
Introduction
Most Web services cannot be used directly
in a mobile terminal since they have been
designed for larger screens and for use that
is incompatible with the mobile terminal.
Despite these limitations, mobile terminals
are positioned to become devices of ubiqui-
tous information access. In Japan, for exam-
ple, NTT DoCoMo’s i-mode service is used
by some 25 million subscribers. And this
number is growing by approximately
70,000 users per day. Similarly, in Europe,
the wireless application protocol (WAP) has
been a huge success among developers. In-

deed, in some countries, it is becoming dif-
ficult to find major websites that do not con-
tain pages in the wireless markup language
(WML), and new services are being
launched daily.

Until now, WAP and i-mode have not
been compatible. The markup in i-mode is
based on an older version of HTML, where-
as WAP is based on the new XML data for-
mat. The protocols used are totally differ-
ent—for instance, i-mode uses optimized
versions of the protocols used on the Web,
and that does not fulfill the design con-
straints for WAP.

To make life easier for developers, NTT
DoCoMo has been working with the WAP
Forum to develop the new version of WAP,
which will contain the best features from
i-mode and WAP, while maintaining com-
patibility with future standards and the in-
stalled WAP base, and exploit features from
the next generation of the World Wide Web
(WWW). The result, which NTT DoCoMo
claims they will use in coming versions of
i-mode, is WAP 2.x (WAP Release 2001).

A goal of WAP 2.x initiatives has been to
use the wireless application protocol to fully
enable the mobile Internet while avoiding
problems such as the “worldwide wait.” The
WAP Forum has become the most impor-
tant source for collecting feedback on spec-
ifications for the mobile Internet and their
implementation. As one of the founders, and
chairing several important working groups,
Ericsson is also playing a key role in the
WAP Forum.

Note: Ericsson Review previously dis-
cussed hypertext transfer protocol (HTTP)
and transport services in the WAP 1.x ar-
chitecture. However, because the Internet
Engineering Task Force (IETF) is still work-
ing with the wireless optimization of exist-
ing transport protocols, these topics are not
discussed in this article.

WAP 2.x
The WAP 1.x architecture consisted of the
origin server, gateway, and user-terminal
environment. The server could be a WAP
or HTTP server; the gateway translated the
protocol layer and application information.
By contrast, the WAP 2.x architecture con-
sists of four conceptual components, name-
ly the
• application environment;
• protocol framework;
• security services; and
• service discovery.

178 Ericsson Review No. 4, 2001

WAP 2.x architecture—Features, services and
functions
Peter Arnby, Johan Hjelm and Peter Stark

Web services adapted to the wireless environment have been a tremen-
dous success, especially in Japan, where more than 25 million people use
i-mode. However, the architecture of i-mode has some limitations. These
will be overcome with WAP 2.x.

In this article, the authors describe WAP 2.x, the universal wireless
application environment. They explain the similarities and differences
between the WAP 1.x and WAP 2.x architectures, and depict conceptual
components and features of the second-generation architecture. These
components—the application environment, protocol framework, security
services, and service discovery—are key to successful application and
service development. Modularity, an important feature of the second-
generation architecture, enables developers to select modules from differ-
ent components and to create user services that fulfill market demands.

CC/PP Composite capabilities/
preferences profile

CSD Circuit-switched data
CSS Cascading style sheet
DNS Domain name server
ECMAscript Formerly Javascript
EFI Extended functionality interface
HTML Hypertext markup language
HTTP Hypertext transfer protocol
iCal Calendar interoperability standard

established by the Internet Mail
Consortium

IETF Internet Engineering Task Force
IP Internet protocol
IPv4 IP version 4
IPv6 IP version 6
MMS Multimedia messaging service
OSI Open systems interconnection
OTA Over the air
PKI Public key infrastructure
RDF Resource description framework
RSVP Resource reservation protocol
RTP Real-time transport protocol
SMTP Simple mail transfer protocol

SyncML Synchronization markup
language

TCP Transport control protocol
TLS Transport layer security (formerly

secure socket layer)
UAPROF User agent profile
UDP User datagram protocol
vCal Calendar interoperability standard

by the Internet Mail Consortium,
superseded by iCal

vCard Business card interoperability
standard by the Internet Mail
consortium

W3C World Wide Web Consortium
WAE WAP application environment
WAP Wireless application protocol
WIM Wireless identity module
WML Wireless markup language
WSP Wireless session protocol
WTA Wireless telephony application
WTLS Wireless TLS
WTP Wireless transaction protocol
XHTML Extensible HTML
XML Extensible markup language

BOX A, TERMS AND ABBREVIATIONS

Ericsson Review No. 4, 2001 179

The WAP 2.x architecture does not have
strict divisions between the server, gateway,
and user-terminal environment. And there
is no longer any intermingling between
transport and service. Instead, functions—
which are accessed via the Internet—can be
outsourced to capability servers in a WAP
network that implements support for,
say, a
• wireless telephony application (WTA);
• public-key infrastructure (PKI) portal;
• provisioning server; and
• user-agent profile (UAPROF) repository.
Communication from WAP clients can take
place directly with the server, but it will
most likely take place through a proxy.
Proxies are being established as one of the
main points of control (for example, through
firewalls) and as central points for resource
interconnection. WAP clients support a
proxy-selection mechanism that allows
them to choose the most appropriate proxy
for a specific task. This extends the current
Internet proxy model.

The WAP 2.x protocol is compatible with
WAP 1.x, but it relies more extensively on
standard Web protocols (such as HTTP) and
formats (such as XHTML). WAP 2.x also
clearly separates the
• bearer (CSD, GPRS, IMT-2000);
• transport (WDP, TCP);
• session layer (cookies, CC/PP); and
• applications.
Most protocol services in the WAP 1.x suite
are also available in new Web protocols. But
the WAP push service cannot be realized
through existing Web protocols without
significant changes to the current Web ar-
chitecture. Both the WAP 1.x stack and
Internet protocols (such as hypertext and

multimedia transfer services) can provide
some services, but only WAP is capable of
providing others, such as the WAP push ser-
vice.

From the start, WAP has been based on
the browsing paradigm made popular by the
Web: it adapts technologies from the Web,
making them work better in wireless net-
works. In the WAP 2.x architecture, more
of the Web technologies are adopted di-
rectly (as they are) rather than adapted, and
then extended with WAP-specific func-
tions. These functions enable service

Application serverProxyWAP device

HTTP
server

HTTP
proxy

Feature
enhancement

WAP
micro-

browser
(w/WTA)

Encoded request (URL)

Encoded content

Content

Request (URL)

Content

Figure 1
The WAP 2.x architecture supports the
use of proxies which enhance the capabil-
ities of the server.

WAP device

Supporting server Supporting server

Application server

Content

WAP
micro-

browser

PKI portal UAProf
server

Request (URL)

Content

HTTP
server

Figure 2
The WAP 2.x architecture also allows for supporting servers which can provide additional
functions—for example, public key infrastructure.

providers and developers of systems, content
providers, and devices to provide users with
greater added value.

Modularity is one of the main features of
the second-generation architecture (mod-
ules interact through well-defined inter-
faces). The security-service and service-
discovery components of the architecture

span every layer of the open systems inter-
connection (OSI) model. The application
environment component resides on top of
OSI layer 7; the protocol framework com-
prises everything from OSI layer 2 to 7.

The architecture allows components to in-
teract. Developers can thus select modules
from different components and create new
user services. Conceivably, a minimal device
can be developed by selecting components
with the smallest footprints. In practice, de-
vices and proxies will most likely imple-
ment either a dual stack or only the Inter-
net stack. Backward compatibility is
achieved by providing continued support
for WML 1 in the client. The WAP confor-
mance profiles (Box B) determine the con-
figuration of the devices as well as how they
work together.

The application environment
component
The application-environment component
enables the following services:
• WAP application environment (WAE)—

that is, the browser, calendar agent, and
other user agents;

• user-agent profile;
• multimedia messaging and other data for-

mats; and
• push service.
The application environment provides the
user interface and other functions that dis-
play content. Because it is a flexible envi-
ronment, modules can be added on an ad hoc
basis (optional) or through the WAP
Forum’s specification development process.

180 Ericsson Review No. 4, 2001

The WAP Forum defined the term user-agent
profile (UAPROF) for use within the composite
capabilities and preferences profile (CC/PP),
which is used to describe the capabilities of the
user terminal application environment. The
user-agent profile is a data format. A specific
set of properties and values describes each ter-
minal. The WAP Forum standardized the prop-
erty names and values as part of the UAPROF
vocabulary.

The CC/PP is defined in an XML frame-
work—called the resource description frame-
work (RDF)—which enables users to connect
a property to an object (the CC/PP is an appli-
cation of the RDF). The resource description
framework can be used for annotations, meta-

data, and profiles that describe users or their
terminals. By knowing the information display
capabilities of a terminal, the server can cre-
ate a display that is optimized for that termi-
nal. Including profile information with the
request minimizes the number of transactions
needed to optimize the information, and it can
be cached in a proxy or retrieved from a repos-
itory that the device manufacturer maintains.
This minimizes the amount of information
transmitted over the air and speeds up infor-
mation access. Designers can create pages or
page templates to be used with database
servers (such as the Ericsson WAP application
server), displaying them in formats that are
adapted to user devices.

BOX B, THE USER-AGENT PROFILE

Application framework
(WAE, push dispatcher, messaging client)

Network
protocols

Crypto.
libraries

Session
services

Transfer
services

Transport
services

Nearer
networks

Service discovery
P

ro
to

co
l f

ra
m

ew
or

k
Security services

EFI

Provisioning Authorization

Identity

PKI

Navigation
discovery

Service
lookup

Secure
transport

Secure
bearer

Content
renderers

Capability
negotiation

Hypermedia
transfer

Message
transfer

Streaming

Datagrams

IPv6 SMS GHOST FLEX SDS

IPv4 USSD GUTS ReFLEX MPAK

Connections

Sync

Cookies Push-OTA

Common
functions WIM EFI

Figure 3
The WAP 2.x architecture is a layered architecture that includes different functions within
its framework.

Ericsson Review No. 4, 2001 181

WAP application environment

The WAP application environment is in the
mobile terminal. It contains a subset of
XHTML (for display formatting) and a sub-
set of the cascading style sheet (CSS) lan-
guage (for content formatting). It also con-
tains user agents for WTA and program-
ming interfaces for use in mobile devices.
WML and WMLscript execute in the WAP
application environment.

Cascading style sheets

The WAP 2.x architecture contains a sub-
set of the cascading style sheet language,
which is the most widely used display lan-
guage on the Web. Using cascading style
sheets, an author can define how each ele-
ment in a document is to be displayed. This
gives authors greater control—compared to
when the display is specified inside the
markup. A style sheet need only be down-
loaded once from the network server. After
that it can be retrieved from a local cache.

Cascading style sheets can adapt auto-
matically to the capabilities declared by a
device’s user-agent profile. This is particu-
larly important because display capabilities
vary significantly among devices. A format
that looks good on one device might be dis-
played differently on another. The user-
agent profile ensures that the device gets the
most appropriate style sheet. And because
style sheets separate display from content,
authors can use the same WML document
for many different devices with significant-
ly different display capabilities.

Contact and calendar information

WAP 1.x versions contained the vCal and
vCard data types, which are not part of the
browsing environment. The Internet Mail
Consortium standardized vCal and vCard as
structured data types for displaying contact
and calendar information. iCal, which was
developed from vCal, is used in products
such as Microsoft Outlook and Lotus
Organizer. It is also used in Ericsson’s
AirCalendar, which allows users to synchro-
nize the electronic calendars they use in the
fixed environment with the calendars on their
mobile terminals. WAP also accommodates
other data types, such as audio and video.

Multimedia messaging

Many of the functions of the new WAP en-
vironment are available in existing Internet
architectures, but the WAP 2.x application
environment contains two modules that
were developed in WAP 1.x. These two

modules contain functions that are not avail-
able in other systems: multimedia messag-
ing service (MMS) was one of the highlights
of this year’s GSM-UMTS Forum, and push
services are not possible on the Web using
standard HTTP. MMS is an e-mail-like
mechanism for the transmission of multi-
media messages (electronic postcards with
sound), which are expected to become very
popular applications, especially in third-
generation mobile systems.

Push services

Service providers use push services to send
information to users (who need not initiate
any action). As simple as it might sound, the
push-service architecture has been a major
item on the WAP Forum agenda. In the
WAP 2.x architecture, the push service has
been divided into the user-agent module
and the session-layer module.

The protocol framework component
The WAP application environment relies
on a protocol framework component that en-
ables the functions needed to provide the
services described above. The protocol
framework consists of four modular layers,
which can be combined:
• the session service layer;
• the transfer service layer;
• the transport service layer; and
• the bearer service layer.
In traditional Internet environments, the
protocol framework solely provides trans-
port services for applications, such as hy-
permedia transport (HTTP), streaming

XHTML is HTML reformulated as an XML appli-
cation, defined by the W3C. For WAP 2.0, the
WAP Forum has defined a strict subset of
XHTML called the XHTML mobile profile. The
profile is in turn a superset of the W3C XHTML
basic profile, a W3C recommendation (Decem-
ber 2000) for XHTML in small devices. An
XHTML page, written in XHTML mobile profile
or XHTML basic, can be viewed in a WAP 2.0
browser or any standard Web browser. All
basic XHTML features are supported, includ-
ing text, images, links, checkboxes, radio but-
tons, headings, horizontal rules, and lists.

BOX C, XHTML

Application serverWAP device

HTTP
server

WAP
micro-

browser
(w/WTA)

Request (URL)

Push (content)

Response (content) Content

Push
initiator

Figure 4
The WAP 2.x architecture allows the
application server and the client to con-
nect directly for push and content
responses.

(RSVP and RTP Internet protocols), and
message transport (standard Internet proto-
cols, such as SMTP). In the WAP architec-
ture, a logical layer has been added: the ses-
sion service layer.

Session service layer

In the WAP 2.x architecture, the session ser-
vice layer, which resides between the trans-
port layer and the application environment,
brings several new services to applications.
Sessions do not exist in HTTP, but cookies
can provide sessions. Cookies, which are
database markers included in the request
and looked up on the server side to identify
the user, are part of the WAP 2.x architec-
ture. They enable the reuse of mechanisms
that already exist in the Internet and solely
give an indication about the relationship be-
tween a single server and the user agent.
Cookies cannot be used as a general source
of information.

The session service layer also includes a
technology for reporting to the server. The
reports contain information on terminal ca-
pabilities and on the terminal application
environment. This information is used to
optimize the display format.

Data synchronization

Synchronization is another new service in
WAP. The WAP Forum has been working
with SyncML (another industry consortium)
to create a language for data synchroniza-
tion. Synchronization of data that has been
updated in mobile and fixed environments
can be a thorny issue. Users retrieve data
from the network and store it on a mobile
device, which they use to access and manip-
ulate the local copy of the data. Periodical-
ly, users reconnect to the network to send
changes to the networked data repository.
Users also have the opportunity to learn
about updates made to the networked data
while their terminal was offline. Occasion-
ally, users need to resolve conflicts between
their local updates and the networked data.
This reconciliation operation (during which
updates are exchanged and conflicts are re-
solved) is known as data synchronization.
The data synchronization protocol synchro-

nizes networked data with that on many dif-
ferent devices, including handheld comput-
ers, mobile phones, automotive computers,
and desktop PCs.

Push sessions

The push solution also contains a session
component. The push over-the-air (OTA)
session service enables the establishment of
push sessions
• across communication links that might

not be persistent; and
• in instances when addresses are dynami-

cally assigned.
There is no binding between the transport
of data and the session on the Web. The data
transport is transparent to the session. Once
a hypertext transport transaction is finished,
the state it created disappears. In the
WAP 1.x stack, the wireless session proto-
col (WSP) and wireless transaction protocol
(WTP) can be used in combination to create
and maintain a state, and through it, ses-
sions. This has several advantages (for exam-
ple, to enable push). By including HTTP as
a transport method, the WAP Forum now
enables both stateful and stateless transport.
Session services provide a “memory” of pre-
vious transactions (this feature does not exist
in HTTP, since it is a stateless protocol) that
enable the retention of terminal characteris-
tics and make for faster initialization of com-
plex transports (such as data streaming).

Apart from the transport of text docu-
ments, the WAP architecture has also been
prepared for the next generation of messag-
ing. It contains a multimedia transport
mechanism for asynchronous message trans-
port (messages are encapsulated for trans-
mission between multimedia and WAP
servers in a WAP-specific protocol). The
data-transport mechanisms also include
IETF data-streaming formats.

Transport service layer

The transport services in WAP 2.x are ei-
ther datagrams (connectionless service) or
connections. Datagrams are more efficient
for services that are not dependent on a per-
sistent connection. The datagrams comply
with either the user datagram protocol

182 Ericsson Review No. 4, 2001

While some modules are mandatory, a device
designer can select and implement desired mod-
ules and still satisfy prerequisites for WAP certi-
fication. A set of conformance profiles for WAP
2.x determines what a WAP device is, and which
components it should make use of. This also
helps users to make their choice of devices, since
they can easily match the conformance profile
with the functions they need.

WAP certification will be increasingly impor-
tant, since many implementations of tech-
nologies developed in the IETF or W3C do not
follow the specification, and in practice, imple-
ment only a minimal set of functions. This will
not happen in a WAP environment whose rig-
orous certification process determines con-
formity standards.

BOX D, ACQUIRING WAP
CERTIFICATION

Ericsson Review No. 4, 2001 183

(UDP), which is used on the Internet, or the
wireless datagram protocol, which was de-
fined for the WAP 1.x architecture.

The connection-oriented aspects of the new
architecture are handled by the transmission
control protocol (TCP). TCP, however, does
not work well over mobile networks, so the
WAP Forum is discussing an optimized mo-
bile profile, to enable the mobile terminal to
function optimally over the mobile network
with its special characteristics.

Bearer service layer

In WAP 2.x, the bearer services have been
extended considerably. They now include
the mobile radio bearers used to transport
WAP (such as SMS, FLEX, USSD, and
GUTS), as well as IP version 4 (IPv4) and
IP version 6 (IPv6).

WAP can be transported over different
networks, and mapping can be handled di-
rectly from the WAP stack to several bear-
er services. WAP 1.x contains several mod-
ules for bearer networks, some of which
(broadcast networks, for example) could not
be handled using TCP transport. In
WAP 2.x, bearers can be managed by the IP
stack or directly by the WAP datagram or
connection service, which uses the Internet’s
transmission control protocol.

Security services component
The security services component is posi-
tioned orthogonally to data-transfer and
data-use services within the protocol frame-
work component.

Security on the Internet is currently a hot
issue, and the WAP 1.x architecture has re-
ceived a lot of criticism. The telecommuni-
cations industry has been a leader in the se-
curity area for a long time, and this experi-
ence has been transferred into the WAP 2.x
architecture.

WAP security services span all layers of
the WAP 2.x architecture, thus creating op-
portunities for users to set up extremely se-
cure environments (in fact, much more so
than what is currently possible on the Web).
How? By combining application-layer,
transfer-layer, transport-layer, and bearer-
layer security—the possibilities are endless.

Security services include
• mechanisms for signing and encrypting

data as a WMLScript crypto library;
• authentication services;
• an identification service that uses the

wireless identity module (WIM);
• a PKI system;
• transport layer security (TLS, previously

called SSL); and
• WTLS, the WAP 1.x-adapted version of

TLS.

Service discovery component
The service discovery component is another
orthogonal component in the WAP 2.x ar-
chitecture that embraces what is available
on the Internet and extends it by adding
mobile-specific components.

One example, the service lookup proto-
col, uses the existing domain name server
(DNS) from the Internet. Terminal func-
tionality is extended through the extended
functionality interface (EFI), which enables
a WAP device to have external entities at-
tached to it (thermometers, pressure gauges,
and so on).

Provisioning, which is another
telecommunications-specific protocol, is
translated into WAP. Devices can thus be
provided with all the parameters they need
to function through the network.

Navigation discovery allows a client to
discover services in the network—for ex-
ample, a client might need to find a proxy
in order to download data.

Conclusion
The WAP environment is a consistent archi-
tecture composed of standard components—
taken from the Internet where available, or
constructed separately. They enable a consis-
tent application environment for the mobile
system. Thanks to the certification process of
the WAP Forum, interoperability is also en-
sured for all the different functions of the
WAP 2.x architecture. Using WAP, the de-
veloper gets a well-known development en-
vironment, and does not have to create sev-
eral different versions of the application for
mutually incompatible environments.

Microsoft and Microsoft Outlook are regis-
tered trademarks of Microsoft Corporation.
Lotus Organizer is a registered trademark of
Lotus Development Corporation.

TRADEMARKS

