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} Chapter 4. Simplification of Boolean

Functions

Boolean Cubes and Boolean Functions
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Figure 1: Boolean cubes [Gajski].
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4. Simplification of Boolean Functions 4-2

[J A Booleann-cube uniquely represents a Boolean functiom ofariables if
each vertex is assigned a 1 (marked) or O (unmarked).

[1 Eachvertexof then-cube representsrainterm(a row in the truth table).

Example 1
Fig. 2 shows the truth table and the corresponding cube representations of the carry
and sum functions. O
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Figure 2: Boolean-cube representations for carry and sum functions [Gajski].

[J (a) Eachm-subcube of the:-cube represent®” minterms with the same
n — m literals, wherem < n; (b) eachm-subcube with2” 1-minterms
represents a product termof- m literals.

(1 A prime implicant(Pl) is a subcube (of 1-minterms) that is not contained in
any other subcube (of 1-minterms); essential prime implicagEPl) is a Pl
that contains a 1-minterm that is not contained in any other PI.
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Map Representation

[J Complexity of digital circuit (gate countx complexity of algebraic expres-
sion (literal count).

[1 A function’s truth-table representation is unique; its algebraic expression is
not. Simplification by algebraic means is awkward (from algorithmic point
of view).

[1 A Karnaugh map (K-map$ an array of squares each representing one minterm.
Simplification by the map method is straightforward.
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Figure 3: Boolean cubes and corresponding Karnaugh maps [Gajski].

[J Each K-map defines a unique Boolean function.

[0 A Boolean function can be represented by a truth table, a Boolean ex-
pression, am-cube, or a map.
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[J K-map is in fact a visual diagram of all possible ways a function may be
expressed—the simplest one can easily be identified.

[J |K-maps provide visual aid to identify Pls and EPRIs.

[1 They are used for manual minimization of Boolean functions.

Exercise 1
How do you transform a K-map into a truth table? Is it unique? How do you
transform a K-map into an-cube? Is it unique? O

Two- and Three-Variable Maps
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Figure 4: Two-variable maps.
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Figure 5: Three-variable maps.
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Figure 6. Three-variable map simplification [Mano & Kime].
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[J Minterms are arranged in the Gray-code sequence. (Why?)

[J Any 2 (horizontally or vertically) adjacent squares differ by exactly 1 vari-
able, which is complemented in one square and uncomplemented in the other.

[J Any 2 minterms in adjacent squares that are ORed together will cause a re-
moval of the different variable, e.gn; + m7; = zy'z + zyz = z2(y' + y) =
rz, because + 1y’ = 1.

Figure 7: K-maps for the carry and sum functions [Gajski].

Example 2
Simplify the following Boolean functions: (aji(X,Y,7) = > (3,4,6,7); (b)

R(X,Y,Z)=150,2,4,5,6).
Y

YZ Y YZ
x\ 00 01 11 10 x\ 00 01 11 10
0 1 ol 1 1
X [1 1 1 |lf 2 X [1 1 1 1
z z
(@) F1(X,Y,Z2)=2m(3,4,6,7) (b) Fo(X,Y,Z2) =Zm(0, 2, 4, 5, 6)
=YZ + XZ =Z+XY

Fig. 2-14 Maps for Example 2-4
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Example 3
Simplify the Boolean functio' (X, Y, Z) = > (1, 3,4, 5,6).
YZ Y
x\ 00 01 11 10
0 1{| 1
X[l 1 1 || 1
Z
Fig. 2-15 A(X,Y,Z) =2m(1, 3, 4, 5, 6)
O
Example 4
Simplify the Boolean functiod = X'Z + X'Y + XY'Z + Y Z.
YZ Y
x\ 00 01 11 10
0 1 1 1
X[l 1 1
z
Fig.2-16 F(X,Y,Z) ==m (1,2,3,5,7)
O
Four-Variable Maps
wy%00 01 11 10 w200 01 11 10 wy%00 01 11 10
00/0|1|3]2 00|(1]] 1 1 00/ 1|1
01/4|/5|7|6 01[T) 1 01 1
11/12/13[15/14 111 1] [1] 11
10/ 8| 9 [11/10 101 | 1 10/ 1|1 1
w'2! + y’ +xz’ 'z +a:’y’ +w’yz’
Figure 8: Four-variable maps.
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[J The map is considered to lie on a surface with the top and bottom edges, as
well as the right and left edges, touching each other to form adjacent squares.
[1 One squares- a minterm of 4 literals.
[J Two adjacent squares- a term of 3 literals.
[1 Four adjacent squares a term of 2 literals.
[ Eight adjacent squares a term of 1 literal.
[1 Sixteen adjacent squaresthe constant ‘1’.

Example 5
For the maps shown abovgé,(w, z,y,2) = >(0,1,2,4,5,6,8,9,12,13,14) and
fo=w'2'y + 2’y + waryd +wa'y. O

[1 A Plis a product term obtained by combining the maximum possible number
of adjacent squares in the map.

[1 Pick the EPIs that minimize the number of literals.

Minimize the number of groupings.

Maximize their sizes.
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Example 6
Show the region in the K-map that is representeditby’.
YZ Y _
WX\ 00 01 11 10 XZ
oof off | 2|f> %
01| 4 | 5 716
X
1111213 |15 | 14
W
10 gf| o | 11 (|10

X
NI

Z
(@) (b)

Fig. 2-18 Four-Variable Map: Flat and on a Torus to Show Adjacencies

O
Example 7
Simplify the Boolean functio®' (W, X, Y, Z) = > (0, 1,2,4,5,6,8,9,12,13, 14).
YZ Y
WX 00 01 11 10
ool 1] 1 1
01]| 1 1 1
— —1 |X
11 1 1 1
W ] ___
10 || ¢ 1
Z
Fig. 2-19 Map for Example 2-5: F= Y + WZ + XZ
O
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Example 8
Simplify the Boolean functio#” = A'B'C’ + B'CD' + AB'C' + A’ BCD'.

CD C
AB\ 00 01 11

10
ol [ ]
01 |i|

11
A —

o T I

D
Fig. 2-20 Map for Example 2-6: F= BD + BC + ACD

*Five-Variable Maps

A=0 A=1 A=0 A=1
xo-00 01 11 10 00 01 11 10 00 01 11 10 .00 01 11 10
00/0|1|3|2| 00/16/17/19 18 00 1 (1] 00
01/4|5|7|6| o1/20/21/23/22 o011 | o1 |mTy
11/12/13|15/14| 11/28/2931/30 11 1) 11 |[@
10 8| 91110 10/24/25/27/26 10 |1 10 |1

f=A'"B'E' + BD'E + ACE

Figure 9: Five-variable maps.

[] Imagine that the 2 maps aseperimposedn one another.

[J It is possible to construct a 6-variable map with four 4-variable maps by
following a similar procedure.

[J Maps of 6 or more variables are hard to read, and thus are impractical.
[0 (1) Variable-entered maps (VEMS); (2) CAD programs.

0 Any 2% adjacent squares,= 0,1, ...,n, in ann-variable map represent an
area that gives a product termrof- £ literals.
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Figure 10: Six-variable K-maps [Gajski].
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Theorem 1
In a K-map, 2 minterms are adjacent iff they differ in exactly 1 variable.

[J In general, for am-variable function, where = 2k, we can construct &-D
K-map such that:

[J the map is extended in each dimension on 2 of the variables;
[] the extension sequence in each dimension is a Gray sequence.

Simplification Using K-Maps

[1 The complement of a function is represented in the map by the squares not
marked by 1s (they usually are marked by 0s).

“°00 01 11 10 =000 01 11 10
oo|(1]] 1} 1 00 0]
01T 1 01 0
111 1 1 11 0
10|41 10 0J| 0)

f=A'D"+C"+ BD' f'=CD+ AB'C
Figure 11: The complement g¢f givesf in pos.

Example 9
We want to simplify the following function in sop & pos:

f(A,B,C,D)=> (0,1,2,5,8,9,10).
(a) Mark the map with 1s and Os according to the function.

(b) Use the 1s to determine the EPIsfofwhich immediately give the sop form:
f=B'D'+BC"+ACD.

(c) Use the Os to determine the EPIsfgfand complement it to give the pos form:

f'=AB+CD+ BD';
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bt Byl
— = N f C: T\ O f
C—e1 = —17 D——_~ L/
-

D

Figure 12: Two-level implementation.
f=(A+B)(C'+D)B + D).

The 2-level (sop/pos) implementations using the AND/OR gates are shown below.

Note that NOT gates (inverters) are required if complemented inputs are not avail-
able. O

[J The 1s of the function in the K-map or the truth table represent the minterms,
and the Os represent the maxterms.

[J Entering a function in the map

[0 Entering a function expressed in sop in the map is straightforward.

[1 To enter a function expressed in pos in the map, take the complement of
the function (to get sop) and from it find the squares to be marked by Os.
The remaining squares are marked by 1s.

[J Simplification procedure

[1 Obtain truth table, canonical form, or standard form.
Generate K-map.

Determine PlIs.

Select EPIs.

Find minimal cover (set) of Pls.

O O O d
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CD C CD C
AB\ 00 01 11 10 AB\ 00 01 11 10

00 1 00

01 1 01 1

B B

1111 1|1 11111 il 1
A A

10 1 1 10 1 1

D D
(a) Plotting the minterms (b) Essential prime implicants

Fig. 2-22 Simplification with Prime Implicants in Example 2-8

Figure 13: Simplification with PlIs fof = > (0, 5,10, 11, 12, 13, 15) [Mano & Kime].
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Fig. 2-23 Map for Example 2-9

Figure 14: Simplification with Pls fof = > (0, 1, 2,4, 5,10, 11, 13, 15) [Mano & Kimel].
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Exercise 2
Does the minimal cover of Pls contain only EPIs? O

Example 10
Simplify the following Boolean function in the pos form:

F(A,B,C,D)=15(0,1,2,5,8,9,10).
C

CD
AB\\ 00 01 11 10

001 1 1 0 1

011 ol 12 |lol]llo

ol o [loll o]

A — —

10

1 1 0 1

D

Fig. 2-24 Map for Example 2-10: F=(A+ B) (C+ D) (B + D)

F'=AB+CD+BD' . F = (A +B)(C'+ D) (B + D) O
Exercise 3
Simplify FF = (A’ + B’ + C)(B + D) in the pos form. O

Don’t-Care Conditions

[J In practice, there are applications where the function is not specified for cer-
tain combinations of the input variables. For example, in the 4-bit BCD code
for the decimal digits, the outputs are unspecified for the input combinations

1010-1111.

[J Functions that have unspecified outputs for some input combinations are

calledincompletely specified functions

[J The unspecified minterms of a function are calleddbe’t-careconditions,
or simply the don’t-cares, and are denoted as Xs.

[J These don’t-care conditions can be used on a map to provide further simpli-

fication of the Boolean expression.
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[J Each X can be assigned an arbitrary value, 0 or 1, to help the simplification
procedure.

Example 11

Simplify the Boolean functiotf (w, z,y, z) = > (1,3,7, 11, 15) that has the don't-
care conditions(w, z,y,z) = >_(0,2,5).

/%00 0111 10 w700 0111 10
00|(X ] 1 X 00| X [1]@ X
01 0| x|[1]l 0 01 0| x 4] o
1110/ 0|f1f 0 1110/ 0/1] 0
10/ 0| 0 1) 0 10/ 0| 01) 0

f=yz+uw'a f=yz+uw'z

Figure 15: Simplification using don’t-cares.

[ Either one of the above expressions satisfies the conditions stated.

[J Note that the above 2 expressions represent 2 functions that are algebraically
unequal: each covers different don’t-care terms.

[J We may or may not include any of the Xs, while all the 1s must be included.

[J Itis also possible to obtain a simplified pos expression using the don’t-cares.

Tabulation (Quine-McCluskey) Method

[J The map method is convenient when the number of variables does not exceed
5or6.

[J The map method is essentially a trial-and-error method that does not offer
any guarantee of producing the best realization.

[J The map method’s dependence on the someuwwttaitive human ability to
recognize patterns makes it unsuitable for design automation (programming
for a digital computer).
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[J Thetabulation methods a specific step-by-step (algorithmic) procedure that
Is guaranteed to produce a simplified standard-form expression for a function.

[] It can be applied to problems with any number of variables.
[J It is suitable for machine computation.
[J It however is quite tedious for human use.

[] The tabulation method was first formulated by Quine (1952) and later im-
proved by McCluskey (1956), thus known as the Quine-McCluskey method.

[ Step 1: Exhaustive search of all Pls.

[0 Group minterms by number of 1s.

[J Compare minterms and find pairs with distance 1.

[1 Generate subcubes.

[1 Repeat the above procedure on generated subcubes until no more
subcubes can be generated.

[ Step 2: Choose among the Pls which give an expression with the least
amount of literals (minimal cover generation).

[J Find EPIs through a selection table.
[J Find minimal cover through the pos of the Pls.

Determination of PIs

[J The goal of the Quine-McCluskey algorithm is a special case of the follow-
ing: Select the smallest possible subg&tpf a set of objects4, so that some
criterion, f, is satisfied

[J The setD will consist of all products in the minimal sop realization of a given
Boolean functionf, of which the setd contains all possible products.
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Let f = 5(0,1,2,8,10, 11, 14, 15).

(@) (b) (€)
wryz wryYz wryYz
O 0000 OO|0,2 000- 0,2,8,10 -0-0
0,2 00-0 00| 0,8,2,10 -0-0
1 0001 O0|0,8 —-000 [0
2 0010 O 10,11,14,15 1-1-+
8 1000 OO | 2,10 -010 U0 |10,24,11,15 1-1-+
8,10 10-0 U
10 1010 O
10,11 101- (1
11 1011 0UJ| 10,14 1-10 O
14 1110 O
11,15 1-11 0O
15 1111 0| 14,15 111- OJ

[0 Group the minterms according to the number of 1s (see Column (a)).

[0 Combine any 2 minterms that differ from each other by exactly one variable
(i.e., dist-1), the unmatched variable removed (see Column (b)). Try this for
all possible pairs of minterms. A checkl) is placed to the right of both
minterms if they have been used in a match.

[0 Repeat the process. Combine any 2 product terms from [Stepat differ
from each other by exactly one variable, the unmatched variable removed
(see Column (c)).

0 The unchecked terms in the table form the Pls. Some of the product terms

may appear twice in the table. It of course is unnecessary to use the same
term twice.

[J When comparing 2 terms to decide if they can be combined, the comparison
can be done directly on the decimal numbers. We combine 2 terms iff the
difference of their corresponding decimal numbers is a power of 2.
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[J Inmost cases, the sum of Pls obtained from the procedure shown above is not
necessarily a standard form (which is minimized). The reason is that some of
the Pls may be redundant.

Exercise 4
Use the map method to simplify= > (0, 1,2, 8,10, 11, 14, 15), and compare the
result with the tabulation method. O

Minimal Cover Generation

The selection of Pls that form the minimized function is made froRl &able
each Pl is represented in a row and each minterm in a column.

Suppose we have the following P8y, w'z2, w'zy, zyz, wyz, andwzx’.

P Minterms 1 4 6 7 8 9 10 11 15
O 2'y'z 1,9 X X
O waz 4.6 X X

w'zy 6,7 X X

xYz 7,15 X X

wyz 11,15 X X
O w2z 8,9,10,11 X X X X

O 0O O O 0 O 0O

0 Check the Pls that cover minterms with a single X in their columns. These
Pls are the EPIs.

[0 Check each column whose minterm is covered by the selected EPIs.

O If there are minterms left uncovered (7 & 15 in this example), some non-
essential Pls have to be selected to cover them. We of course will select the
Pls with a smallest total number of literalsyz in this example).
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*Multi-Output Minimization Using Maps
[J Identify all possible Pls that cover each implicated minterms in each output
expression, and search for a minimal cover by usimgredterms.

[J The Quine-McCluskey method also can be extended for this purpose.

fi(A,B,C) = ) (0,2,3,5,6)
f2(A,B,C) = 21234
f3(A,B,C) = > (2,3,4,5,6

BC00 01 11 10 2%0 01 11 10 A2%0 01 11 10

oD (1 o 1[0y o (11
1 @ b 10 Y 10@ 1
fl f2 f3

N

Figure 16: Simplification of multiple output functions.

fi = AC'+BC'"+A'B+ AB'C
fo A'C+ BC+ AB'C'+ A'B
fs = BC'"+ AB+ AB'C'+ AB'C
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*XOR & XNOR Patterns on the Map

[J Inspect the K-map to detect XOR/XNOR patterns: 1) kitty-corner adjacen-
cies; 2) offset adjacencies.

%0 011110 %0 0111 10

) 0

0
1 1 @ @

kitty-corner offset
(A® B)C ABaC)

AgDoo 01 11 10 AgDoo 01 11 10 A(B:Doo 01 11 10
oo @ @ oo |1 00 (1)
011 |@ o1 |l1a]1 01 1)
11 11(1) 11(1)

10 101)] |17 10 1)
fi f2 f3

Figure 17: XOR/XNOR patterns on the map.

fi = AB'C'D+ A'B'CD'+ ABC'D' + ABCD
= AB(Ce D)+ AB(Ca® D)
= A(B)(Ce D)+ (B)(CeD)]
= A'B& (Ca D))

fo = A'C'D+ AC'D' + ABC + AB'C
= C'(A@ D)+ C(A® B)

f3s = AB'CD+ ABCD'+ ABC'D' + AB'C'D
= (A®C)(B® D)
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Two-Level Implementations

(] Digital circuits are more frequently constructed with NAND/NOR gates than
with AND/OR/NOT gates due to ease of fabrication. For example, in gate
arrays, only NAND (or NOR) gates are used.

[J The conversion process from an expression/schematic with AND, OR, and
NOT gates to one with only NAND or NOR gates is an exampleeohnol-

ogy mapping

NAND gate

oo S reseetein
NOR gate E[>@ or %}f:fy@:(ﬁwz),

Figure 18: NAND/NOR gates.

[ NAND-NAND implementation

[ Simplify the function and express it Bop
f=AB+CD+ L.
[ Transfer it to 2-level NAND-NAND expression (DeMorgan’s Thm):
f=(AB+CD+ E)) = ((AB)(CD)'E")".

[] Draw the corresponding NAND gate implementation. Note that a 1-input
NAND gate can replace an inverter.
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4. Simplification of Boolean Functions 4-22

[ |[AND-OR = NAND-NAND |

[J The process can be done directly on the logic diagram.

[ NOR-NOR implementation

[ Simplify the function and express it pos
f=((A+B)(C+ D)E.
[ Transfer it to 2-level NOR-NOR expression (DeMorgan’s Thm):
f=((A+B)(C+D)E))Y =(A+B) +(C+D)+E.

[J Draw the corresponding NOR gate implementation. Note that a 1-input
NOR gate can replace an inverter.

It is the dual of the NAND-NAND implementation.

|OR-AND = NOR-NOR|

The process can be done directly on the logic diagram.

The types of gates most often found in ICs are NAND & NOR, so NAND &
NOR logic implementations are the most important from a practical point of

view.
NAND-AND & AND-NOR implementations

[] Both perform the AND-OR-INVERT (AOI) function.
OR-NAND & NOR-OR implementatians

[J Both perform the OR-AND-INVERT (OAI) function.

Because of the INVERT part in each case, it is convenient to use the simpli-
fication of ' (the complement of the function) instead fof
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4. Simplification of Boolean Functions 4-23

»Y%00 0111 10
0/1/0(0/|0 f=ayZ +axyd
1/0[{0]/0|1 fl=xdy+axy + =2

Figure 19: NAND/NOR gates.

Example 12
Consider the functiorf given in Fig. 19.

AND-OR: f = z'y/2 + zyz.

NAND-NAND: f = (f') = [(«'y'2") (zyz")]'.
OR-NAND: f = [(z +y + 2)(z' + ¢/ + 2)].
NOR-OR:f = (z+y +2) + (z' + ¢ + 2).
AND-NOR: f = (f') = (z'y + zy/ + 2)'.
NAND-AND: f = (z'y) (zy')' 2.

OR-AND: f = (z + ¢/)(z' +y)2.

NOR-NOR:f = (f') = [(z +¢) + (2" + )" + ()" 0
Example 13
ImplementF (X,Y, Z) = (1,2, 3,4, 5, 7) with NAND gates.
YZ Y
X\ 00 01 11 10
0 1B

F=XY+XY+Z

x[1|1 1| 1

1 - =D
oo T
> ,

(b) (©)
Fig. 2-30 Solution to Example 2-12
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Example 14
ImplementF = (AB" + A'B)(E(C + D’)) with NOR gates.

:}F

>

UOWI%

>

(a) AND — OR gates

= P
p eSS

(b) NAND gates

Fig. 2-32 Implementing F =(AB+AB)E(C + D)

Exclusive-OR (XOR) Gates

[J Some identities for XOR:
0Xp0=X;Xpl=X.
0XpX=0 XX =1.
OXaeY =XaY), XaoY=(XaY).
[1 The XOR function is both commutative and associative.
0 A@ B =B A.
0 (AeB)eC=Aa(Bae(C)=AeBaC.

Exercise 5
(a) How do you implement the Even function with XOR (XNOR) gates?

(b) Design am-bit even-parity generator. Calculate the hardware cost (in terms
of primitive gates) and performance (in terms of primitive-gate delays). O
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Fig. 2-37 Exclusive-OR Constructed with NAND Gates

X }
}

Figure 20: Implementing the XOR function with NAND gates [Mano & Kime].

YZ Y CcD C

x\ 00 01 11 10 AB\ 00 01 11 10
0 1 1 00 1 1

XP 1 1 01| 1 1

B
z 1 1 1
A
(@) XOYD Z 10| 4 1

D
(b) AGB®C®D

Fig. 2-38 Maps for Multiple-Variable Odd Functions

Figure 21: Implementing the Odd function with XOR gates [Mano & Kime].
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*Technology Mapping

[] A gate arrays a 2-dimensional array of cells within which each cell contains
a single NAND (NOR) gate that has a fixed number (usually 3) of inputs.

[J The conversion process from an expression/schematic with AND, OR, and
NOT gates to one with only NAND or NOR gates is an examplesohnol-

ogy mapping

Rulel: zy= ((zy))

Rule2: z+y=((z+y)) =(y)
Rule3: zy=((zy)) = (" +9)
Ruled: z+y=((z+y))

Standard NAND NOR
form implementation implementation

sum-of-products %]:Z} %‘:} g@-&
product-of-sums %Df % g—_’ﬁ}

Figure 22: Conversion standard forms to NAND and NOR implementations [Gajski].
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Example 15
Consider the carry function again:

Cit1 = Ti¥i + xic; + yic; = (x; + yi)(zi + ) (yi + ).

The NAND and NOR implementations of the carry function are shown in Fig 23.

O
D e
X X
J C i C
+1 +1
yi_ 2.4 b : yl_ 14 Y .
CI C
2.4 ! E,_

(c) NAND implementation

2.4 14

7

X
C | C
I+1 +1
ZD_ y— 1.4 §1.4>c
C
|

1.4

%
yi_
G

Yy ¢

Y

2.4

(d) NOR implementation

Figure 23: NAND and NOR implementations of the carry function [Gajski].

[J Replace AND and OR gates with NAND gates by using Rules 1 and 2, and
eliminate double inverters whenever possible.

[1 Replace AND and OR gates with NOR gates by using Rules 3 and 4, and
eliminate double inverters whenever possible.

[1 Term decompositiareachn-input gate is decomposed intdraeof m-input
gates, wheres > m. For example, Fig 24 shows the decomposition of a
10-input AND gate into 3-input AND gates.

[0 The tree haslog,, n] levels and (n — 1) /(m — 1)| m-input gates.
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24 |2

I

2.4

(b) One possible decomposition (c) Alternative decomposition

Figure 24: Decomposition of a 10-input AND gate into 3-input AND gates [Gajski].

[J Retiming performance optimization (delay time minimization)—decomposition
of a large gate can produce a tree in which different paths may incur different
delays. For example, Fig 25 shows two NAND implementations of the 4-bit
carry-look-ahead function:

C4 = g3 + P3g2 + P3p291 + P3P2p190 + P3P2P1P0CoH-

U Carry generatéunction:|g; = z,y; |

O Carry propagatéunction:|p; = z; + y;.|

[0 Carry look-aheadunction:|c; .1 = g; + p;c;.

[ Critical path the delay on the longest input-output path.

[J The rule of thumb is taninimize delay on critical paths and minimize cost
on non-critical pathsA technology mapping example is shown in Fig 26.
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ui
r

BB BB P R L

‘5:;«: éo‘;p

(@) AND-OR implementation

(b) Decomposition of (a)

(e) Performance optimized NAND implementation

Figure 25: Two NAND implementations of the 4-bit carry-look-ahead function [Gajski].
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R s Oy SN

4

(&) AND-OR implementation (Delay = 7.2ns, Cost = 28)

(f) Cost optimized alternative B (Delay = 3.8ns, Cost = 18)

Figure 26: Technology mapping example [Gajski].
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Hazard-Free Design

Definition 1

Hazardsare unwanted switching transientfi{cheg that appear at the output of

a circuit because of different propagation delays on different but converging paths
through the circuit.

[ | -

. static 0-hazardtatic 1 hazard dynamic hazards

Figure 27: Hazards.

[1 Hazards can cause malfunction.

[] Static-1 hazardthere are two 1-minterms that differ in only one variable but
are not covered by a common product term in a sop implementation (Fig. 28).

[ It can be eliminated by including an additional PI covering both adjacent
1-minters (called theonsensus terp{Fig. 29).

[] Static-0 hazardthere are two 0-minterms that differ in only one variable but
are not covered by a common sum term in a pos implementation.

[] Static hazards are caused by two complementary signals which become equal
for short periods of time due to different delays on different paths through the
circuit.

[J Dynamic hazardtwo signals that always have the same value (even during
the transition) become different for a short period of time.
[J Itis a static hazard that occurs during the output transition.

[ It occurs when the same variable value propagates through the circuit on
two different paths with different delays.

[0 See Fig. 30 for an example.

[1 It can be eliminated by introducingradundan{consensus) PI.
[] It also can be eliminated by inserting a delay element.
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yz
X 0 01 11 10
0 1
11| 1i]i
F=Xxy +yz
(&) Map representation
X a
2.4
y— T ¢
7 2.4 b
(b) Logic schematic
X
y
y :
a — 34 |-
b — 2.4 (-
F —>E<—4_8—> 1.0f—
tO tl t 2
(c) Timing diagram
Figure 28: A design with static-1 hazard [Gajski].
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F=Xxy +yz+xz

(a) Map representation

(b) Logic schematic

(c) Timing diagram

Figure 29: Hazard-free design [Gajski].
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. Static 1-hazard :
X a I
i e
y ; 2.
27 b
W 20— d
(a) Logic schematic
X
y
z :
W :
. 4.8
e 1 1 Ore—
o 3.4 |
d 3 !
\ | 2.4
to tl t 2
(b) Timing diagram
Figure 30: A design with dynamic hazard [Gajski].
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