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Abstract —The difference between two capacitors is measured digitally

using a charge redistribution techrdque incorporating a comparator, MOS

switches, a successive approximation register (SAR), and a dlgital-to-ana-

Iog converter (DAC). The technique is insensitive to comparator offset and

parasitic capacitance, and the effect of MOS switch charge injection is

measured and canceled. Extensive measurements have been made from

test chips fabricated in 3-pm CMOS technology. Detection of percent

dit’fereuces of less than 0.5 percent on 20- 100-fF capacitors has been

successfully demonstrated.

I. INTRODUCTION

~ HE measurement of capacitance difference is im-r portant for integrated sensors. Silicon structures sensi-

tive to shear, acceleration, and pressure are examples of

where a capacitive readout scheme is advantageous [1], [2].

In addition, changes in dielectric permittivity manifest

themselves as a change in capacitance [3].

For integrated sensing structures, the readout capaci-

tance can be on the order of tenths of a picofarad which

complicates the capacitance detection circuitry. One detec-

tion method utilizes an oscillator which drives a capacitive

brridge circuit. A change in capacitance relative to a refer-

ence capacitance produces an output voltage or shift in

frequency which can be detected by an external circuit [4],

[5]. For particular readout circuits, parasitic capacitances

can cause an error in the measurement.

Recently, the advent of switched-capacitor techniques

has led to new and innovative methods of capacitance

detection [6], [7]. However, problems appear that are inher-

ent to all switched-capacitor circuits. MOS switch charge

injection, clock feedthrough, and circuit noise become

major limiting factors in circuit performance.
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Fig. 1. Measurement system block diagram,

This paper describes a digital technique for measuring

capacitance differences. It has its origins in charge redistri-

bution A/D converters, and does not suffer from parasitic

capacitance, op-amp offset, or charge injection problems.

II. THEORY

In 1979, an algorithm was developed that allowed calcu-

lation of ratio errors from a sequence of measurements

based on charge redistribution [8]. This technique was

implemented to study capacitor mismatch errors that cause

linearity errors in charge redistribution A/D converters.

MOS switch charge injection, however, was ignored due to

the large size of the capacitors. Elimination of charge

injection sources is crucial in obtaining higher reso-

lution and smaller errors in these A/D converters. The

self-calibration technique allowed higher resolution by

eliminating errors caused by component mismatch and

charge injection [9]. The technique can be equally applied

to measure capacitance differences and random or con-

trolled sources of charge injection. Since in sensor applica-

tions the sense capacitors may be much smaller than a

picofarad, MOS charge injection causes a large error and

must be canceled. The technique can measure errors due to

capacitive mismatch, comparator offset, and charge injec-

tion and can compensate a system that has these errors. It

is ideal for measuring capacitance differences (as in

pacitive sensors) and reducing inherent circuit errors.

The basic circuit is shown in Fig. 1. It consists of

sense and reference capacitors C~ and C~, respectively,

ca-

the

the
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coupling capacitor Cc, five MOS switches, a voltage com-

parator, a digital-to-analog converter (DAC), a successive

approximation register (SAR), and a memory register with

associated logic capable of signal inversion. The nonideali-

ties of the circuit appear as the offset of the comparator

(VO~) and its finite gain (A), parasitic capacitance to ground

(CP), and switch charge injection (Q~~). To better under-

stand how these nonidealities are taken into account, an

ideal system is first analyzed, then second-order effects are

added later. In the assumption of an ideal circuit, VO.= O,

CP = O, Q~3 = O, A = co, and DAC quantization error is

negligible.

The measurement technique proceeds in two steps. In

step 1, switch S3 is closed so that VX is at ground. Switch

S1 is set to V,,f and switch S2 is set to ground. The DAC

output is also set to ground. The charge at the top node in

this configuration is QI = – V,.f CR. The comparator is

implemented so that when the feedback loop is closed with

switch S3, VX is forced to a virtual ground via the DAC. In

step 2, S3 is opened, then S1 is set to ground and S2 is set

to V,ef. The successive approximation search begins after

this sequence and continues until the SAR reaches its

quantization limit and stops. If the SAR, DAC, and volt-

age comparator are ideal, then the voltage from the DAC

(V~~c) precisely forces the top node vohage (~) to zero.
The charge at the top node is thus Qz = – V,,~C~– V~ACCC.
By charge conservation, QI = Q2 and it follows that

lQ(c R-c~)
vDAC =

cc “
(1)

The output of the DAC produces a voltage proportional to

the capacitance difference of C~ and CR. Appropriate

choices of V&~ and Cc can be made so that the maximum

dynamic range of the DAC can be utilized. The parameter

AC/C can be found by multiplying the numerator and

denominator by CR or C~ and rearranging so that

(2)

where AC is CR – C~ and C is a normalizing capacitance,

typically either CR or C~. Notice that the result is a

product of two ratios: a voltage ratio that can be measured

easily and a capacitance ratio.

III. NONIDEALITIES

Several errors are introduced when the algorithm is

implemented due to component nonidealities. Referring to

Fig. 1, the comparator has an offset V& and a finite gain A

while the switch S3 injects a charge QX2 when opened. A

parasitic capacitance to ground CP exists as well as a DAC

quantization error of + ~ LSB. It is found that the mea-

surement algorithm can be implemented in either a

closed-loop or open-loop topology. They differ only in that

the closed-loop topology uses the feedback loop containing

switch S3 and the open loop does not. The difference

between the two is that in closed loop, the voltage VX is

initially the offset of the comparator since it is connected

like a voltage follower. Also, it is important to note that if

the feedback path due to switch S3 is to cause Vx = V&, the

comparator must operate as a high-gain op amp and

cannot be a regenerative latch comparator with only high

or low digital outputs.

In open loop when the SAR/DAC feedback loop is

initiated, the operation of the comparator can be limited to

strictly digital output since it is never directly connected in

negative feedback; rather the SAR/DAC generates the

appropriate analog signal to the coupling capacitor as

feedback. Usually, the comparator can be designed so that

it can act as an op amp when the loop is closed [9]. In the

open-loop topology, the top node is grounded in the first

step so that the feedback loop through S3 is never estab-

lished. Thus the comparator may always have digital out-

puts. Since the analog signal for measurement of small

capacitors is usually small, a monolithic preamplifier can

be used to buffer the voltage to an off-chip comparator in

this configuration.

A. Quantization Error

The quantization error of the DAC contributes an error

to the measurement, Assuming that V~Ac is in error by

+ ~ LSB, the amount of error transferred to F’v can be

easily shown to be

VX= VO,* ; LSB
[

cc ]=vw(;m)
cp+cR+c~+cc

(3)

where 8 is the capacitive divider ratio

[

cc l–cc
8=

cp+cR+c~+cc = ctot~“
(4)

This is a simple capacitive divider. Any change in voltage

AV at V~AC results in a change in voltage 8 AV at VX.
Repeated use of the DAC’S voltage output for subsequent

measurements will accumulate this error in the worst case;

however, averaging can reduce this problem.

B. Charge Injection

Charge injection can also be measured using this tech-

nique. Since the charge that S3 injects is independent of

capacitor difference, it causes an error in the measurement.

To correct for it, an additional step is added which will be

denoted as the calibration cycle. The capacitive mis-

match measurement will be denoted as the measurement

cycle. The calibration and measurement cycles inherently

eliminate the comparator offset in the closed-loop topol-

ogy. In the open-loop topology, the offset is measured,

then canceled.

The calibration procedure begins by measuring the

charge injection. S1 is set to V,ef and both S2 and V~Ac
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are set to ground. S3 is opened and the SAR/DAC is comparator resolution. A smaller CP increases 8 but also

initiated. The calibration voltage at the output of the DAC increases the kT/C noise so that a trade-off is introduced.

can be shown to be Capacitance mismatch ratio for both topologies is

- Qm
vDAC,n, = —+2AV

cc
(5)

in the closed-loop topology and where C is either CR or C~. It is the same as (2) except for

the error term

[

cp+cR+c~+cc 1- Qs3vDAC<O[ = V&
cc

—+2AV (6)
+ cc

in the open-loop topology. + AV is the quantization error

of the DAC. Charge injection must be measured since it

upsets the charge conservation assumption made in the

earlier ideal circuit analysis. If it is taken into account,

then charge due to the capacitors can be accurately de-

termined and hence so can the capacitance difference.

Once the switch injection voltage is measured, it can be

stored in a RAM. When the negative of VDACca,is applied

to the coupling capacitor, a voltage at V’ is created that

cancels out the error voltage generated by the switch

injection charge. Alternatively, one can think of the DAC

as creating a positive charge on the coupling capacitor that

is just large enough to cancel the negative switch injection

(assuming an NMOS switch). This is equivalent to analog

voltage subtraction at VX.Subtraction of the digital data is

an alternate method of eliminating the charge injection

error.

In the measurement cycle, S3 is closed, S1 is set to V,.~,
S2 to ground, and V~~c to the negative of the voltage

measured during the calibration step. This switch sequence

is exactly the same as in the ideal analysis except that

VDAC is at some voltage other than ground. S3 is then
opened and the positions of S1 and S2 are reversed. The

SAR/DAC is initialized, and the output of the DAC

becomes

&(c R-es)
v DACW,., = +4AV

cc
(7)

for both open-loop and closed-loop topologies. A disad-

vantage of the open-loop topology is that a large compara-

tor offset may yield a calibration voltage larger than the

DAC maximum voltage and calibration becomes impossi-

ble. The closed loop is preferred for this reason. For

testing purposes, however, the open-loop topology is easier

to implement.

C. Parasitic Capacitance

Parasitic capacitance imposes a constraint on the sys-

tem. A large CP reduces the divider ratio S. If 8 becomes

too small, F’, becomes pinned by the large CP and the

DAC is not able to adjust Vx. The + AV error becomes

limited by the capacitive divider ratio and not the quanti-

zation error because the minimum amount of control the

DAC has is 8(+ AV) which may be smaller than the

[ ][-1

4AV Cc
f—

Vc”ref
(9)

This error term determines the minimum resolvable ca-

pacitance change for a single measurement. The effect of

the parasitic capacitance appears as a constraint on the

comparator resolution, as evidenced by (4).

D. Other Nonideal Effects

An MOS switch that is turned off can leak from the

reverse-biased p-n junction at the body and source. Nor-

mal reverse saturation current from a p-n junction is

typically 10 nA/cm2 in MOS processes at room tempera-

ture. If the area of the MOS switch source region is 100

pm2, the reverse leakage current is approximately 10 fA. If

the switch is open for 100 ps, the charge transferred is

approximately six electrons. This effect becomes signifi-

cant only at low clock frequencies and at elevated temper-

atures. Leakage current introduces an extra charge source

in the measurement and can be measured using this tech-

nique if the clock frequency is low enough.

Due to the proximity and similarity of the test capaci-

tors used in this work, both the voltage and temperature

coefficients of capacitance did not effect the measurement.

Since each capacitor experiences similar conditions in the

technique, the effects of temperature and voltage coeffi-

cient tend to track each other and appear as a common-

mode error that cancels in the differential measurement.

The thermal noise generated by an MOS channel causes

a variation in injected charge each time S3 is opened:

(lo)

This noise is sampled on the capacitors when the switch is

turned off. It can be shown that an MOS channel can be

treated as a noiseless open circuit when turned off [10].

Increasing C can reduce this noise, but increases the

parasitic capacitance if the sense and reference capacitors

are already determined to be small. Complete cancellation

is not possible with an individual measurement, but digital

averaging can reduce its ef feet significantly since the noise

is random.

IV. EXPERIMENTAL RESULTS

To test the theory of the charge redistribution technique

on capacitance difference measurements, a test chip was

designed and fabricated by MOSIS using a 3-pm p-well
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Fig. 2. Die photo of test chip.

TABLE I
TESTCAPACITORSIZESl

[

Area (pmz)

2132

2120

620

620

1696

848

248

31744

108544

Capzxitance Range (fF)

75-110

74-110

22-31

22-31

6W85

30-42

912

1100-1600

380&5400

1Ranges are given since measurements on
absolute capacitance vafues were never per-
formed. Ranges are calculated from MOSIS
vendors specifications.

CMOS technology. Its main purpose was to demonstrate

difference measurements of metal/poly capacitors that are

comparable in capacitance value to integrated sensing

structures. An open-loop topology was implemented. An

on-chip isolation amplifier was used to buffer the sensitive

node to a comparator off-chip.

Three CMOS runs using MOSIS were made. Fig. 2

shows the die photograph of one of the chips. Five chips

per run were obtained. As is shown in Table I, the test

capacitors ranged from 20 to 100 fF. MOSIS vendors must

meet requirements of metal one-to-poly/diffusion capaci-

tances of 0.035–0.05 fF/pm2 which indicates an oxide

thickness r~nge for the test capacitors of approximately

700-1000 A. Measurements were also made for each set of

sense and reference capacitors to test for any residual

polarization [11]. The exact areas and estimated range of

capacitance values for all capacitors are shown in Table I.

Fig. 3 shows the positions of the circuits on the test chip.

Circuits 1 and 3 have the same switch size as do circuits 2

and 4, while circuits 1 and 3 differ in parasitic capacitance

as do circuits 2 and 4. Circuit 5 has no intentionally added

parasitic capacitance.

l—~

Pig. 3. Positions of circuits on test chip.

Calibration Test (Delta chip)

Circles represent discrete data points ‘

10–

o

-,o~
O 10 20 30 40 50 60 70 80 90 100

Measurement #

Fig. 4. Cancellation of charge injection and comparator offset.

Shown in Fig. 4 is a graph of calibration voltage output

after cancellation. To measure the success of the calibra-

tion technique in eliminating charge injection, a calibration

test was used. The calibration voltage was measured 100

times, then averaged. The negative of this value was then

applied to the coupling capacitor and the calibration cycle

was repeated. Cancellation of the charge injection should

result in a DAC output voltage near O V. The data for all

the chips show that on average the DAC calibration volt-

age is much less than 1 LSB, demonstrating the expected

noise reduction from averaging.

The measurement data for one representative test chip

are presented in Table II. A large amount of data were

obtained since each of the 15 chips ccmtained five separate

circuits and each circuit had two sets of sense and refer-

ence capacitors. Since in sensor applications extensive

averaging may not be possible due to speed considerations,

the data represent a reasonable averaging of 16 times. In

addition, residual polarization was observed to be negligi-

ble. Results compare favorably with previous work on

MOS capacitors [11]. Standard deviations are for 16 mea-

surements in time for one chip rather than between differ-

ing chips. The deviations of the measurements fall in the

range of that expected from (5) and (7). We believe’ that

the discrepancy in standard deviations between the nega-

tive and positive measurements is caused by slight asym-

metrical noise coupling of the control signals to the test
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TABLE II
MEASUREMENTDATA

CKT1 CKT3 CKT5

Parameter C,arje Oemdl Garg. cem~, Clar#, C’,ma,,

Value (fF) 90 26 90 26 90 26

vDAc+ne.,(v) 0.415 3.66E-3 0.287 7.17E-3 0.258 4.43E-3

Std. dev. (LSB) 3.63 3.38 3.14 2.94 2.56 2.69

~ (%) 3.32 0.100 2.30 0.196 2.07 0.121

Std. dev. (%) 0.071 0.23 0.061 0.20 0.050 0.18

VDAC.,,,...(v) -0.418 -2.44E-3 -0.287 -8.39E-3 -0.257 9.16E-4

Std. dev. (LSB) 2.28 1.63 3.00 2.33 2.17 1.89

* (%) -3.34 -6.67E-2 -2.30 -0.230 -2.05 2.51E-2

Std. dev. (%) 0.045 0.11 0.059 0.16 0.042 0.13

1. Test data averaged16 times.

2. CKT1 has CP = 5 PF, CKT3 has CP = 2 PF, CKT5 has CP = 1PF

3. +meas denotes a positive measurement where CR has V,,r across it in step 1.

4. -mess denotes a negative measurement where CS has V,,f across itin step 1.

TABLE III
MEASUREMENTSYSTEMPARAMETERS

Switchhg speed 100 kHz

Sucessive Approximation Register 12-bit

Digitial-t&Analog Converter 12-bit

1 LSB 2.44 mV

Conversion speed 120 psec

Positive analog supply 5V

Negative analog supply -5 v

Reference Voltage V,., +5.00000 v

Temperature E 25° C

Resolution < o.05fF

chip. This is currently being corrected. Measurement sys-

tem characteristics are shov& in Table 111.

The small capacitors differed by very little, on the order

of 0.1 –1 percent. This resolution limit was reached by

averaging only 16 times. One of the larger capacitors was

made approximately 3 percent larger than the other one.

As shown in Table II, measurements resolved this dif-

ference. Since a large amount of theoretical and experi-

mental work has been done on random MOS capacitor

mismatches [12], [13], this paper did not attempt to seek

correlations to previous work. From the data in Table II,

standard deviations indicate that the resolution of a single

measurement is close to 1000–1500 electrons, correspond-

ing to nearly 0.05 fF in this study. Averaging can signifi-

cantly increase the resolution but at a cost of increased

time.

Two different switching sequences were used in this

work to measure capacitance differences and residual

polarization. Several alternate sequences will yield ~ a AC.

Table IV shows some of these sequences if the only avail-

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 4, AUGUST 1988

TABLE IV

ALTGRNATE SWITCHING SEQUENCES

;equence number

1

2

3

4

5

6

7

8

9

10

Vfll

o

0

0

0

V,e,

v,.,

–v,.,

–Vr,,

v,,,

–Vr,,

v.~

v,.,

o

0

–V,ef

o

–Vr,,

V,e,

o

–Vre,

v,.,

VR2

v,,,

V,e,

-v,.,

-Vre,

o

0

0

0

-Vre,

v,,,

v~~

o

-Vre,

v,,,

o

v,.,

o

0

-V,ef

v,,,

-Vre,

able switching voltages are t V,,f and ground. V~l and V~l

are the voltages applied to the bottom plates of the refer-

ence and sense capacitors in step 1, respectively, while V&

and V~z are the voltages applied in step 2. Sequences 8–10

yield the same result as given by (7) while 9 and 10 yield

(7) multiplied by two. The many possible switching se-

quences make it possible for the sensor designer to choose

the appropriate sequence that best suits the particular

application. For example, sequences 6 and 7 have O V

across both capacitors in step 2 so that any change in

either capacitor during the measurement cycle will not

introduce an error. This may be important if both capaci-

tors change during a sensing operation.

V. CONCLUSIONS

This paper demonstrates a technique that can measure

capacitance differences with a resolution of 0.05 fF on

capacitors in the 20–100-fF range in the presence of para-

sitic capacitances nearly 100 times larger. It is shown that

nonideal effects such as charge injection, parasitic capaci-

tance, and voltage and temperature coefficients are either

negligible or can be calibrated. Junction leakage,

threshold-voltage hysteresis, and capacitor hysteresis are

shown to be negligible. Digital averaging can increase

resolution but increases measurement time.

The charge redistribution technique measures capaci-

tance differences and can be applied directly to sensor

design. The technique is simple, requiring three capacitors,

a voltage comparator, a successive approximation register,

and a digital-to-analog converter. It provides extremely

high resolution and an inherently digital readout. Its sim-

plicity and compatibility with digital signal processing

make it ideally suited for readout in sensor systems requir-
ing a capacit ante difference measurement.
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