SCR & Triac Snubbing

SCR & Triac Snubbing

Purdue University

ECET 257

Power & RF Electronics
Overview

- High side vs low side switch
- Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- Critical Rate of Rise of Voltage
- Triac
Low Side Switch

Switch closed

\[V_{\text{across } R_{\text{load}}} = 120V \]

Switch opened

\[V_{\text{across } R_{\text{load}}} = 0V \]
\[V_{\text{on bottom of load}} = 120V ! \]
even though load is off
High Side Switch

Switch closed
\[V_{\text{across Rload}} = 120V \]

Switch opened
\[V_{\text{across Rload}} = 0V \]
\[V_{\text{on load}} = 0V \]

Do it this way!
Overview

- High side vs low side switch
- Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- Critical Rate of Rise of Voltage
- Triac
Critical Rate of Rise of Current

\[\frac{di}{dt} \]

I \rightarrow T \rightarrow R \text{ down} \\
\rightarrow I \text{ up} \rightarrow T \text{ up} \\
\rightarrow R \text{ down} \rightarrow I \text{ up} \\
burns out a channel
Critical Rate of Rise of Current - \textbf{Fix}

Inductors oppose ΔI
Critical Rate of Rise of Current - Fix

Inductors oppose ΔI

$$v_L = L \frac{di}{dt}$$
Inductors oppose ΔI

$$v_L = L \frac{di}{dt}$$

$$L = \frac{V_{\text{line peak}}}{\frac{di}{dt} \text{ SCR spec}}$$
Inductors oppose ΔI

$v_L = L \frac{di}{dt}$

$L = \frac{V_{line \ peak}}{\frac{di}{dt} SCR\ spec}$

If load is motor, separate L not needed.
Overview

- High side vs low side switch
- Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- Critical Rate of Rise of Voltage
- Triac
Critical Rate of Rise of Voltage

Parasitic $C_{anode - gate}$

noise on anode coupled to gate

+ noise => + v_{gate} =>

SCR ON

crane fatality
Critical Rate of Rise of Voltage - fix

Capacitors oppose Δv
Capacitors oppose Δv

Ignoring L, given a step at V_{anode}

$$v_c = V_P \left(1 - e^{-\frac{t}{RC}}\right)$$
Critical Rate of Rise of Voltage - fix

Capacitors oppose Δv

Ignoring L, given a step at V_{anode}

$$v_c = V_P \left(1 - e^{-\frac{t}{RC}}\right)$$

$$\frac{dv_c}{dt} = \frac{V_P}{RC} e^{-\frac{t}{RC}}$$
Capacitors oppose Δv

Ignoring L, given a step at V_{anode}

$$v_c = V_P \left(1 - e^{-\frac{t}{RC}} \right)$$

$$\frac{dv_c}{dt} = \frac{V_P}{RC} e^{-\frac{t}{RC}}$$

$$\left. \frac{dv_c}{dt} \right|_{\text{worst}} = \left. \frac{V_P}{RC} \right|_{t=0}$$
Critical Rate of Rise of Voltage - fix

\[\frac{dv_c}{dt} \bigg|_{\text{worst}} = \frac{V_P}{RC} \bigg|_{t=0} \]

\[C = \frac{V_{DRM}}{R_{load} \times \frac{dv}{dt} \text{ SCRspec}} \]
Cap Discharge

During charge, V_C may $= V_{\text{line pk}}$

When SCR fired

R_{SCR} 0.x Ω

C rapidly discharges through SCR

$I_{\text{C discharge}} \sim V_{\text{line pk}} / R_{\text{SCR on}}$

$= 160V / 0.2\Omega = 320A$

$I_{\text{SCR}} = I_{\text{load}} + I_{\text{C discharge}}$

R_S limits $I_{\text{SCR}} < I_{\text{TSM}}$

$R_S > \frac{V_{\text{line pk}}}{I_{\text{TSM}} - I_{\text{load pk}}} \approx \frac{10V_{\text{line pk}}}{I_{\text{TSM}} - I_{\text{load pk}}}$
Rs bypass during charge

C must be directly across SCR during charge to short out spikes

R limits I during discharge

Bypass R with diode

\[I_{\text{diode pk}} = \frac{V_{\text{DRM}}}{X_C} \]
Overview

- High side vs low side switch
- Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- Critical Rate of Rise of Voltage

Triac
Triac Snubbing

Use if $R_S \ll R_{load}$

Purdue University
ECET 257
Power & RF Electronics
Triac Snubbing

Use if $R_s << R_{load}$

Otherwise use two snubbers.