths may incur different delays. For example, Fig 25 shows two NAND implementations of the 4-bit carry-look-ahead function:

$$
c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
$$

\Leftrightarrow Carry generate function: $g_{i} \equiv x_{i} y_{i}$.
\Leftrightarrow Carry propagate function: $p_{i} \equiv x_{i}+y_{i}$.
\Leftrightarrow Carry look-ahead function: $c_{i+1}=g_{i}+p_{i} c_{i}$.
Critical path: the delay on the longest input-output path.
The rule of thumb is to minimize delay on critical paths and minimize cost on non-critical paths. A technology mapping example is shown in Fig 26.

(c) NAND implementation of (b)

(d) Performance optimized decomposition

(e) Performance optimized NAND implementation

Figure 25: Two NAND implementations of the 4-bit carry-look-ahead function [Gajski].

(a) AND-OR implementation $($ Delay $=7.2 \mathrm{~ns}$, Cost $=28)$

(b) NAND implementation $($ Delay $=5.2 \mathrm{~ns}$, Cost $=22)$

(c) Two possible conversions

(d) Alternative A (Delay $=5.4 \mathrm{~ns}$, Cost $=20)$

(e) Alternative B (Delay $=3.8 \mathrm{~ns}$, Cost $=20)$

(f) Cost optimized alternative $B($ Delay $=3.8 \mathrm{~ns}$, Cost $=18)$

Figure 26: Technology mapping example [Gajski].

Hazard-Free Design

Definition 1

Hazards are unwanted switching transients (glitches) that appear at the output of a circuit because of different propagation delays on different but converging paths through the circuit.

Figure 27: Hazards.

Hazards can cause malfunction.
Static-1 hazard: there are two 1-minterms that differ in only one variable but are not covered by a common product term in a sop implementation (Fig. 28).
\Leftrightarrow It can be eliminated by including an additional PI covering both adjacent 1-minters (called the consensus term) (Fig. 29).

Static-0 hazard: there are two 0-minterms that differ in only one variable but are not covered by a common sum term in a pos implementation.

Static hazards are caused by two complementary signals which become equal for short periods of time due to different delays on different paths through the circuit.

Dynamic hazard: two signals that always have the same value (even during the transition) become different for a short period of time.
\Leftrightarrow It is a static hazard that occurs during the output transition.
\Leftrightarrow It occurs when the same variable value propagates through the circuit on two different paths with different delays.
\Leftrightarrow See Fig. 30 for an example.
Δ_{0} It can be eliminated by introducing a redundant (consensus) PI.
It also can be eliminated by inserting a delay element.

(a) Map representation

(b) Logic schematic

(c) Timing diagram

Figure 28: A design with static-1 hazard [Gajski].

(a) Map representation

(b) Logic schematic

(c) Timing diagram

Figure 29: Hazard-free design [Gajski].

(b) Timing diagram

Figure 30: A design with dynamic hazard [Gajski].

