Introduction and boolean algebra

Lecture 1 — § 1.1, 1.2 Computer Science 218

Mike Feeley

What is a computer?

so you are at a party

- and David Hilbert walks up to you and says
 - 19th century Russian mathematician
 - "so, you're a computer scientist, eh?"
 - "what is a computer exactly?"

what is your answer?

- divide yourselves into groups of 4-5
- take 5 minutes come up with your "party" answer
- then we'll talk about it

2

Answer depends on who you are

what you know

- any sufficiently advanced technology is indistinguishable from magic
 - Arthur C. Clarke

how you think

- deconstructionist
 - start from first principles and build to a higher-level abstraction
 - "okay, so there is this thing called string theory \dots "
- generalist
 - start from high-level abstraction and explain with increasing detail
 - "it lets me surf the web ..."

Our approach

goal of course is to explain what a computer is

- starting from the bottom and working up
- we'll go from gates to a simple PC

deconstructing a PC

- software
 - firmware
 - OS
 - libraries
 - applications
- hardware
 - CPU

- memory
- IO devices
- interconnection network (busses)

Course outline

roughly one week per topic

- circuits
- components
- numbers
- micro operations
- system organization
- instruction sets and assembly language (software)

in the lab

- you'll build hardware stuff
 - seven labs: easy, hard, easy, hard, easy, hard, hard
- in a circuit simulator

RTL and micro operations

- -!language for describing operations on multi-bit values in registers
- -!busses transfer data among registers

integers, floating point, and other encodings (BCD, ASCII, unicode, etc.)

-!data representations and hardware operations on them

Layering of abstraction

packages

-!circuit modules

sequential circuit

- combinational circuits plus flip-flop (memory/state)
- -!finite state diagrams

combinational circuits

- boolean algebra, truth tables and logic diagrams

gates

switches

transistors (wires, resistors, and capacitors) on a wafer

5

RTL description of a simple CPU

interrupt cycle

```
Rt<sub>0</sub>: AR \leftarrow 0
Rt<sub>1</sub>: M[AR] \leftarrow PC, PC \leftarrow 0
Rt<sub>2</sub>: PC \leftarrow PC+1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0
```

fetch and decode

```
R't_0: AR \leftarrow PC, PC \leftarrow PC+1

R't_1: IR \leftarrow M[AR]

R't_2: AR \leftarrow IR(0-11)
```

 $t_0't_1't_2'(IEN)(FGI+FGO): R \leftarrow 1$

execute register instruction

```
cla t_3d_7i'b_{11}: AC ← 0

cle t_3d_7i'b_{10}: E ← 0

cma t_3d_7i'b_9: AC ← AC′

cme t_3d_7i'b_8: E ← E′

cir t_3d_7i'b_7: AC ← shr AC, AC(15) ← E, E ← AC(0)

cil t_3d_7i'b_6: AC ← shl AC, AC(0) ← E, E ← AC(15)

inc t_3d_7i'b_5: AC ← AC+1

spa t_3d_7i'b_4AC(15)′: PC ← PC+1

sna t_3d_7i'b_3AC(15): PC ← PC+1

sza t_3d_7i'b_2(AC(0)+...+AC(15))′: PC ← PC+1

sze t_3d_7i'b_1E′: PC ← PC+1

hlt t_3d_7i'b_0: X ← 0

t_3d_7i'SC ← 0
```

execute memory instruction

```
\begin{array}{c} t_3d_7\text{ i: }AR \leftarrow M[AR]\\ and \ t_4d_0\text{: }DR \leftarrow M[AR]\\ t_5d_0\text{: }AC \leftarrow AC \land DR, SC \leftarrow 0\\ add \ t_4d_1\text{: }DR \leftarrow M[AR]\\ t_5d_1\text{: }AC \leftarrow AC + DR, E \leftarrow C_{out'}, SC \leftarrow 0\\ Ida \ t_4d_2\text{: }DR \leftarrow M[AR]\\ t_1d_2\text{: }AC \leftarrow DR, SC \leftarrow 0\\ sta \ t_4d_3\text{: }M[AR] \leftarrow AC, SC \leftarrow 0\\ bun \ t_4d_4\text{: }PC \leftarrow AR, SC \leftarrow 0\\ bsa \ t_4d_5\text{: }M[AR] \leftarrow PC, AR \leftarrow AR + 1\\ t_5d_5\text{: }PC \leftarrow AR, SC \leftarrow 0\\ isz \ t_4d_6\text{: }DR \leftarrow M[AR]\\ t_5d_6\text{: }DR \leftarrow DR + 1\\ t_6d_6\text{: }M[AR] \leftarrow DR, SC \leftarrow 0\\ t_6d_6(DR(0) + ... + DR(15))\text{': }PC \leftarrow PC + 1\\ \end{array}
```

execute I/O instruction

```
inp t_3d_7b_{11}: AC(0-7) \leftarrow INPR, FGI \leftarrow 0

out t_3d_7b_{10}: OUTR \leftarrow AC(0-7), FGO \leftarrow 0,

ski t_3d_7b_9FGI: PC \leftarrow PC+1

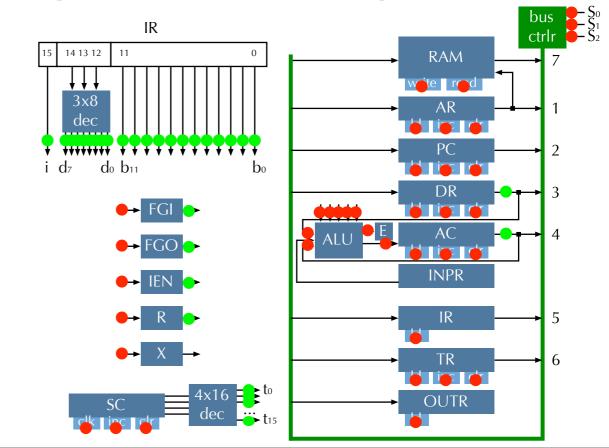
sko t_3d_7b_8FGO: PC \leftarrow PC+1

ion t_3d_7b_7: IEN \leftarrow 1

iof t_3d_7b_6: IEN \leftarrow 0

t_3d_7: SC \leftarrow 0
```

Register and bus diagram of CPU



Historical deconstruction

Hilbert's 23 problems for 20th century (Paris 1900)

read more at mathworld.wolfram.com

- is there a proof of Cantor's Continuum Hypothesis? (1)
 - no proved undecidable in two parts: 1938 by Kurt Gödel and 1963 by Paul Cohen
- can axioms of logic be proven to be consistent? (2)
 - no proved undecidable in 1931 by Kurt Gödel's incompleteness theorems
- is there a universal algorithm for solving Diophantine equations? (10)
 - integer solutions; e.g., Fermat's last theorem, which was solved in 1993 by Andrew Wiles
 - no proved undecidable in 1970 by Yuri Matiyasevich

Church-Turing thesis (1938-48)

- theoretical model for mechanical computation (decidability)
 - two equivalent models: Turing machine and lambda calculus
- · doesn't describe how to build one
 - Turing machine
 - ~ one-way infinite paper tape of ones and zeros
 - ~ in one step: read current position, move tape, write to tape, or change internal state

von Neumann architecture (1945-46)

- model for constructing a stored-program computer
- sequence of instructions held in a store
- fetch instruction, load data, simple operation, store, repeat

Early computers

discrete (digital) computers

- abacus [3000 BCE]
- Pascal tax collector [1642]
- Babbage's Analytical Engine [1837]
 - steam powered computer, but never built
- Babbage's Difference Engine [1847-49]
 - mechanical trig and log tables
- Enigma and code breakers
- relay computers

analog computers

• fluids

9

11

- electrical current
- slide rule

The transistor

key invention enabling electronic computers

- transistor
 - John Bardeen, Walter Brattain, and William Shockley [Bell Labs, 1947]
- integrated circuit (microchip)
 - Jack Kilby [TI 1958], Robert Noyce [Fairchild Semiconductor, 1958]

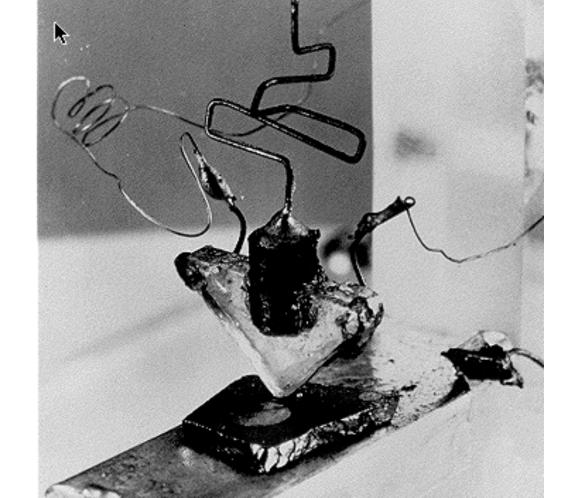
transistor as a switch

- control input opens and closes switch
 - high voltage closes switch: input flows to output
 - low voltage opens switch: output disconnected

input contro

physically

- semiconductor that conducts only when charged
 - control charges the semiconductor
 - the input passes through to output iff it is conducting
- many different implantations
 - e.g., TTL, ECL, and CMOS



Using transistors to compute

simple functions are easy

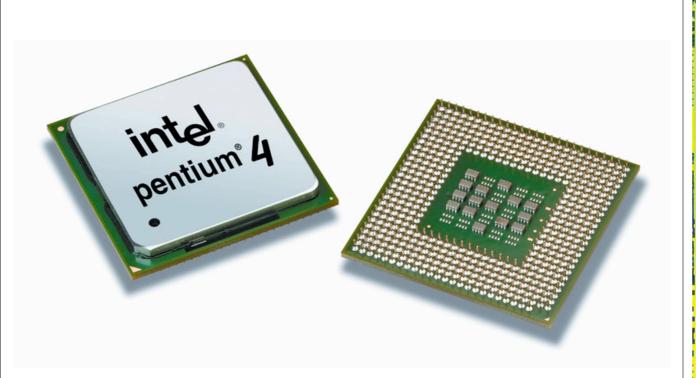
- the function f(x,y,z)
 - if x==1 then f=y else f=z
- three transistors and a resistor

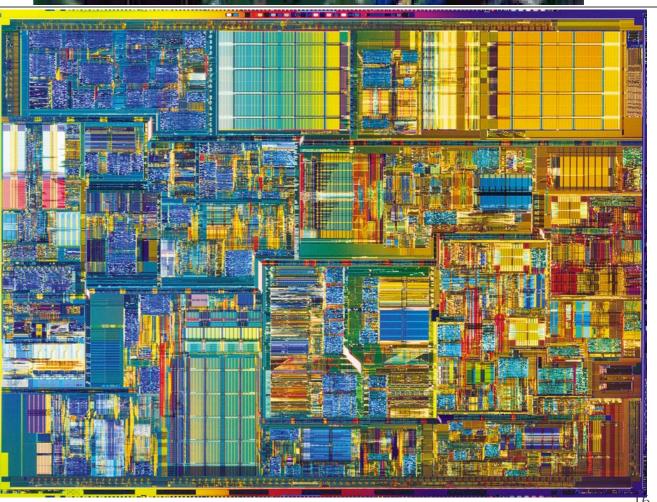
processors are made of transistors

- transistors, wires, resistors and capacitors
 - Pentium 4
 - ~ Willamette: 42 million transistors at 180 nm, 1,75 V, aluminum conductor
 - ~ Northwood: 55 million transistors, at 130 nm, 1.5 V, copper conductor
 - memory chip has 256 million
- on a chip
 - silicon wafer substrate
 - layers of conductor, insulator and semiconductor applied photographically
 - ~ P-III used 21 masks, 1 silicon layer and 6 metal (aluminum)
 - cut from wafer, lead-stitched and encased in plastic

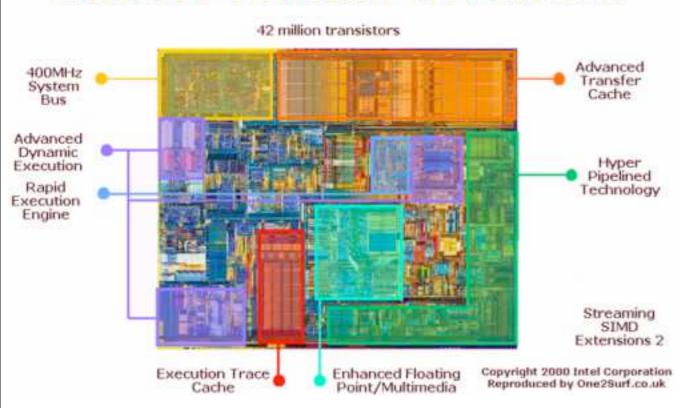
multi-million transistor functions are ... hard!

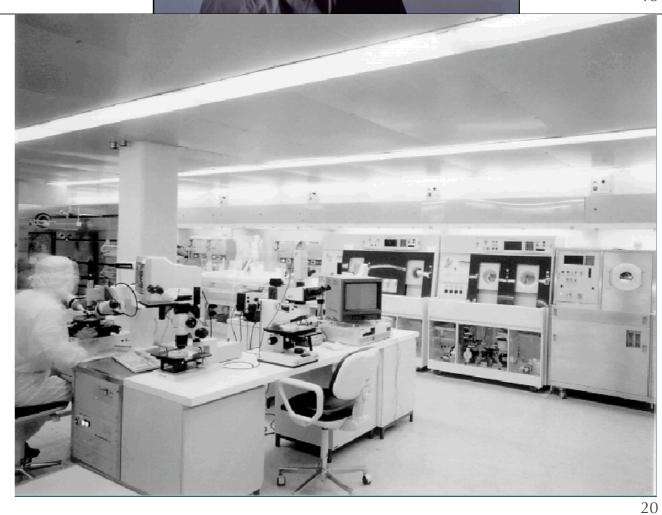
• we need an abstraction





The Intel® Pentium® 4 Processor





Boolean algebra

algebra on two-valued (binary) variables

- G. Boole [1850] and C. Shannon [1938]
- straight-forward mapping to transistor-switches
 - high voltage => 1
 - low voltage => 0

operators (lowest to highest precedence)

- or
 - x + y = 1 if and only if either x or y is 1
- and
 - $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}\mathbf{y} = 1$ iff x and y are both 1
- complement
 - x' = 1 iff x is 0

example

• f = x + y'z

Truth tables

a truth table is

- a way to represent a boolean function
- useful for optimizing and sometime for designing functions

it is written as a two dimensional array with

- column for each input variable
- row for all possible input values
- column for resulting function value

for example

• f = x + y'z

xyz	y z	F
+		+
000	0	0
0 0 1	1	1
010	0	0
011	0	0
100	0	1
101	1	1
110	0	1
111	0	1

21

Axioms

you know an algebra with axioms like

- identity and zero
 - -x+0=x
 - x * 0 = 0
- commutative
 - x + y = y + x
- associative
 - x + (y + z) = (x + y) + z
- distributive
 - x (y + z) = x y + x z

axioms of boolean algebra

- same basic stuff
- plus DeMorgans theorems

Boolean algebra axioms (I)

identity	x + 0	x
	x •!1	X
zero	x + 1	1
	x •!0	0
idempotence	x + x	x
	x •!x	x
complement	X + X'	1
	x •!x′	0
commutative	x + y	y + x
	x •!y	y •!x
associative	x + (y + z)	(x + y) + z
	x •!(y •!z)	(x •!y) •!z
distributive	$x \bullet !(y + z)$	xy + xz
	$x + (y \bullet !z)$	(x + y)(x + z)

notice every axiom has a dual replacing +,0 with •,1

22

Boolean algebra axioms (II)

DeMorgan's theorem for complementing a function

- complement variables
- change ANDs or ORs and ORs to ANDs

DeMorgan's axioms

(x + y)'	x'y'	called a NOR
(xy)'	x' + y'	call a NAND

Boolean algebra axioms

identity	x + 0	=	X
	x •!1	=	X
zero	x + 1	=	1
	x •!0	=	0
idempotence	X + X	=	X
	x •!x	=	X
complement	x + x'	=	1
	x •!x′	=	0
commutative	x + y	=	y + x
	x •!y	=	y •!x
associative	x + (y + z)	=	(x + y) + z
	$x \bullet !(y \bullet !z)$	=	(x •!y) •!z
distributive	$x \bullet !(y + z)$	=	xy + xz
	$x + (y \bullet!z)$	=	(x + y)(x + z)
DeMorgan's	(x + y)'	=	x'y'
	(xy)'	=	x' + y'

x and y can be either a binary variable or a boolean function

26

Simplification using axioms

simplification is

- process of transforming function by repeated application of axioms
- to yield an equivalent new function with fewer boolean operators
- useful because, as we'll see soon, each operator requires transistors

examples ...

- f = ab' + c'd + ab' + c'd
- f = abc + abc' + a'c
- f = ab + a(cd + cd')

Proof using axioms

axioms can also be used to prove new theorems

- theorem is of the form f = f'
- prove by using simplification of f to yield f'
- useful because these higher-level abstractions simplify simplification

examples ...

25

27

- (a + b)'(a' + b')' = 0
- absorptive law: a + ab = a

how do we "prove" axioms?

• inspection of truth tables

Summary

goal is to explain what a computer is

- taking deconstructionist approach
- starting with transistors and working up to complete PC system

transistor

- implements an electronically controlled switch
- on integrated circuit --- lots very small ones

circuits of transistors can be described three ways

- boolean algebra
 - algebra of binary variables
- truth table
 - expressing some functions (easier than algebra)
 - optimizing functions before implementing with transistors
- logic diagram
 - next
- can convert from any one to any of the others

Administrative stuff

web page

- www.ugrad.cs.ubc.ca/cs218
- course info and lecture notes
 - contact information for TAs and me
 - handout form 10 PM day before class
 - final form of notes replace handout form on web after class
- WebCT
 - supplemental problems, answers to textbook problems, grades
 - discussion bboard

office hours

• MW 2-3 in CISR 339 or by appointment

approximate grading scheme

- midterm=20%, final=50%
- labs=10%
- problem sets=18%
- group participation=2%