SCR & Triac Snubbing

Overview

- ◆ High side vs low side switch
- ◆ Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- ◆ Critical Rate of Rise of Voltage
- ◆ Triac

Low Side Switch

Switch closed

$$V_{across\ Rload} = 120V$$

Switch opened

$$V_{across\ Rload} = 0V$$
 $V_{on\ bottom\ of\ load} = 120V\ !$

even though load is off

High Side Switch

Switch closed

$$V_{across\ Rload} = 120V$$

Switch opened

$$V_{across Rload} = 0V$$
 $V_{on load} = 0V$

Do it this way!

Overview

- ◆ High side vs low side switch
 - Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- ◆ Critical Rate of Rise of Voltage
- **♦** Triac

Inductors oppose Δ I

Inductors oppose Δ I

$$\mathbf{v}_{\mathrm{L}} = \mathrm{L} \frac{\mathrm{d} \mathbf{i}}{\mathrm{d} \mathbf{t}}$$

Inductors oppose Δ I

$$v_L = L \frac{di}{dt}$$

$$L = \frac{V_{line peak}}{\frac{di}{dt SCR spec}}$$

Inductors oppose Δ I

$$v_L = L \frac{di}{dt}$$

$$L = \frac{V_{line peak}}{\frac{di}{dt SCR spec}}$$

If load is motor, separate L not needed.

Overview

- ◆ High side vs low side switch
- ◆ Critical Rate of Rise of Current
 - problem
 - SCR schematic solution

♦ Triac

Parasitic C_{anode - gate}

noise on anode coupled to gate

$$+ noise => + v_{gate} =>$$

SCR ON

crane fatality

Capacitors oppose Δv

Capacitors oppose Δv

Ignoring L, given a step at V_{anode}

$$v_{c} = V_{P} \left(1 - e^{-\frac{t}{RC}} \right)$$

Capacitors oppose Δv

Ignoring L, given a <u>step</u> at V_{anode}

$$v_{c} = V_{P} \left(1 - e^{-\frac{t}{RC}} \right)$$

$$\frac{dv_c}{dt} = \frac{V_P}{RC}e^{-\frac{t}{RC}}$$

Capacitors oppose Δv

Ignoring L, given a <u>step</u> at V_{anode}

$$v_{c} = V_{P} \left(1 - e^{-\frac{t}{RC}} \right)$$

$$\frac{dv_c}{dt} = \frac{V_P}{RC}e^{-\frac{t}{RC}}$$

$$\frac{dv_{c}}{dt}\big|_{worst} = \frac{V_{P}}{RC}\big|_{t=0}$$

ECET 257

Power & RF Electronics

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{c}}}{\mathrm{d}\mathbf{t}}\big|_{\mathrm{worst}} = \frac{\mathbf{V}_{\mathrm{P}}}{\mathbf{R}\mathbf{C}}\big|_{\mathbf{t}=0}$$

$$C = \frac{V_{DRM}}{R_{load} \times \frac{dv}{dt \text{ SCR spec}}}$$

Cap <u>Discharge</u>

During charge, V_C may = $V_{line\ pk}$ When SCR fired

 $R_{SCR} = 0.x \Omega$

C rapidly discharges through SCR

$$I_{C \text{ discharge}} \sim V_{line \text{ pk}}/R_{SCR \text{ on}}$$

$$= 160 \text{V} / 0.2 \Omega = 320 \text{A}$$

$$I_{SCR} = I_{load} + I_{C discharge}$$

 $R_S limits I_{SCR} < I_{TSM}$

$$R_{\rm s} > \frac{v_{\rm line\ pk}}{I_{\rm TSM} - I_{\rm load\ pk}}$$

ECET 257

$$\approx \frac{10V_{\text{line pk}}}{I_{\text{TSM}} - I_{\text{load pk}}}$$

Power & RF Electronics

Purdue University

R_S bypass during charge

C must be directly across SCR during charge to short out spikes

R limits I during discharge

Bypass R with diode

$$I_{diode\ pk} = V_{DRM} / X_{C}$$

Overview

- ◆ High side vs low side switch
- ◆ Critical Rate of Rise of Current
 - problem
 - SCR schematic solution
- ◆ Critical Rate of Rise of Voltage

Triac

Triac Snubbing

Triac Snubbing

