

Memory and Programmable Logic

Outline

Introduction

- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Programmable Devices
- Sequential Programmable Devices

Mass Memory Elements

Memory is a collection of binary cells together with associated circuits needed to transfer information to or from any desired location

- Two primary categories of memory:
 - Random access memory (RAM)
 - Read only memory (ROM)

Programmable Logic Device

- The binary information within the device can be specified in some fashion and then embedded within the hardware
 - Most of them are programmed by breaking the fuses of unnecessary connections
- Four kinds of PLD are introduced
 - Read-only memory (ROM)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)
 - Field-programmable gate array (FPGA)

- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

Random Access Memory

- A *word* is the basic unit that moves in and out of memory
 - The length of a word is often multiples of a byte (=8 bits)
- Memory units are specified by its *number of words* and the *number of bits* in each word
 - Ex: 1024(words) x 16(bits)
 - Each word is assigned a particular *address*, starting from 0 up to 2^k 1

(k = number of address lines)

Memory a	adress	
Binary	decimal	Memory contest
0000000000	0	1011010101011101
0000000001	1	1010101110001001
000000010	2	0000110101000110
	:	
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Memory address

Fig. 7-3 Content of a 1024×16 Memory

Write and Read Operations

- Write to RAM
 - Apply the binary address of the desired word to the address lines
 - Apply the data bits that must be stored in memory to the *data input lines*
 - Activate the write control
- Read from RAM
 - Apply the binary address of the desired word to the address lines
 - Activate the *read control*

Timing Waveforms

- CPU clock = 50 MHz
 - cycle time = 20 ns
- Memory cycle time = 50 ns
 - The time required to complete a write operation
- Memory access time
 - The time required to read Clock it
- The control signals must stay active for at least 50 ns
 - 3 CPU cycles are required a

Types of Memories

- Access mode:
 - Random access: any locations can be accessed in any order
 - Sequential access: accessed only when the requested word has been reached (ex: hard disk)
- Operating mode:
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
- Volatile mode:
 - Volatile memory: lose stored information when power is turned off (ex: RAM)
 - Non-volatile memory: retain its storage after removal of power (ex: flash, ROM, hard-disk, ...)

SRAM vs. DRAM

- Static RAM:
 - Use internal latch to store the binary information
 - Stored information remains valid as long as power is on
 - Shorter read and write cycles
 - Larger cell area and power consumption

• Dynamic RAM:

- Use a capacitor to store the binary information
- Need periodically refreshing to hold the stored info.
- Longer read and write cycles
- Smaller cell area and power consumption

Memory R/W Operations

```
module memory (Enable, ReadWrite, Address, DataIn, DataOut);
  input Enable, ReadWrite;
  input [3:0] DataIn;
  input [5:0] Address;
  output [3:0] DataOut;
  reg [3:0] DataOut;
  reg [3:0] Mem [0:63]; //64 x 4 memory
  always @ (Enable or ReadWrite)
   if (Enable)
       if (ReadWrite)
         DataOut = Mem[Address]; //Read
       else
         Mem[Address] = DataIn; //Write
   else DataOut = 4'bz; //High impedance state
endmodule
```


- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

Memory Construction

Coincident Decoding

- Address decoders are often divided into two parts
 - A two-dimensional scheme
- The total number of gates in decoders can be reduced
- Can arrange the memory cells to a square shape
- EX: 10-bit address
 404 = 0110010100
 X = 01100 (first five)
 Y = 10100 (last five)

7-14

Address Multiplexing

- Memory address lines often occupy too much I/O pads
 - 64K = 16 lines
 - 256M = 28 lines
- Share the address lines of X and Y domains
 - Reduce the number of lines to a half
 - An extra register is required for both domain to store the address
- Two steps to send address
 - RAS=0: send row address
 - CAS=0: send column address

Fig. 7-8 Address Multiplexing for a 64K DRAM

- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

Error Detection & Correction

- Memory arrays are often very huge
 - May cause occasional errors in data access
- Reliability of memory can be improved by employing error-detecting and correcting codes
- Error-detecting code: only check for the *existence* of errors
 - Most common scheme is the parity bit
- Error-correcting code: check the existence and locations of errors
 - Use multiple parity check bits to generate a syndrome that can indicate the erroneous bits
 - Complement the erroneous bits can correct the errors

Hamming Code (1/2)

- k parity bits are added to an n-bit data word
- The positions numbered as a *power of 2* are reserved for the parity bits
 - Ex: original data is 11000100 (8-bit)
 - \Rightarrow Bit position: **1 2** 3 **4** 5 6 7 **8** 9 10 11 12
 - $P_1 \ P_2 \ 1 \ P_4 \ 1 \ 0 \ 0 \ P_8 \ 0 \ 1 \ 0 \ 0$
 - P1 = XOR of bits (3,5,7,9,11) = 0
 - P2 = XOR of bits (3,6,7,10,11) = 0
 - P4 = XOR of bits (5,6,7,12) = 1
 - P8 = XOR of bits (9,10,11,12) = 1
 - The composite word is 001110010100 (12-bit)

Hamming Code (2/2)

- When the 12 bits are read from memory, the parity is checked over the same combination of bits including the parity bit
 - C1 = XOR of bits (1,3,5,7,9,11)
 - C2 = XOR of bits (2,3,6,7,10,11)

$$C4 = XOR of bits (4,5,6,7,12)$$

C8 = XOR of bits (8,9,10,11,12)

• $(001110010100) \rightarrow C = C_8C_4C_2C_1 = 0000$: no error $(101110010100) \rightarrow C = C_8C_4C_2C_1 = 0001$: bit 1 error $(001100010100) \rightarrow C = C_8C_4C_2C_1 = 0101$: bit 5 error

General Rules of Hamming Code

- The number of parity bits:
 - The syndrome C with k bits can represent 2^k – 1 error locations (0 indicates no error)

Number of Check Bits, k	Range of Data Bits, n			
3	2-4			
4	5-11			
5	12-26			
6	27-57			
7	58-120			

- $2^{k} 1 = n + k \rightarrow 2^{k} 1 k = n$
- The members of each parity bit:
 - C1(P1): have a "1" in *bit 1* of their location numbers 1(0001), 3(0011), 5(0101), 7(0111), 9(1001), ...
 - C2(P2): have a "1" in *bit 2* of their location numbers 2(0010), 3(0011), 6(0110), 7(0111), 10(1010), ...
 - C: with parity bit; P: without parity bit itself

Extension of Hamming Code

- Original Hamming code can detect and correct only a single error
 - Multiple errors are not detected
- Add an extra bit as the parity of total coded word
 - Ex: 001110010100P₁₃ (P₁₃=XOR of bits 1 to 12)
 - Still single-error correction but double-error detection
- Four cases can occur:
 - If C=0 and P=0, no error occurred
 - If C 0 and P=1, single error occurred (can be fixed)
 - If C 0 and P=0, double error occurred (cannot be fixed)
 - If C=0 and P=1, an error occurred in the P₁₃ bit

- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

Figure 3-1 Basic ROM Structure

Read Only Memory

- A memory device that can permanently keep binary data
 - Even when power is turned off and on again

 I_0 –

 $I_{1} -$

- For a 2^k x n ROM, it consists of
 - k inputs (address line) and n outputs (data)
 - 2^k words of *n*-bit each I_3 -
 - A k x 2^k decoder
 (generate all minterms)
 - *n* OR gates with 2^k inputs
 - Initially, all inputs of OR gates and all outputs of the decoder are fully connected

Fig. 7-10 Internal Logic of a 32×8 ROM

Programming the ROM

- Each intersection (crosspoint) in the ROM is often implemented with a fuse
- Blow out unnecessary connections according to the truth table
 - "1" means connected (marked as X)
 - "0" means unconnected
- Cannot recovered after programmed

Fig. 7-11 Programming the ROM According to Table 7-3

Design Comb. Circuit with ROM

- Derive the truth table of the circuit
- Determine minimum size of ROM
- Program the ROM

Inputs			Outputs						
A_2	A_1	A_0	B ₅	B_4	B_3	B_2	B_1	B ₀	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

(a) Block diagram

(b) ROM truth table

 $A_2 A_1 A_0 B_5 B_4 B_3 B_2$

Mealy Sequential Network

Figure 3-2 Realization of a Mealy Sequential Network

ROM Truth Table

Table 3-1 ROM Truth Table

Q_1	Q_2	Q_3	X	Q_1^+	Q_2^+	Q_3^+	Z
$\overline{0}$	0	0	0	1	0	0	1
0	0	0	1	1	0	1	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	0	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	0	1	1	1
1	1	0	1	0	1	0	0
1	1	1	0	0	1	1	0
1	1	1	1	0	1	1	1

Types of ROMs

- Mask programming
 - Program the ROM in the semiconductor factory
 - Economic for large quantity of the same ROM
- Programmable ROM (PROM)
 - Contain all fuses at the factory
 - Program the ROM by burning out the undesired fuses (irreversible process)
- Erasable PROM (EPROM)
 - Can be restructured to the initial state under a special ultraviolet light for a given period of time
- Electrically erasable PROM (EEPROM or E²PROM)
 - Like the EPROM except being erased with electrical signals

Programmable Logic Devices

- ROM provides full decoding of variables
 - Waste hardware if the functions are given
- For known combinational functions, Programmable Logic Devices (PLD) are often used
 - Programmable read-only memory (PROM)
 - Programmable array logic (PAL)
 - Programmable logic array (PLA)
- For sequential functions, we can use
 - Sequential (simple) programmable logic device (SPLD)
 - Complex programmable logic device (CPLD) _ most popular
 - 🔹 Field programmable gate array (FPGA) 🤟

- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

Fig. 7-13 Basic Configuration of Three PLDs

Figure 3-4 Programmable Logic Array Structure

F₀ = A'B' + AC'

$$F_1 = B + AC'$$

 $F_2 = A'B' + BC'$
 $F_3 = AC + B$

AND-OR Equivalent Structure

Figure 3-8 AND-OR Array Equivalent to Figure 3-5

1-37

Table 3-2 PLA Table for Figure 3-5

Product	1	Inputs		1	Out	puts	
Term	A	В	С	F_0	F_{1}	F_2	F_3
<u>A'B'</u>	0	0		1	0	1	0
AC'	1	-	0	1	1	0	0
В	-	1	_	0	1	0	1
BC'	-	1	0	0	0	1	0
AC	1	_	1	0	0	0	1

Figure 3-9 Multiple-Output Karnaugh Maps

7-39

Multiple-Output Function

- Minimize each function separately
 - 8 product terms

$$F_1 = bd + b'c + ab'$$

$$F_2 = c + a'bd$$

$$F_3 = bc + ab'c' + abd$$

Table 3-3 Reduced PLA Table

 $F_{1} = a'bd + abd + ab'c' + b'c$ $F_{2} = a'bd + b'c + bc$ $F_{3} = abd + ab'c' + bc$

Figure 3-10 PLA Realization of Equations (3-4)

- Each row represents a term
- More than one rows may be selected by each input combination
- Selected rows are Ored
- ROM
 - Each row represents a minterm
 - Exactly one row is selected
 - Output is the bit pattern stored in each row

Programmable Logic Array

- PLA does not provide full decoding of the variables
 - Only generate the terms you need
- The decoder is replaced by an array of AND gates that can be programmed

	•						
	Inputs				Outj (T)	outs (C)	
	Product Term	А	В	С	F ₁	F_2	C
AB'	1	1	0	-	1	-	•
AC	2	1	-	1	1	1	
BC	3	-	1	1	-	1	
A'BC'	4	0	1	0	1	-	Fig. 7

F1 = AB' + AC + A'BC'F2 = (AC + BC)'

Implementation with PLA

A

- Example 7-2: implement the two functions with PLA $F_1(A, B, C) = \sum (0, 1, 2, 4)$ $F_2(A, B, C) = \sum (0, 5, 6, 7)$
- Goal: minimize the number of *distinct* product terms between two functions

		PLA programming table						
						Outj	outs	
		Produc		put		(C)	(T)	
		term	A	B	С	F_1	F_2	
A	В	1	1	1	_	1	1	
AC		2	1	_	1	1	1	
B	С	3	_	1	1	1	_	
A	'B'C'	4	0	0	0	_	1	
	BC		I	3				
_	0 0	01	11	1	10			
$egin{array}{c} A \\ 0 \end{array}$	1	0	0		0			

0								
1	0	1	1	1				
C $F_2 = AB + AC + A'B'C'$ $F_2 = (A'C + A'B + AB'C')'$								

Programmable Array Logic (PAL)

- AND array is programmable
 - Not shared
- OR array is fixed
- Less expensive
- Easier to program

Figure 3-12 Combinational PAL Segment

Sequential PAL Segment

Figure 3-13 Segment of a Sequential PAL

Example

Figure 3-14 Logic Diagram for 16R4 PAL

20 V_{CC} AND gate is logic 1 when there are no connections to it -19 I/O₈ Z _____18_I/O 7 $Z'=XQ_3'+X'Q_3$ X I2 3 -**1**70₆ $I_3[4]$ Q_2 1605 I4 5 - C **15**04 $D_3 = Q_1 Q_2 Q_3 + X' Q_1 Q_3' +$ DQ 15 6 L $XQ_1'Q_2'$ DQ I6 7 - D -13 I/O₂ 17 8 12 I/O 1 <11 OE I₈ 9 - C

- 8 dedicated inputs
- 4 I/O ports
- 4 D FFs with inverting tristate buffers
 - Can be fed back to AND array
- AND array with 16 input variables
- Each OR gate is fed from 8 AND gates

Programmable Array Logic

- PAL has a fixed OR array and a programmable AND array
 - Easier to program but not as flexible as PLA
- Each input has a bufferinverter gate
- One of the outputs is fed back as two inputs of the AND gates
- Unlike PLA, a product term cannot be shared among gates
 - Each function can be simplified by itself without common terms

Implementation with PAL

 $w = \sum(2,12,13) \qquad x = \sum(7,8,9,10,11,12,13,14,15) \\ y = \sum(0,2,3,4,5,6,7,8,10,11,15) \qquad z = \sum(1,2,8,12,13)$

Product	AND Inputs					
Term	Α	В	С	D	W	Outputs
1	1	1	0	-	-	w = ABC'
2	0	0	1	0	-	+ A'B'CD'
3	-	-	-	-	-	
4	1	-	-	-	-	x = A
5	-	1	1	1	-	+ BCD
6	-	-	-	-	-	
7	0	1	-	-	-	y = A'B
8	-	-	1	1	-	+ CD
9	-	0	-	0	-	+ B'D'
10	-	-	-	-	1	Z = W
11	1	-	0	0	-	+ AC'D'
12	0	0	0	1	-	+ A'B'C'D

- Introduction
- Random-Access Memory
- Memory Decoding
- Error Detection and Correction
- Read-Only Memory
- Combinational Programmable Devices
- Sequential Programmable Devices

The most simple sequential PLD = PLA (PAL) + Flip-Flops

 The mostly used configuration for SPLD is constructed with 8 to 10 macrocells as shown right

7-56

12 dedicated inputs, 10 Input/Output

- 10 OR gates
 - 8 to 16 AND gates
 - Each OR drives an output logic macrocell
- 10 D FFs
 - Common clock
 - asynchronous reset (AR)
 - Synchronous preset (SP)

Figure 3-16 Output Macrocell

Output Cell Configuration 2 Output Select ĄR I/O_n MUX DQ 0 CK-Q S_0 S SP 0 MUX Sı

(b) Paths with $S_1 = S_0 = 1$

Complex PLD

- Complex digital systems often require the connection of several devices to produce the complex specification
 - More economical to use a complex PLD (CPLD)
- CPLD is a collection of individual PLDs on a single IC with programmable interconnection structure

Field Programmable Gate Array

- Gate array: a VLSI circuit with some pre-fabricated gates repeated thousands of times
 - Designers have to provide the desired interconnection patterns to the manufacturer (factory)
- A field programmable gate array (FPGA) is a VLSI circuit that can be programmed in the user's location
 - Easier to use and modify
 - Getting popular for fast and reusable prototyping
- There are various implementations for FPGA
 - More introductions are adopted from "Logic and Computer Design Fundamentals", 2nd Edition Updated, by M. Morris Mano and Charles R. Kime, Prentice-Hall, 2001

FPGA Structure (Altera)

Fig. 6-28 Altera[®] MAX 7000[™] Structure (Reprinted with Permission of Altera Corporation,© Altera Corp., 1991)

Xilinx XC3020

- 64 Configurable logic blocks (CLBs)
- 64 input-output interface blocks
- Interconnection programmed by storing data in internal configurable memory cells
- Each CLB with combinational logic and 2 D FFs
- Programmed logic functions and interconnections are retained until power is off

Figure 6-2 Configuration Memory Cell

Each memory is selected in turn

Each connection point has an associated memory cell

Store the Programming Info.

- SRAM technology is used
 - M = 1-bit SRAM
 - Loaded from the PROM after power on
- Store control values
 - Control pass transistor
 - Control multiplexer
- Store logic functions
 - Store the value of each minterm in the truth table

Xilinx FPGA Routing

- Fast direct interconnect
 - Adjacent CLBs
- General purpose interconnect
 - CLB CLB or CLB IOB
 - Through switch matrix
- Long lines
 - Across whole chip
 - High fan-out, low skew
 - Suitable for global signals (CLK) and buses
 - 2 tri-states per CLB for busses

Figure 6-10

Xilinx Switch Matrix

- Six pass transistors to control each switch node
- The two lines at point 1 are joined together
- At point 2, two distinct signal paths pass through one switch node

Configurable Logic Block (CLB)

- Combinational logic via lookup table
 - Any function(s) of available inputs
- Output registered and/or combinational

Simplified CLB Structure

7-75

I/O Block (IOB)

- Periphery of identical I/O blocks
 - Input, output, or bidirectional
 - Registered, latched, or combinational
 - Three-state output
 - Programmable output slew rate

Input/Output Mode of an IOB

- Input
 - 3-state control places the output buffer into high impedance
 - Direct in and/or registered in
- Output
 - 3-state driver should be enabled by TS signal
 - Direct output or registered output

Design with FPGA

- Using HDL, schematic editor, SM chart or FSM diagram to capture the design
- Simulate and debug the design
- Work out detail logic and feed the logic into CLBs and IOBs
 - Completed by a CAD tool
- Generate bit pattern for programming the FPGA and download into the internal configurable memory cells
- Test the operations

- Advantages: Fast and reusable prototyping
 - Can be reprogrammed and reused
 - Implementation time is very short
- Disadvantages: Expensive and high volume

Download to a FPGA Demo Board

HDL Modeling for Memory

- Modeling ROM and combinational PLDs
 - Similar to modeling a combinational code converter
- Modeling RAM
 - Use memory array declaration in Verilog
 ex: reg [3:0] MY_MEM [0:63]; // 64 4-bit registers
 MY_MEM[0] ← 4-bit variable
 - Can load memory by using a system task
 ex: \$readmemb("mem_content", MY_MEM, 0, 63);
 - If synthesized, only SRAM (array of registers) will be generated
 - Use memory compiler or pre-designed layout instead