
4. Simplification of Boolean Functions 4-1

Chapter 4. Simplification of Boolean
Functions

Boolean Cubes and Boolean Functions
0 1

01

1110

00

(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

1100

0000

0010 0011

0001

0110

0111

0101

1111

1011

10011000

1110

1110

0100

000

010 011

111

101

110

001

100

Figure 1: Boolean cubes [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-2

☞ A Booleann-cube uniquely represents a Boolean function ofn variables if
each vertex is assigned a 1 (marked) or 0 (unmarked).

☞ Eachvertexof then-cube represents aminterm(a row in the truth table).

Example 1
Fig. 2 shows the truth table and the corresponding cube representations of the carry
and sum functions. 2

(c) Sum functionsi

(b) Carry function ci+1

(a) Truth table

ci+1 siic ix iy

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

000

010 011

111

101

110

001

000

010 011

111

101

110

001

100

100

Figure 2: Boolean-cube representations for carry and sum functions [Gajski].

☞ (a) Eachm-subcube of then-cube represents2m minterms with the same
n � m literals, wherem < n; (b) eachm-subcube with2m 1-minterms
represents a product term ofn�m literals.

☞ A prime implicant(PI) is a subcube (of 1-minterms) that is not contained in
any other subcube (of 1-minterms); anessential prime implicant(EPI) is a PI
that contains a 1-minterm that is not contained in any other PI.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-3

Map Representation

☞ Complexity of digital circuit (gate count)/ complexity of algebraic expres-
sion (literal count).

☞ A function’s truth-table representation is unique; its algebraic expression is
not. Simplification by algebraic means is awkward (from algorithmic point
of view).

☞ A Karnaugh map (K-map)is an array of squares each representing one minterm.
Simplification by the map method is straightforward.

(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

x
0 1

1mm0

m3m2

0

1

x
y

0 1

1mm0 m3 m2

m4 m5 m7 m6

00 01 11 10

0

1

x

yz

1mm0 m3 m2

m4 m5 m7
m6

m8 m9
m11 m10

m12 m13 m15 m14

00

01

11

10

xy
zw 00 01 11 10

Figure 3: Boolean cubes and corresponding Karnaugh maps [Gajski].

☞ Each K-map defines a unique Boolean function.

✏ A Boolean function can be represented by a truth table, a Boolean ex-
pression, ann-cube, or a map.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-4

☞ K-map is in fact a visual diagram of all possible ways a function may be
expressed—the simplest one can easily be identified.

✏ K-maps provide visual aid to identify PIs and EPIs.

✏ They are used for manual minimization of Boolean functions.

Exercise 1
How do you transform a K-map into a truth table? Is it unique? How do you
transform a K-map into ann-cube? Is it unique? 2

Two- and Three-Variable Maps

1 1 m3

m2

m1

m0

01
10
00

fyx

(x� y)0x+ yf = xy2-var map2-var map

xyxy0

x0yx0y0

1

1

1 1

1

1

x

y

0

1

0 1x

y

0

1

0 110

1

0

y

x10

1

0

y

x

m3m2

m1m0

Figure 4: Two-variable maps.

xyz0xyzxy0zxy0z0

x0yz0x0yzx0y0zx0y0z0

3-var map3-var map f = z x0y + xy0

11

11 11

11

x

yz

0

1

00 01 11 10 10110100

1

0

yz

x10110100

1

0

yz

x

m7 m6m5m4

m3 m2m1m0

Figure 5: Three-variable maps.

(a)

m0 m1 m3 m2

m4 m5 m7 m6

YZ
X

0

00 01

X Y Z X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z X Y Z

11 10

Y

1X

Z

(b)

Fig. 2-10 Three-Variable Map

Figure 6: Three-variable map simplification [Mano & Kime].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-5

☞ Minterms are arranged in the Gray-code sequence. (Why?)

☞ Any 2 (horizontally or vertically) adjacent squares differ by exactly 1 vari-
able, which is complemented in one square and uncomplemented in the other.

☞ Any 2 minterms in adjacent squares that are ORed together will cause a re-
moval of the different variable, e.g.,m5 +m7 = xy0z + xyz = xz(y0 + y) =
xz, becausey + y0 = 1.

01 11 10
0 1 23

4 5 7 6

0

1

0i

i ix y
c

1

1 1 1

01 11 10
0 1 23

4 5 7 6

0

1

0i

i ix y
c

1

1 1

1

Figure 7: K-maps for the carry and sum functions [Gajski].

Example 2
Simplify the following Boolean functions: (a)F1(X; Y; Z) =

P
(3; 4; 6; 7); (b)

F2(X; Y; Z) =
P

(0; 2; 4; 5; 6).

0

1

Y

Z

X

(b) F2(X, Y, Z) = Σm(0, 2, 4, 5, 6)
 = Z + XY

00 01 11 10

1

YZ
X

1

1

1 1

0

1

Y

Z

X 1

00 01 11 10

1

YZ
X

1 1

(a) F1(X, Y, Z) = Σm(3, 4, 6, 7)
 = YZ + XZ

Fig. 2-14 Maps for Example 2-4

2

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-6

Example 3
Simplify the Boolean functionF (X; Y; Z) =

P
(1; 3; 4; 5; 6).

0

1

Y

Z

X 1

00 01 11 10
YZ

X

11

1 1

Fig. 2-15 Σm(1, 3, 4, 5, 6)=F X Y Z, ,()

2

Example 4
Simplify the Boolean functionF = X 0Z +X 0Y +XY 0Z + Y Z.

0

1

Y

Z

X

00 01 11 10

1

YZ
X

1

1

1

1

Fig. 2-16 F X Y Z, ,() Σm 1 2 3 5 7, , , ,()=

2

Four-Variable Maps

x0z0 + x0y0 + w0yz0w0z0 + y0 + xz0

1 1 1

1

111

1

1

1

11

11

11

11

15 141312

11 1098

7 654

3 210
wx

yz

00

01

11

10

00 01 11 1010110100

10

11

01

00

yz
wx10110100

10

11

01

00

yz
wx

Figure 8: Four-variable maps.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-7

☞ The map is considered to lie on a surface with the top and bottom edges, as
well as the right and left edges, touching each other to form adjacent squares.

✏ One square) a minterm of 4 literals.

✏ Two adjacent squares) a term of 3 literals.

✏ Four adjacent squares) a term of 2 literals.

✏ Eight adjacent squares) a term of 1 literal.

✏ Sixteen adjacent squares) the constant ‘1’.

Example 5
For the maps shown above,f1(w; x; y; z) =

P
(0; 1; 2; 4; 5; 6; 8; 9; 12; 13; 14) and

f2 = w0x0y0 + x0yz0 + w0xyz0 + wx0y0. 2

☞ A PI is a product term obtained by combining the maximum possible number
of adjacent squares in the map.

☞ Pick the EPIs that minimize the number of literals.

Minimize the number of groupings.

Maximize their sizes.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-8

Example 6
Show the region in the K-map that is represented byX 0Z 0.

(a)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

0 1 3 2

4 5 7 6

8 9 1011

12 13 1415

XZ

0
2

8 10

1 39
11

X Z

(b)

Fig. 2-18 Four-Variable Map: Flat and on a Torus to Show Adjacencies

2

Example 7
Simplify the Boolean functionF (W;X; Y; Z) =

P
(0; 1; 2; 4; 5; 6; 8; 9; 12; 13; 14).

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

1 1 1

1 1 1

1 1

1 1 1

Fig. 2-19 Map for Example 2-5: F = Y + WZ + XZ

2

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-9

Example 8
Simplify the Boolean functionF = A0B0C 0 + B0CD0 + AB0C 0 + A0BCD0.

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1 1 1

1

1 1 1

Fig. 2-20 Map for Example 2-6: F = BD + BC + ACD

2

*Five-Variable Maps

00

01

11

10

00 01 11 10

0 1 23

4 5 67

8 9 1011

12 13 1415

00

01

11

10

00 01 11 10

16 17 1819

20 21 2223

24 25 2627

28 29 3031

00

01

11

10

00 01 11 10

00

01

11

10

00 01 11 10BC

DE

BC

DE DE

BC BC

DE

A = 0 A = 1 A = 1A = 0

1

1

1

1

1

1

1 1

1 1

1
f = A0B0E0 + BD0E + ACE

Figure 9: Five-variable maps.

☞ Imagine that the 2 maps aresuperimposedon one another.

☞ It is possible to construct a 6-variable map with four 4-variable maps by
following a similar procedure.

☞ Maps of 6 or more variables are hard to read, and thus are impractical.

✏ (1) Variable-entered maps (VEMs); (2) CAD programs.

☞ Any 2k adjacent squares,k = 0; 1; : : : ; n, in ann-variable map represent an
area that gives a product term ofn� k literals.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-10{{

m 1m m

m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

0 3 m2

4 m5 7 6

8 9 11 10

12 13 15 14

16 17 19 18

20 21 23 22

24 25 27 26

32 33 35 34

36 37 39 38

40 41 43 42

44 45 47 46

m48 49 51

28 29 31 30

50

52 53 55 54

56 57 59 58

6260 61 63

00 01 11 10 00 01 11 10

00

01

11

10
{

00

01

11

10
{

v = 0 v = 1

u = 0

u = 1

14151312

8 9 11 10

0 1 23

4 5 7 6 20 21

16 17 19 18

2223

24 25

3128 29 30

2627

32 33 35 34

36 37 39 38

46

4243

4745

4140

44

48

52

60

56

49

53

61

57 59 58

6263

55

51 50

54

xy
zw

{{
00 01 11 1000 01 11 10

00

01

11

10
{

00

01

11

10
{

v = 0 v = 1

u = 0

u = 1

’ ’

’14151312

8 9 11 10

0 1 23

4 5 7 6 20 21

16 17 19 18

2223

24 25

3128 29 30

2627

32 33 35 34

36 37 39 38

46

4243

4745

4140

44

48

52

60

56

49

53

61

57 59 58

6263

55

51 50

54

xy
zw

x v

xz

z w

Figure 10: Six-variable K-maps [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-11

Theorem 1
In a K-map, 2 minterms are adjacent iff they differ in exactly 1 variable.

✯ In general, for ann-variable function, wheren = 2k, we can construct ak-D
K-map such that:

✩ the map is extended in each dimension on 2 of the variables;

✩ the extension sequence in each dimension is a Gray sequence.

Simplification Using K-Maps

☞ The complement of a function is represented in the map by the squares not
marked by 1s (they usually are marked by 0s).

f 0 = CD + AB0Cf = A0D0 + C 0 +BD0

00

0

0

0

CD

AB

CD

AB

1

1

1

11

11

11

11 00

01

11

10

00 01 11 1010110100

10

11

01

00

Figure 11: The complement off 0 givesf in pos.

Example 9
We want to simplify the following function in sop & pos:

f(A;B;C;D) =
X

(0; 1; 2; 5; 8; 9; 10):

(a) Mark the map with 1s and 0s according to the function.

(b) Use the 1s to determine the EPIs off , which immediately give the sop form:

f = B0D0 + B0C 0 + A0C 0D:

(c) Use the 0s to determine the EPIs off 0, and complement it to give the pos form:

f 0 = AB + CD + BD0;

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-12

f

D

D’
C’

B’
A’

f

D
A’

C’

D’
B’

�

�

�

Figure 12: Two-level implementation.

f = (A0 +B0)(C 0 +D0)(B0 +D):

The 2-level (sop/pos) implementations using the AND/OR gates are shown below.

Note that NOT gates (inverters) are required if complemented inputs are not avail-
able. 2

☞ The 1s of the function in the K-map or the truth table represent the minterms,
and the 0s represent the maxterms.

☞ Entering a function in the map:

✏ Entering a function expressed in sop in the map is straightforward.

✏ To enter a function expressed in pos in the map, take the complement of
the function (to get sop) and from it find the squares to be marked by 0s.
The remaining squares are marked by 1s.

☞ Simplification procedure:

✏ Obtain truth table, canonical form, or standard form.

✏ Generate K-map.

✏ Determine PIs.

✏ Select EPIs.

✏ Find minimal cover (set) of PIs.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-13

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1 1

1

1

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1 1

1

1

(a) Plotting the minterms (b) Essential prime implicants

Fig. 2-22 Simplification with Prime Implicants in Example 2-8

Figure 13: Simplification with PIs forf =
P

(0; 5; 10; 11; 12; 13; 15) [Mano & Kime].

1 2

3

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1

1

1

11

1

Fig. 2-23 Map for Example 2-9

Figure 14: Simplification with PIs forf =
P

(0; 1; 2; 4; 5; 10; 11; 13; 15) [Mano & Kime].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-14

Exercise 2
Does the minimal cover of PIs contain only EPIs? 2

Example 10
Simplify the following Boolean function in the pos form:
F (A;B;C;D) =

P
(0; 1; 2; 5; 8; 9; 10).

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1 01 1

1 00 0

0 00 0

1 01 1

Fig. 2-24 Map for Example 2-10: F = (A + B) (C + D) (B + D)

F 0 = AB + CD +BD0
) F = (A0 + B0)(C 0 +D0)(B0 +D) 2

Exercise 3
Simplify F = (A0 +B0 + C)(B +D) in the pos form. 2

Don’t-Care Conditions

☞ In practice, there are applications where the function is not specified for cer-
tain combinations of the input variables. For example, in the 4-bit BCD code
for the decimal digits, the outputs are unspecified for the input combinations
1010-1111.

☞ Functions that have unspecified outputs for some input combinations are
calledincompletely specified functions.

☞ The unspecified minterms of a function are called thedon’t-careconditions,
or simply the don’t-cares, and are denoted as Xs.

☞ These don’t-care conditions can be used on a map to provide further simpli-
fication of the Boolean expression.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-15

☞ Each X can be assigned an arbitrary value, 0 or 1, to help the simplification
procedure.

Example 11
Simplify the Boolean functionf(w; x; y; z) =

P
(1; 3; 7; 11; 15) that has the don’t-

care conditionsd(w; x; y; z) =
P

(0; 2; 5).

wx
yz

00

01

11

10

00 01 11 10

X 1 1 X

0 X 1 0

0 0 1 0

0 0 1 0

wx
yz

00

01

11

10

00 01 11 10

X 1 1 X

0 X 1 0

0 0 1 0

0 0 1 0

f = yz + w0x0 f = yz + w0z

Figure 15: Simplification using don’t-cares.

2

☞ Either one of the above expressions satisfies the conditions stated.

☞ Note that the above 2 expressions represent 2 functions that are algebraically
unequal: each covers different don’t-care terms.

☞ We may or may not include any of the Xs, while all the 1s must be included.

☞ It is also possible to obtain a simplified pos expression using the don’t-cares.

Tabulation (Quine-McCluskey) Method

☞ The map method is convenient when the number of variables does not exceed
5 or 6.

☞ The map method is essentially a trial-and-error method that does not offer
any guarantee of producing the best realization.

☞ The map method’s dependence on the somewhatintuitive human ability to
recognize patterns makes it unsuitable for design automation (programming
for a digital computer).

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-16

☞ Thetabulation methodis a specific step-by-step (algorithmic) procedure that
is guaranteed to produce a simplified standard-form expression for a function.

☞ It can be applied to problems with any number of variables.

☞ It is suitable for machine computation.

☞ It however is quite tedious for human use.

☞ The tabulation method was first formulated by Quine (1952) and later im-
proved by McCluskey (1956), thus known as the Quine-McCluskey method.

✏ Step 1: Exhaustive search of all PIs.

✍ Group minterms by number of 1s.

✍ Compare minterms and find pairs with distance 1.

✍ Generate subcubes.

✍ Repeat the above procedure on generated subcubes until no more
subcubes can be generated.

✏ Step 2: Choose among the PIs which give an expression with the least
amount of literals (minimal cover generation).

✍ Find EPIs through a selection table.

✍ Find minimal cover through the pos of the PIs.

Determination of PIs

☞ The goal of the Quine-McCluskey algorithm is a special case of the follow-
ing: Select the smallest possible subset,D, of a set of objects,A, so that some
criterion, f , is satisfied.

☞ The setD will consist of all products in the minimal sop realization of a given
Boolean functionf , of which the setA contains all possible products.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-17

Let f =
P

(0; 1; 2; 8; 10; 11; 14; 15).

(a) (b) (c)

wxyz wxyz wxyz

0 0000 ✓ 0,1 000– 0,2,8,10 –0–0
0,2 00–0 ✓ 0,8,2,10 –0–0

1 0001 ✓ 0,8 –000 ✓

2 0010 ✓ 10,11,14,15 1–1–
8 1000 ✓ 2,10 –010 ✓ 10,14,11,15 1–1–

8,10 10–0 ✓

10 1010 ✓

10,11 101– ✓

11 1011 ✓ 10,14 1–10 ✓

14 1110 ✓

11,15 1–11 ✓

15 1111 ✓ 14,15 111– ✓

① Group the minterms according to the number of 1s (see Column (a)).

② Combine any 2 minterms that differ from each other by exactly one variable
(i.e., dist-1), the unmatched variable removed (see Column (b)). Try this for
all possible pairs of minterms. A check (✓) is placed to the right of both
minterms if they have been used in a match.

③ Repeat the process. Combine any 2 product terms from Step② that differ
from each other by exactly one variable, the unmatched variable removed
(see Column (c)).

④ The unchecked terms in the table form the PIs. Some of the product terms
may appear twice in the table. It of course is unnecessary to use the same
term twice.

☞ When comparing 2 terms to decide if they can be combined, the comparison
can be done directly on the decimal numbers. We combine 2 terms iff the
difference of their corresponding decimal numbers is a power of 2.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-18

☞ In most cases, the sum of PIs obtained from the procedure shown above is not
necessarily a standard form (which is minimized). The reason is that some of
the PIs may be redundant.

Exercise 4
Use the map method to simplifyf =

P
(0; 1; 2; 8; 10; 11; 14; 15), and compare the

result with the tabulation method. 2

Minimal Cover Generation

The selection of PIs that form the minimized function is made from aPI table:
each PI is represented in a row and each minterm in a column.

Suppose we have the following PIs:x0y0z, w0xz0, w0xy, xyz, wyz, andwx0.

PI Minterms 1 4 6 7 8 9 10 11 15
✓ x0y0z 1,9 X X
✓ w0xz0 4,6 X X

w0xy 6,7 X X
xyz 7,15 X X
wyz 11,15 X X

✓ wx0 8,9,10,11 X X X X
✓ ✓ ✓ ✓ ✓ ✓ ✓

① Check the PIs that cover minterms with a single X in their columns. These
PIs are the EPIs.

② Check each column whose minterm is covered by the selected EPIs.

③ If there are minterms left uncovered (7 & 15 in this example), some non-
essential PIs have to be selected to cover them. We of course will select the
PIs with a smallest total number of literals (xyz in this example).

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-19

*Multi-Output Minimization Using Maps

☞ Identify all possible PIs that cover each implicated minterms in each output
expression, and search for a minimal cover by usingsharedterms.

☞ The Quine-McCluskey method also can be extended for this purpose.

f1(A;B;C) =
X

(0; 2; 3; 5; 6)

f2(A;B;C) =
X

(1; 2; 3; 4; 7)

f3(A;B;C) =
X

(2; 3; 4; 5; 6)

A
BC

0

1

00 01 11 10 A
BC

0

1

00 01 11 10 10110100

1

0

BC
A

1 1

1

1

1

111

1 1

11

11 1

f1 f2 f3

Figure 16: Simplification of multiple output functions.

f1 = A0C 0 + BC 0 +A0B + AB0C

f2 = A0C + BC +AB0C 0 +A0B

f3 = BC 0 + A0B + AB0C 0 + AB0C

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-20

*XOR & XNOR Patterns on the Map

☞ Inspect the K-map to detect XOR/XNOR patterns: 1) kitty-corner adjacen-
cies; 2) offset adjacencies.

A
BC

0

1

00 01 11 10

11

A
BC

0

1

00 01 11 10
1

1

kitty-corner offset
(A�B)C A(B � C)

00 01 11 10
AB

CD

00

01

11

10

00 01 11 10
AB

CD

00

01

11

10 10

11

01

00

CD
AB

10110100

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

f1 f2 f3

Figure 17: XOR/XNOR patterns on the map.

f1 = A0B0C 0D + A0B0CD0 +A0BC 0D0 + A0BCD

= A0B0(C �D) + A0B(C �D)0

= A0[(B0)(C �D) + (B)(C �D)0]

= A0[B � (C �D)]

f2 = A0C 0D + AC 0D0 +A0BC + AB0C

= C 0(A�D) + C(A� B)

f3 = A0B0CD + A0BCD0 +ABC 0D0 + AB0C 0D

= (A� C)(B �D)

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-21

Two-Level Implementations

☞ Digital circuits are more frequently constructed with NAND/NOR gates than
with AND/OR/NOT gates due to ease of fabrication. For example, in gate
arrays, only NAND (or NOR) gates are used.

☞ The conversion process from an expression/schematic with AND, OR, and
NOT gates to one with only NAND or NOR gates is an example oftechnol-
ogy mapping.

f = x0y0z0 = (x+ y + z)0

f = x0 + y0 + z0 = (xyz)0

or

or

NOR gate

NAND gate

Figure 18: NAND/NOR gates.

✯ NAND-NAND implementation:

✩ Simplify the function and express it insop:

f = AB + CD + E:

✩ Transfer it to 2-level NAND-NAND expression (DeMorgan’s Thm):

f = ((AB + CD +E)0)0 = ((AB)0(CD)0E 0)0:

✩ Draw the corresponding NAND gate implementation. Note that a 1-input
NAND gate can replace an inverter.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-22

☞ AND-OR� NAND-NAND

☞ The process can be done directly on the logic diagram.

✯ NOR-NOR implementation:

✩ Simplify the function and express it inpos:

f = (A+ B)(C +D)E:

✩ Transfer it to 2-level NOR-NOR expression (DeMorgan’s Thm):

f = (((A+B)(C +D)E)0)0 = ((A+ B)0 + (C +D)0 + E 0)0:

✩ Draw the corresponding NOR gate implementation. Note that a 1-input
NOR gate can replace an inverter.

☞ It is the dual of the NAND-NAND implementation.

☞ OR-AND� NOR-NOR

☞ The process can be done directly on the logic diagram.

☞ The types of gates most often found in ICs are NAND & NOR, so NAND &
NOR logic implementations are the most important from a practical point of
view.

✯ NAND-AND & AND-NOR implementations:

✩ Both perform the AND-OR-INVERT (AOI) function.

✯ OR-NAND & NOR-OR implementations:

✩ Both perform the OR-AND-INVERT (OAI) function.

☞ Because of the INVERT part in each case, it is convenient to use the simpli-
fication off 0 (the complement of the function) instead off .

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-23

x
yz

0

1

00 01 11 10
1

1

0 0 0

000

f = x0y0z0 + xyz0

f 0 = x0y + xy0 + z

Figure 19: NAND/NOR gates.

Example 12
Consider the functionf given in Fig. 19.

AND-OR: f = x0y0z0 + xyz0.
NAND-NAND: f = (f 0)0 = [(x0y0z0)0(xyz0)0]0.
OR-NAND: f = [(x+ y + z)(x0 + y0 + z)]0.
NOR-OR:f = (x+ y + z)0 + (x0 + y0 + z)0.
AND-NOR: f = (f 0)0 = (x0y + xy0 + z)0.
NAND-AND: f = (x0y)0(xy0)0z0.
OR-AND: f = (x+ y0)(x0 + y)z0.
NOR-NOR:f = (f 0)0 = [(x+ y0)0 + (x0 + y)0 + (z0)0]0. 2

Example 13
ImplementF (X; Y; Z) =

P
(1; 2; 3; 4; 5; 7) with NAND gates.

0

1

Y

Z

X 1

00 01 11 10

1

1

YZ
X

11

1
F = XY + XY + Z

(a)

••

•

•

•
••

Z

X

Y

X

Y
F

(b)

•

•

Z

X

Y

X

Y
F•

(c)

Fig. 2-30 Solution to Example 2-12

2

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-24

Example 14
ImplementF = (AB0 + A0B)(E(C +D0)) with NOR gates.

A

B

A

B

C

D

E

F

(a) AND – OR gates

A

B

A

B

C

D

E

F

(b) NAND gates

X

••

•

•

•

•
•

•

••

•••

•

Fig. 2-32 Implementing F A B AB+()E C D+()=

2

Exclusive-OR (XOR) Gates

☞ Some identities for XOR:

✩ X � 0 = X; X � 1 = X 0.

✩ X �X = 0; X �X 0 = 1.

✩ X � Y 0 = (X � Y)0; X 0 � Y = (X � Y)0.

☞ The XOR function is both commutative and associative.

✩ A�B = B � A.

✩ (A� B)� C = A� (B � C) = A� B � C.

Exercise 5
(a) How do you implement the Even function with XOR (XNOR) gates?

(b) Design ann-bit even-parity generator. Calculate the hardware cost (in terms
of primitive gates) and performance (in terms of primitive-gate delays). 2

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-25

•

•

•
•

•
•

•X

Y

F = X Y

•

•

Fig. 2-37 Exclusive-OR Constructed with NAND Gates

Figure 20: Implementing the XOR function with NAND gates [Mano & Kime].

(b) A B C D

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1

1

1

1

10

1

Y

Z

X

(a) X Y Z

1

00 01 11 10

1

YZ
X

1

1

Fig. 2-38 Maps for Multiple-Variable Odd Functions

Figure 21: Implementing the Odd function with XOR gates [Mano & Kime].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-26

*Technology Mapping

☞ A gate arrayis a 2-dimensional array of cells within which each cell contains
a single NAND (NOR) gate that has a fixed number (usually 3) of inputs.

☞ The conversion process from an expression/schematic with AND, OR, and
NOT gates to one with only NAND or NOR gates is an example oftechnol-
ogy mapping.

Rule 1: xy = ((xy)0)0

Rule 2: x+ y = ((x+ y)0)0 = (x0y0)0

Rule 3: xy = ((xy)0)0 = (x0 + y0)0

Rule 4: x+ y = ((x+ y)0)0

Standard
 form

 NOR
implementation

 NAND
implementation

sum−of−products

product−of−sums

Figure 22: Conversion standard forms to NAND and NOR implementations [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-27

Example 15
Consider the carry function again:

ci+1 = xiyi + xici + yici = (xi + yi)(xi + ci)(yi + ci):

The NAND and NOR implementations of the carry function are shown in Fig 23.
2

 (c) NAND implementation

(d) NOR implementation

c
i+1

2.4

i
c

i
x

i
y

c
i+1

i
c

i
x

i
y

c
i+1

c
i+1

i
c

i
x

i
y

i
c

i
x

i
y 2.4

2.4

2.4

2.4

2.4

2.4

2.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

Figure 23: NAND and NOR implementations of the carry function [Gajski].

☞ Replace AND and OR gates with NAND gates by using Rules 1 and 2, and
eliminate double inverters whenever possible.

☞ Replace AND and OR gates with NOR gates by using Rules 3 and 4, and
eliminate double inverters whenever possible.

☞ Term decomposition: eachn-input gate is decomposed into atreeof m-input
gates, wheren > m. For example, Fig 24 shows the decomposition of a
10-input AND gate into 3-input AND gates.

✏ The tree hasdlogm ne levels andd(n� 1)=(m� 1)em-input gates.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-28

(c) Alternative decomposition(b) One possible decomposition

2.4 2.4 2.4 2.4 2.4 2.4

2.4

2.42.4

2.4

Figure 24: Decomposition of a 10-input AND gate into 3-input AND gates [Gajski].

☞ Retiming: performance optimization (delay time minimization)—decomposition
of a large gate can produce a tree in which different paths may incur different
delays. For example, Fig 25 shows two NAND implementations of the 4-bit
carry-look-ahead function:

c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0:

✏ Carry generatefunction: gi � xiyi.

✏ Carry propagatefunction: pi � xi + yi.

✏ Carry look-aheadfunction: ci+1 = gi + pici.

☞ Critical path: the delay on the longest input-output path.

☞ The rule of thumb is tominimize delay on critical paths and minimize cost
on non-critical paths. A technology mapping example is shown in Fig 26.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-29

(b) Decomposition of (a)

p
1

p
2

p
3

p
0

g
3

g
1

g
2

c
0

g
0

p
3

p
3

p
2

p
3

p
1

p
2

c
4

(c) NAND implementation of (b)

Max delay = 9.2 ns

1.8

1.8

1.8

1.8

1.8

1.8 1.8
1.8

p
1

p
2

p
3

p
0

g
3

g
1

g
2

c
0

g
0

p
3

p
3

p
2

p
3

p
1

p
2

c
4

(a) AND−OR implementation

p
1

p
2

p
3

p
0

g
3

g
1

g
2

c
0

g
0

p
3

p
3

p
2

p
3

p
1

p
2

c
4

(d) Performance optimized decomposition

p
1

p
2

p
3

p
0

g
3

g
1

g
2

c
0

g
0

p
3

p
3

p
2

p
3

p
1

p
2 c

4

(e) Performance optimized NAND implementation

Max delay = 6.4 ns

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

p
1

p
2

p
3

p
0

g
3

g
1

g
2

c
0

g
0

p
3

p
3

p
2

p
3

p
1

p
2 c

4

Figure 25: Two NAND implementations of the 4-bit carry-look-ahead function [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-30

F2.4

2.4

2.4
y

z
w

2.4

1

1

F

y

z
w

1.4

1.4

1.4

1.4
1

1

1

F

y

z
w

1.4

1.4

1.4

1.4
1

1

1

B
A

(c) Two possible conversions

F

y

z
w 1

1

1 1.4

2.0 1

F

y

z
w 1

1
1.4

1.4

2.0

F

y

z
w

2.0

11.4

1.4

(a) AND−OR implementation (Delay = 7.2ns, Cost = 28)

(b) NAND implementation (Delay = 5.2ns, Cost = 22)

(d) Alternative A (Delay = 5.4ns, Cost = 20)

(e) Alternative B (Delay = 3.8ns, Cost = 20)

(f) Cost optimized alternative B (Delay = 3.8ns, Cost = 18)

Figure 26: Technology mapping example [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-31

Hazard-Free Design

Definition 1
Hazardsare unwanted switching transients (glitches) that appear at the output of
a circuit because of different propagation delays on different but converging paths
through the circuit.

dynamic hazardsstatic 1 hazardstatic 0-hazard....

Figure 27: Hazards.

☞ Hazards can cause malfunction.

☞ Static-1 hazard: there are two 1-minterms that differ in only one variable but
are not covered by a common product term in a sop implementation (Fig. 28).

✏ It can be eliminated by including an additional PI covering both adjacent
1-minters (called theconsensus term) (Fig. 29).

☞ Static-0 hazard: there are two 0-minterms that differ in only one variable but
are not covered by a common sum term in a pos implementation.

☞ Static hazards are caused by two complementary signals which become equal
for short periods of time due to different delays on different paths through the
circuit.

☞ Dynamic hazard: two signals that always have the same value (even during
the transition) become different for a short period of time.

✏ It is a static hazard that occurs during the output transition.

✏ It occurs when the same variable value propagates through the circuit on
two different paths with different delays.

✏ See Fig. 30 for an example.

✍ It can be eliminated by introducing aredundant(consensus) PI.
✍ It also can be eliminated by inserting a delay element.

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-32

(a) Map representation

01 11 10
0 1 23

4 5 7 6

0

1

0

11 1

1

x

y z

2.4

2.4

2.4

1

F

a

b

x

y

z

(b) Logic schematic

x

y

z

F

b

a

t 0 t 1 t 2

3.4

1.04.8

2.4

(c) Timing diagram

F = xy’ + yz

Figure 28: A design with static-1 hazard [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-33

(b) Logic schematic

x

y

z

F

b

a 3.4

2.4

(c) Timing diagram

(a) Map representation

F = xy’ + yz + xz

01 11 10
0 1 23

4 5 7 6

0

1

0

11 1

1

x

y z

2.4

2.42.4

1

F

a

b

x

y

z

2.4
c

c

Figure 29: Hazard-free design [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4. Simplification of Boolean Functions 4-34

(a) Logic schematic

(b) Timing diagram

2.4

2.4

2.4

1

F

a

b

x

y

z

Static 1−hazard

2.4

2.4

d

e

w

x

y

z

F

t 0 t 1 t 2

3.4

1.0
4.8

2.4

w

e

d

1.01.4

Figure 30: A design with dynamic hazard [Gajski].

c
 Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

