Memory and
Programmable Logic

7-1

Outline

Introduction

Random-Access Memory

Memory Decoding

Error Detection and Correction
Read-Only Memory
Programmable Devices
Sequential Programmable Devices

7-2

Mass Memory Elements

= Memory is a collection of binary cells together
with associated circuits needed to transfer
iInformation to or from any desired location

l n data input lines

k address lines —— 3w
Read ——

Write ——

Memory unit
2k words
n bit per word

i n data output lines

= Two primary categories of memory:
= Random access memory (RAM)
= Read only memory (ROM)

7-3

Programmable Logic Device

= The binary information within the device can be
specified in some fashion and then embedded
within the hardware

= Most of them are programmed by breaking the fuses
of unnecessary connections

= Four kinds of PLD are introduced
= Read-only memory (ROM)
= Programmable logic array (PLA)
= Programmable array logic (PAL)
= Field-programmable gate array (FPGA)

7-4

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction

= Read-Only Memory

= Combinational Programmable Devices
= Sequential Programmable Devices

7-5

= A word Is the basic unit that
moves in and out of memory
= The length of a word is often
multiples of a byte (=8 bits)
= Memory units are specified
by its number of words
and the number of bits In
each word
« Ex: 1024(words) x 16(bits)

= Each word is assigned a
particular address, starting
fromOupto2<-1

(k = number of address lines)

Random Access Memory

Memory address

Binary decimal
0000000000 0
0000000001 1
0000000010 2
1111111101 1021
1111111110 1022
1111111111 1023

Memory contest
1011010101011101
1010101110001001

0000110101000110

1001110100010100
0000110100011110

1101111000100101

Fig. 7-3 Content of a 1024 X 16 Memory

7-6

Write and Read Operations

= Write to RAM

= Apply the binary address of the desired word
to the address lines

= Apply the data bits that must be stored In
memory to the data input lines

= Activate the write control

= Read from RAM

= Apply the binary address of the desired word
to the address lines

= Activate the read control

-7

CPU clock = 50 MHz
= cycle time = 20 ns

Memory cycle time = 50
ns
= The time required to
complete a write
operation
Memory access time
= The time required to read
it
The control signals
must stay active for at
least 50 ns
= 3 CPU cycles are required

Clock

Memory
address

Memory
enable

Read/
Write

Data
input

Clock

Memory
address

Memory
enable

Read/
Write

Data
output

Timing Waveforms

<«— 20nsec —

T1 T2 T3 T1
X Address valid p
_J (N
_\ /7
3< Data valid >C

(a) Write cycle
50 nsec

T1 T2 T3 T1
:>< Address valid >C
_ [

><Data valid >C

(b) Read cycle 7-8

Types of Memories

= Access mode:

= Random access: any locations can be accessed in any order

= Sequential access: accessed only when the requested word
has been reached (ex: hard disk)

= Operating mode:

= Static RAM (SRAM)

= Dynamic RAM (DRAM)
= Volatile mode:

= Volatile memory: lose stored information when power is
turned off (ex: RAM)

= Non-volatile memory: retain its storage after removal of
power (ex: flash, ROM, hard-disk, ...)

7-9

SRAM vs. DRAM

= Static RAM: = Dynamic RAM:

= Use internal latch to store = Use a capacitor to store the
the binary information binary information

« Stored information remains = Need periodically refreshing
valid as long as power is on to hold the stored info.

= Shorter read and write cycles = Longer read and write cycles

« Larger cell area and power =« Smaller cell area and power
consumption consumption

7-10

Memory R/W Operations

module memory (Enable,ReadWrite,Address,Dataln,DataOut);
input Enable,ReadWrite;
input [3:0] Dataln;
input [5:0] Address;
output [3:0] DataOut;
reg [3:0] DataOut;

reg [3:0] Mem [0:63]; /164 x 4 memory
always @ (Enable or ReadWrite)
if (Enable)

If (ReadWrite)
DataOut = Mem[Address]; //Read

else
Mem[Address] = Dataln; //Write
else DataOut = 4'bz; //High impedance state
endmodule

7-11

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction

= Read-Only Memory

= Combinational Programmable Devices
= Sequential Programmable Devices

7-12

Memory Construction

Input data
Word 0 } ! } }
> BC|> ¢> BC[> ¢> BCi> ¢> BC >
3 3 3)
Select Address— : : :
inputs | Word 1 Y Y Y v
2 X 4 > BC P> ¢> BC > > BC > > BC >
decoder f f f *
Input—s~ BC —— Output . * .
Word 2
Y ¥ Y ¥
T > BC > ¢> BC> &> BC—> ¢> BC >
Read/Write Memory |y 3 } ! !
Word 3 7 7 7)
‘> BC|> > BC[>{ > BCi> > BC >
A SRAM Cell ,
Read/Write i f i *
ST AR
' Large memory Output data

} Output will requi re Fig. 7-6 Diagram of a 4 X 4 RAM
large decoder

Input I

A UQ

Read/Write
(a) Logic diagram 7-13

Address decoders are often
divided into two parts

= A two-dimensional scheme

The total num
decoders can

per of gates In
pe reduced

Can arrange t

memory cells to a

square shape

EX: 10-bit address
404 = 0110010100
X = 01100 (first five)
Y = 10100 (last five)

Coincident Decoding

Y

5 X 32 decoder

.20 ..

31

he

X 5X32

decoder]

31

~ binary address

01100 10100

——— ——

X Y

Fig. 7-7 Two-Dimensional Decoding Structure for a 1K-Word Memory

7-14

Address Multiplexing

= Memory address lines often
occupy too much 1I/0 pads o

= 64K = 16 lines e
= 256M = 28 lines)

d 8 X 256

s Share the address lines of decoder
X and Y domains s
= Reduce the number of lines l 1
to a half
. . : 8-bit 8-bit L gxase | 256x256 _
[] An eXtra reg|Ster IS reqU”'ed address regi)s‘iver decoder cI:ﬁI:ror?; «— Read/Write
for both domain to store the
address
= Two steps to send address Data Data

in out

= RAS=0: send row address
= CAS=0: send column address

Fig. 7-8 Address Multiplexing for a 64K DRAM

7-15

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction

= Read-Only Memory

= Combinational Programmable Devices
= Sequential Programmable Devices

7-16

Error Detection & Correction

Memory arrays are often very huge
= May cause occasional errors in data access

Reliability of memory can be improved by
employing error-detecting and correcting codes

Error-detecting code: only check for the existence
of errors
= Most common scheme is the parity bit

Error-correcting code: check the existence and
locations of errors

= Use multiple parity check bits to generate a syndrome
that can indicate the erroneous bits

= Complement the erroneous bits can correct the errors
7-17

Hamming Code (1/2)

= K parity bits are added to an n-bit data word

= The positions numbered as a power of 2 are
reserved for the parity bits
= EX: original data is 11000100 (8-bit)
b Bitposition: 1 2 3456 7 8 9101112
P, P,1P,100P,01 0 O

= P1 = XOR of bits (3,5,7,9,11) =0

P2 = XOR of bits (3,6,7,10,11) =0

P4 = XOR of bits (5,6,7,12) = 1

P8 = XOR of bits (9,10,11,12) =1
= The composite word i1s 001110010100 (12-bit)

7-18

Hamming Code (2/2)

= When the 12 bits are read from memory, the parity
IS checked over the same combination of bits
iIncluding the parity bit
= C1 = XOR of bits (1,3,5,7,9,11)
C2 = XOR of bits (2,3,6,7,10,11)
C4 = XOR of bits (4,5,6,7,12)
C8 = XOR of bits (8,9,10,11,12)
= (001110010100) - C = C,C,C,C, = 0000 : no error
(101110010100) - C = C,C,C,C, = 0001 : bit 1 error

(001100010100) = C = C,C,C,C, = 0101 : hit 5 error

viewed as a binary number 7.19

General Rules of Hamming Code

= The number of parity bits: Cﬁg;“kbg{t;jfk Diﬁ‘;‘%?tsfn
= The syndrome C with k bits can 3 2-4
represent 2k — 1 error locations 4 5-11
(0 indicates no error) 2 gé?
s 2X—1=n+k > 2k—-1-k=n 7 58-120

= The members of each parity bit:

= C1(P1): have a “1” In bit 1 of their location numbers
1(0001), 3(0011), 5(0101), 7(0111), 9(1001), ..

= C2(P2): have a “1” In bit 2 of their location numbers
2(0010), 3(0011), 6(0110), 7(0111), 10(2010), ..

= C: with parity bit; P: without parity bit itself

7-20

Extension of Hamming Code

= Original Hamming code can detect and correct
only a single error
= Multiple errors are not detected

= Add an extra bit as the parity of total coded word
= Ex: 001110010100P,; (P;5=XOR of bits 1 to 12)
= Still single-error correction but double-error detection

s Four cases can occur:
= |If C=0 and P=0, no error occurred
= If C#£ 0 and P=1, single error occurred (can be fixed)
= |f C#£ 0 and P=0, double error occurred (cannot be fixed)
= |f C=0 and P=1, an error occurred in the P 5 bit

7-21

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction

= Read-Only Memory

= Combinational Programmable Devices
= Sequential Programmable Devices

7-22

Basic ROM Structure

Figure 3-1 Basic ROM Structure

RS E RS RS S S |
I |
| i |

(+—> > |
-’—.P >
ninput) | Decoder Memory Array :
lines o ec0 21 words X m bits |
(T |
L
| - |
| |
| |
L - - - AR % P - - % - -)
ROM T~

m output lines 7.93

Read Only Memory

= A memory device that can permanently keep binary data
= Even when power is turned off and on again

= For a2k x n ROM,

It consists of

= k inputs (address line) '

LR S T O B R |

and n outputs (data)

I 5X32
2 decoder

= 2K words of n-bit each & "

= Ak x 2k decoder 4 -
(generate all minterms) y

= n OR gates with 2¥ inputs

= Initially, all inputs of OR gates wvwvwva
and all outputs of the decoder 4 A A A A A A A

Fig.7-10 Internal Logic of a 32 X 8 ROM

are fully connected
7-24

Programming the ROM

= Each intersection (crosspoint) in the ROM is often
Implemented with a fuse

= Blow out 0
unnecessary 1 X
connections h 3
accordingto - docoder
the truth table j 2 |
= 1" means 4 30
connected 31
(marked as X)
= “0” means unconnected vivvvvv
= Cannot recovered after A7 As As Ay Ay Ay AL Ag

p rog ramm ed Fig. 7-11 Programming the ROM According to Table 7-3

Design Comb. Circuit with ROM

Inputs Outputs

>
In5
> |
I=
>
S
o
Ul
o
Ny
o
w

= Derive the truth B, B, B, Decimal
)) O 0 O O 0O O O o o 0
table of the circuit o 01 0 0 0 0 o0 1 .
= Determine minimum 8 1 2 8 8 (1> é 8 c1> g
SIZ€ Of ROM 1 0 O O 1 0 O 0 o0 16
= Program the ROM t o1 o110 0l 25
1 1 O 1 0 0O 1 O O 36
1 1 1 1 1 0 0 0 1 49
3 select lines By Ay A} A9 Bs By By B)
= 8 minterms 0—— By 00 0 0 0 0 O
o 0 1 0 0 0 0
Ao | By g o1 0 0 0 0 1
— @/ B, | wor 01 1 0 0 1 0
A 1 0 0 0 1 0 0
1 >< O B4 length 1 0 1.0 1 1 0
Ag = 1 1 01 0 0 1
Bs 1 1. 1.1 1 0 0

(a) Block diagram (b) ROM truth table 7-26

Mealy Sequential Network

Figure 3-2 Realization of a Mealy Sequential Network

X > > 7
Q
> Dl Ql
—3>CK
~ ROM
" 16 Words Qi"
> X 4 Bits D2 [Q
> ¢—3>CK
Q
» D3 Q
—>CK
Clock

7-27

ROM Truth Table

Table 3-1 ROM Truth Table

03

9

9

Q)

7-28

Types of ROMs

= Mask programming
= Program the ROM in the semiconductor factory
= Economic for large quantity of the same ROM

= Programmable ROM (PROM)
= Contain all fuses at the factory

= Program the ROM by burning out the undesired fuses
(irreversible process)

= Erasable PROM (EPROM)

= Can be restructured to the initial state under a special ultra-
violet light for a given period of time

= Electrically erasable PROM (EEPROM or E2PROM)

= Like the EPROM except being erased with electrical signals
7-29

Programmable Logic Devices

= ROM provides full decoding of variables
= Waste hardware if the functions are given

= For known combinational functions, Programmable
Logic Devices (PLD) are often used
= Programmable read-only memory (PROM)
= Programmable array logic (PAL)
= Programmable logic array (PLA)

= For sequential functions, we can use
= Sequential (simple) programmable logic device (SPLD)
= Complex programmable logic device (CPLD) most popular
= Field programmable gate array (FPGA)

7-30

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction
= Read-Only Memory

= Combinational Programmable
Devices

= Sequential Programmable Devices

7-31

Inputs

Inputs

Inputs

Fixed
AND array
(decoder)

Configurations of Three PLDs

programmable
OR array

——> Outputs

(a) Programmable read-only memory (PROM)

programmable
AND array

Fixed
OR array

— Outputs

(b) Programmable array logic (PAL)

programmable
AND array

programmable
OR array

——> Outputs

(c) Programmable logic array (PLA)

Fig. 7-13 Basic Configuration of Three PLDs

7-32

PLA Structure

Figure 3-4 Programmable Logic Array Structure

r--—-—=--="-=-"-"-"--"=-=-"=-=-=- == ’
| PLA
| » |
|
] > > |
——» >
n input AN AND . OR |
lines - Array . Array l
. . |
" } * '
I P
. I
I |
I } l— $ I
| _ _ _ _ _ _ — — — — Tttt L 4
k word - v
lines m output lines

7-33

PLAS

= The decoder in ROM is replaced by an
AND array

= More than 1 product terms can be selected

= The OR array Ors together the product
terms to form the outputs

7-34

PLA

=, = AB’ + AC
= =B + AC’
-, = AB’ + BC
=, = AC + B

7-35

Inputs

A

Ve

y

B

Y

N

y

“ Circult Structure

Figure 3-5 PLA with 3 Inputs, 5 Product Terms, and 4 Outputs

WY kY eV %% %2
YT R o AP
YT T P, AA
+V-W——= _”; -BC'- _;;—Ll_ ﬁ
v = e | A
+VWV\"'E'_L = "i = = ;__LI_

' " Vv va v

7-36

AND-OR Equivalent Structure

Figure 3-8 AND-OR Array Equivalent to Figure 3-5

A B %
=A'B +AC f““‘“‘“‘“j}mr__BRé"_y__
| I
. =B+AC | uli=
|
A'B’ + BC : jfl
— [|
2 i D=
3:AC+B | — N\ | ac !
' —

(-37

PLA Table

Table 3-2 PLA Table for Figure 3-5

Product Inputs Outputs
Term A B

A'B' 0 0
AC' 1
B
BC'
AC 1 = 1

®
o

1

1
1

)

o |
SRR
SO = = |y
S =0 o=y
_0 = O O

7-38

Multiple-Output Optimization

Figure 3-9 Multiple-Output Karnaugh Maps

abd 0\ ab'c'

ab ab ab
cd 00 01 11 A0/ «cd 00 01 11 10 \cd 00 01 11 \10
00 1) 00 00 0
1

/ll
01 f1_._1‘q 1 oL (M o1 [Il
1|7 &lﬁj g IRENITI) T n
o] J) NG/ o]l [o [l]y

o
—\
(=

,.._
[-k
—h

7-39

Multiple-Output Function

= Minimize each function separately
= 8 product terms

-, = bd + b’c + ab’

-, = ¢ + a'bd

-, = bc + ab’c’ + abd

7-40

Table 3-3 Reduced PLA Table

abcd|F F, F
01-111 1 0
11-111 0 1
100-11 0 1
-01-J1 10
-11-101 1

Reduced PLA Table

F = a'bd + abd + ab'c' + b'c
F,= a'bd + b'c + bc

F,= abd + ab'c' + bc

7-41

PLA Realization

Figure 3-10 PLA Realization of Equations (3-4)

Inputs

—

a

b C d

1

L Word

Lines

J1 BB

Outputs

7-42

PLA vs ROM

% PLA
= Each row represents a term

= More than one rows may be selected by
each input combination

= Selected rows are Ored

= ROM
= Each row represents a minterm
= Exactly one row is selected
= Output Is the bit pattern stored in each row

7-43

Programmable Logic Array

= PLA does not provide full decoding RS L SR G SR
of the variables 2 = (Gl A

= Only generate the terms a5
you need B[S Generate complemented
_ outputs (if required)
= The decoder is replaced c—s— A
by an array of AND gates D o o
that can be programmed - e
E BC
Outputs —
Inputs (T) (©) | 4 A'BC
ProductTerm A B C F, F, cormas K?
AB’ 1 1 0 - 1 - W A
AC 2 1 - 1 1 1
BC 3 - 1 1 _ 1 F,
Ai BC! 4 O 1 O 1 _ Fig. 7-14 PLA with 3 Inputs, 4 Product Terms, and 2 Outputs

7-44

Implementation with PLA

PLA programming table

= Example 7-2: implement the two

_ _ Outputs
functions with PLA Product Inputs (C) (T)
F.(A, B, C) = & (0, 1, 2, 4) te'em A BC g p
o ARB _
F,(A, B, C)=4& (0,5, 6, 7) oo oo
. . . AC 2 1 — 1 1 1
s Goal: minimize the number of
. , BC 3 -1 1 1 -
distinct product terms between
two functions Ac 4 000 -
BC B BC B
00 01 11 10 00 01 11 10
A A
1 1 0 1 1 0] 0
0 0
Aql 1 0 0 0 A1l 0 1 1 1
C C
Fil=A'B"+A'C'+ B'C Fp=AB + AC+ A'B'C

Fi=(AB+AC+ BC) Fy=(A'C+A'B+ AB'C'Y 7-45

Programmable Array Logic (PAL)

= AND array Is programmable
= Not shared

= OR array is fixed
= Less expensive
= Easier to program

7-46

Combinational PAL Segment

Figure 3-12 Combinational PAL Segment

I [r
~ 1
Y,
Y r—
' “Fy Output
~ Fs
Y, —
12 — T\ F8

_E Non-Inverted Qutput
[nverted Output

Programming PAL

U

)_\ 1 D+I11'D
L/

(b) Programmed
A BC

o |
i me = e —ABC

7-48

Sequen

tial PAL Segment

Figure 3-13 Segment of a Sequential PAL

AA BB QQ Clock EN

Output
Q ﬁ Buffer

Q

v

Programmable AND Array

| L] ,
X ¥ BD DQ Q
b2

[nverting
| J-State
p:

Q=D=A'BQ'+AB’'Q

7-49

Example

Figure 3-14 Logic Diagram for 16R4 PAL

ok [TH> [20]vee
0 34 78 1112 1516 1920 2324 2728 31

AND gate islogic 1 when there
@e: gre No connections to it

2]
=
o
=

Z'=XQ3; +X"Q;

Y
5]
g

=) un-% [

" D3=0Q,Q,Q5+ X Q,Q5' +

g
VTV TV Ty T

19
56HE
40
E g 03 XQ ’ Q ’
g 1 X2
1613
4%
{3]vo,
55
<
5 M)
{12]vo,
63 .
BOHS 53— LoH{11]oE
GND 4 112 1516 1920 2324 2728 31

7-50

16R4 PAL

= 8 dedicated Iinputs
= 4 1/0 ports

= 4 D FFs with inverting tristate buffers
= Can be fed back to AND array

= AND array with 16 input variables
= Each OR gate Is fed from 8 AND gates

7-51

Programmable Array Logic

AND pates inputs
Product 12345678910

= PAL has a fixed OR array and “" !
a programmable AND array : d
= Easier to program but not as a—
flexible as PLA 4
« Each input has a buffer- 5
Inverter gate i3

= One of the outputs is fed back
as two inputs of the AND gates

= Unlike PLA, a product term N
cannot be shared among gates 1

= Each function can be simplified by -
itself without common terms

Iz

12345678910
7-52

Implementation with PAL

AND gates inputs
Praduct AABRCCODD ww

w=34(2,12,13) x=4(7,8,9,10,11,12,13,14,15)| “= { ||| —
y=4a(0,2,3,4,5,6,7,8,10,11,15) z=4(1,2,8,12,13) > é}gw
3 [
P1r_oduct . ABND (I:npués . St Jp— | ,
erm utputs , —
T |1 1 0 - -|w=ABC ; 5% x
2 o 0 1 0 - + A'B'CD’ 6 B
3 - - - - - B3 All fuses intact
(always =)
4 1 - - - - |x=A - B
5 -1 1 1 - + BCD s ﬁlr\ y
6 - 9 B
7 0 1 - - - |y=AB c= -~
8 |- - 1 1 - 40D : =1
9 |- 0 - 0 - +B'D’ N L z
10 - - - - 1]|lz=w b3 .
11 (1 - 0 0 - + ACD’ + Fase blows
12 O O O 1 - + A’B’C’D AARFRECODDwe 253

Outline

Introduction

= Random-Access Memory

= Memory Decoding

= Error Detection and Correction

= Read-Only Memory

= Combinational Programmable Devices
= Sequential Programmable Devices

7-54

Sequential PLD

= The most simple sequential PLD = PLA (PAL) + Flip-Flops

Inputs :

-

AND-OR array
(PAL or PLA)

-

Flip-flops

= The mostly used

configuration for SPLD

IS constructed with
8 to 10 macrocells
as shown right

CLK OE

Outputs

JOUUY

)
{l\ D 4[L
,JL__/

.
e

7-55

22V10

Figure 3-15 Block Diagram for 22V10

I

CLK!I0
A '
Programmable AND Array
(44 x 132)
|
8 | 10 ! 12 14 ! 16 16 14 ! 12 10 8
- - L L
Reset
#1 Output Output Output [T} Output Output Output Output 11 Output
> Logic > Logic > LDgiC __> Logic > Logic > LDgiC > Logic > Lotgpic ?.l(l)tgpll(l:[Eggl’gt
Macro Macro Macro Macro Macro Macro Macro [| © Macro P Macro P> Macro Preset
Cell Cell Cell |4+ Cell Cell Cell Cell 1] Cell Cell Cell |
A A A A A
10 g /0 /0 o /0 4 /0 4 /0 4 o ¢ /0 1o g /O g

22V10

= 12 dedicated inputs, 10 Input/Output

= 10 OR gates
= 8 to 16 AND gates
= Each OR drives an output logic macrocell

= 10 D FFs
= Common clock
= asynchronous reset (AR)
= Synchronous preset (SP)

7-57

Figure 3-1

6 Output Macrocell

_Output Macrocell

‘ MUX | ‘_>O .
SR S — &

Output
Select

/0y,

DQ———™0
CKP QF——+*I
| B
SP :

E—

programmable

I
|
|
|
interconnects |
I
I
I

(a) Paths with S, =S, =0

-58

Output Cell Configuration

|
e > 2 |
|
= = - Output |
3 Solkct ¥ 1Oy
J, MUX = |:E5_° S

e e e e - e . e S . e o E—— —

(b) Paths with S, = S, =1

Complex PLD

= Complex digital systems often require the connection
of several devices to produce the complex specification
= More economical to use a complex PLD (CPLD)

= CPLD is a collection of individual PLDs on a single IC
with programmable interconnection structure

PLD PLD PLD PLD

A 1 A

IO , v , , 17

Y

Programmable switch matrix]

A A b A

block block

L Y f L

PLD PLD PLD PLD

7-60

Field Programmable Gate Array

= Gate array: a VLSI circuit with some pre-fabricated
gates repeated thousands of times
= Designers have to provide the desired interconnection

patterns to the manufacturer (factory)

= A field programmable gate array (FPGA) is a VLSI
circuit that can be programmed in the user’s location
= Easier to use and modify
= Getting popular for fast and reusable prototyping

= [here are various implementations for FPGA

= More introductions are adopted from “Logic and Computer
Design Fundamentals”, 2nd Edition Updated, by M. Morris

Mano and Charles R. Kime, Prentice-Hall, 2001
7-61

FPGA Structure (Altera)

IO contral block

I 1 : T 1

Logic Logic Logic Logic
- & arra a arra — o
Il blo hlr;ﬂ b
.,I FProgrammable imterconnect array |...
Logic Logic Logic Logic
| 2 arra ﬂﬁ arra .
Il blo bl b
1O 1C
conmtrol conmtrol
b Logic Logic Logic Logic K
-— a2 arra ﬂﬁ arra —i
Il blo bl b
{ ! : 1
Logic Logic Logic Logic
bl bloc block bloc
. . + +

O contral block

Fig. 6-28 Altera® MAX 7000™ Structure (Reprinted with Permission of
Altera Corporation,© Altera Corp., 1991)

7-62

FPGA Structure (Xilinx)

Fig. 6-29:
Xilinx® XC4000™ FPGA Structure
(Adapted with Permission of Xilinx, Inc.)

- Configurable logic block {CLB)

- Input’Cutput Block (|OB)

- Switch matrix

e

l"\—Luﬂg lines

_Single length
¥

7-63

Xilinx XC3020

= 64 Configurable logic blocks (CLBSs)
= 64 Input-output interface blocks

= Interconnection programmed by storing
data In internal configurable memory
cells

= Each CLB with combinational logic and 2
D FFs

= Programmed logic functions and

Interconnections are retained until power
IS off

7-64

Configuration Memory Cell

Figure 6-2 Configuration Memory Cell

CONFIGURATION
CONTROL

g
a
-
m
—
Ql

Each memory is selected in turn

Each connection point has an associated memory
cell

7-65

Xilinx 3000 Series

Figure 6-3 Xilinx 3000 Series Logic Cell

DATA IN DI
0
MUX D Q —e
N i
DIN
— G |_ —b
RD
QX X
2 F
B
C COMBINATORIAL
VAleg[(_;ég D FUNCTION CLB OUTPUTS
—E G
G
QY ¥
N . QY
DIN
G — o
T™M[M] MUX D Q
|
i D
ENABLE CLOCK ——EC \
RD
1 (ENABLE)
cLock —&
DIRECT —RD
RESET
0 (INHIBIT)
(GLOBAL RESET)

7-66

CLB

= 5 logic Inputs

= Data input (DI)

= Clock (K)

= Clock enable (EC)
= Direct reset (RD)
= 2 outputs (X,Y)

7-67

Store the Programming Info.

= SRAM technology is M
used G|
= Loaded from the (a) Pass transistor control M
PROM after power on M
A —
= Store control values MUX M
. B— —F({A, B, C)
= Control pass transistor —0 M
. | C—
= Control multiplexer — M
5
= Store logic functions A
= Store the value of M M
each minterm in the | | .
truth table (b) Multiplexer contral (c) Look up table implementation

7-68

Xilinx FPGA Routing

Fast direct interconnect
= Adjacent CLBs

General purpose
Interconnect

« CLB-CLBor CLB-10B
=« Through switch matrix

Long lines
= Across whole chip
=« High fan-out, low skew

= Suitable for global signals
(CLK) and buses

= 2 tri-states per CLB for
busses

CLB

Switch
Matrix

CLB

— Switch
———— Matrix ==

v v

CLB

7-69

General Interconnect

Figure 6-9
I | B I
—CLB— —CLB —CLB—
_]] - — -
Switch
Miftrix Matrix
N I B B I
—CLB —CLB CLB[—

I
[
I
I
|

7-70

Direct Interconnect

Figure 6-10

] | g
—CLB- —CLB|- —CLBH-
1_r | I__ 1_r
Switch Switch F———
Matrix Matrix [

1 1 e
—CLBF- —CLB — CLB -
— s 4
Switch Switch ———
Matrix Matrix [

| i |
—CLB - —CLB - —CLBH
o — 4

7-71

Long Lines

Figure 6-11 Vertical and Horizontal Long Lines

L

3 =

CLB —CLB

oL

|

|

Switch
Matrix r

£
P
Sy

Xilinx Switch Matrix

= SiIX pass transistors to control each switch node
= The two lines at point 1 are joined together

= At point 2, two distinct signal paths pass through one
switch node

(a) Switch Matrix Transistors (b} Examples of Connections

Fig. 6-31 Example of Xilinx® Switch Matrix (Adapted

with Permission of Xilinx®, Inc.) s

= Combinational logic via lookup table
= Any function(s) of available inputs

= Output registered and/or combinational

Inputs

Combinatorial
Logic
Function(s)

—» Flip-

:Elcrps

o

Configurable Logic Block (CLB)

Outputs

7-74

Simplified CLB Structure

H1 DIN &R EC

G1—

Look up Table — |
g7 — forG'
-
G — MuX
G4 — SR
16 bitz of SRAM +—DIN Control
b PRE
o — ¥Q
-
HS -
" ' " CLA
—— Lookup Table
forH' e MUX
M
8 bits of SRAM ’ —
g0
MUX 1r SL
o M
H v
g
Fl—
Look up Tabla L M
F2 — forF' o
F3 — MLX
— SR
18 bits of SRAM ——|DIN Control
= PRE
o — X0
o
HE -
" ' " CLA
MUX
M
K [CLOCK) J
MUX |_ 8
1 L
F M
" X
g
M| - SRAM cel L m 7-75

1/0 Block (10B)

= Periphery of identical 1/0 blocks
= |Input, output, or bidirectional
= Registered, latched, or combinational
= Three-state output
= Programmable output slew rate

| -
o T 0B Pad
TS ——»
Bonded to
Clocks——» Package Pin

7-76

Input/Output Mode of an 10B

= Input

= 3-state control places
the output buffer into tree-state 15— - 1
high impedance 0 P

Qutput Data O ——™

= Direct in and/or . CLR

registered in Interior

/O
PIMN

= OUtpUt

[] 3'State d“Ver ShOUId be lnput Data 1 +——
enabled by TS signal
Input Data 2-4——-

= Direct output or CLR
registered output

PRE
D

AN

7-77

Design with FPGA

Using HDL, schematic editor, SM chart or FSM
diagram to capture the design

= Simulate and debug the design

= Work out detalil logic and feed the logic into
CLBs and 10Bs

= Completed by a CAD tool

= Generate bit pattern for programming the
FPGA and download into the internal
configurable memory cells

= Test the operations

7-78

FPGA Design Flow

logic + layout synthesis

|
I
I
|
<3 =R
I
I
= 1 |
- - I o
' C |
| I
| |
| I
| I
. | pariiioning & i I I S
system design I technolomr mapping acement routing I custamizaion
| I
| |
| |
L I

= Advantages: Fast and reusable prototyping
= Can be reprogrammed and reused
= Implementation time is very short

= Disadvantages: Expensive and high volume

7-79

Download to a FPGA Demo Board

~ download cable = =
= q_._._._,_..r""
- I- W __._..__.,_.-l-"'_.:'_rr._._,_ _ D _

; .

; .

programmer & H{|E'I|]l{‘ :
........... ,

Source: CIC training manual 7-80

output display

HDL Modeling for Memory

= Modeling ROM and combinational PLDs
= Similar to modeling a combinational code converter

= Modeling RAM
= Use memory array declaration in Verilog

ex: reg [3:0] MY_MEM [0:63]; // 64 4-bit registers

MY_ MEMI[O] < 4-bit variable

= Can load memory by using a system task

ex: $readmemb(“mem_content”, MY_MEM, 0, 63);

= If synthesized, only SRAM (array of registers) will
be generated

= Use memory compiler or pre-designed layout instead

7-81

