
Lecture 1 — § 1.1, 1.2
Computer Science 218

Mike Feeley

Introduction and boolean
algebra

2

What is a computer?
 so you are at a party

• and David Hilbert walks up to you and says
- 19th century Russian mathematician

– “so, you’re a computer scientist, eh?”
– “what is a computer exactly?”

 what is your answer?
• divide yourselves into groups of 4-5
• take 5 minutes come up with your “party” answer
• then we’ll talk about it

3

Answer depends on who you are
what you know

• any sufficiently advanced technology is indistinguishable from magic
– Arthur C. Clarke

how you think
• deconstructionist

– start from first principles and build to a higher-level abstraction
– “okay, so there is this thing called string theory ...”

• generalist
– start from high-level abstraction and explain with increasing detail
– “it lets me surf the web ...”

4

Our approach
 goal of course is to explain what a computer is

• starting from the bottom and working up
• we’ll go from gates to a simple PC

 deconstructing a PC
• software

– firmware
– OS
– libraries
– applications

• hardware
– CPU
– memory
– IO devices
– interconnection network (busses)

5

Course outline
roughly one week per topic

• circuits
• components
• numbers
• micro operations
• system organization
• instruction sets and assembly language (software)

in the lab
• you’ll build hardware stuff

– seven labs: easy, hard, easy, hard, easy, hard, hard

• in a circuit simulator

6

Layering of abstraction

transistors (wires, resistors, and capacitors) on a wafer

switches

gates

combinational circuits
– boolean algebra, truth tables and logic diagrams

packages
–!circuit modules

sequential circuit
– combinational circuits plus flip-flop (memory/state)
–!finite state diagrams

integers, floating point, and other encodings (BCD, ASCII, unicode, etc.)
–!data representations and hardware operations on them

RTL and micro operations
–!language for describing operations on multi-bit values in registers
–!busses transfer data among registers

7

RTL description of a simple CPU

fetch and decode
R´t0: AR ← PC, PC ← PC+1
R´t1: IR ← M[AR]
R´t2: AR ← IR(0-11)

t0´t1´t2´(IEN)(FGI+FGO): R ← 1

Rt0: AR ← 0
Rt1: M[AR] ← PC, PC ← 0
Rt2: PC ← PC+1, IEN ← 0, R ← 0, SC ← 0

interrupt cycle

t3d7i´b11: AC ← 0
t3d7i´b10: E ← 0
t3d7i´b9: AC ← AC´
t3d7i´b8: E ← E´
t3d7i´b7: AC ← shr AC, AC(15) ← E, E ← AC(0)
t3d7i´b6: AC ← shl AC, AC(0) ← E, E ← AC(15)
t3d7i´b5: AC ← AC+1
t3d7i´b4AC(15)´: PC ← PC+1
t3d7i´b3AC(15): PC ← PC+1
t3d7i´b2(AC(0)+...+AC(15))´: PC ← PC+1
t3d7i´b1E´: PC ← PC+1
t3d7i´b0: X ← 0
t3d7i´: SC ← 0

execute register instruction
cla
cle

cma
cme

cir
cil

inc
spa
sna
sza
sze
hlt

execute memory instruction

t3d7b11: AC(0-7) ← INPR, FGI ← 0
t3d7b10: OUTR ← AC(0-7), FGO ← 0,
t3d7b9FGI: PC ← PC+1
t3d7b8FGO: PC ← PC+1
t3d7b7: IEN ← 1
t3d7b6: IEN ← 0
t3d7: SC ← 0

execute I/O instruction
inp
out
ski

sko
ion
iof

t3d7´i: AR ← M[AR]
t4d0: DR ← M[AR]
t5d0: AC ← AC∧DR, SC ← 0
t4d1: DR ← M[AR]
t5d1: AC ← AC+DR, E ← Cout, SC ← 0
t4d2: DR ← M[AR]
ttd2: AC ← DR, SC ← 0
t4d3: M[AR] ← AC, SC ← 0
t4d4: PC ← AR, SC ← 0
t4d5: M[AR] ← PC, AR ← AR+1
t5d5: PC ← AR, SC ← 0
t4d6: DR ← M[AR]
t5d6: DR ← DR+1
t6d6: M[AR] ← DR, SC ← 0
t6d6(DR(0)+...+DR(15))´: PC ← PC+1

and

add

lda

sta
bun
bsa

isz

8

RAM

AR

PC

DR

AC

INPR

IR

TR

OUTR

write read

ld inc clr

ld clr

ld clr

ld clr

ld

ld clr

ld

ALU E

bus
ctrlr

7

1

2

3

4

5

6

inc

inc

inc

inc

SC
inc clr

4x16
dec ...

t0

t15clk

15 14 13 12 11 0

3x8
dec

d7 d0i b0b11

FGO

FGI

IEN

R

S0
S1
S2

IR

X

Register and bus diagram of CPU

9

Historical deconstruction
Hilbert’s 23 problems for 20th century (Paris 1900)

• is there a proof of Cantor’s Continuum Hypothesis? (1)
– no - proved undecidable in two parts: 1938 by Kurt Gödel and 1963 by Paul Cohen

• can axioms of logic be proven to be consistent? (2)
– no - proved undecidable in 1931 by Kurt Gödel’s incompleteness theorems

• is there a universal algorithm for solving Diophantine equations? (10)
– integer solutions; e.g., Fermat’s last theorem, which was solved in 1993 by Andrew Wiles
– no - proved undecidable in 1970 by Yuri Matiyasevich

Church-Turing thesis (1938-48)
• theoretical model for mechanical computation (decidability)

– two equivalent models: Turing machine and lambda calculus

• doesn’t describe how to build one
– Turing machine

~ one-way infinite paper tape of ones and zeros

~ in one step: read current position, move tape, write to tape, or change internal state

von Neumann architecture (1945-46)
• model for constructing a stored-program computer
• sequence of instructions held in a store

– fetch instruction, load data, simple operation, store, repeat

read more at
mathworld.wolfram.com

10

Early computers
discrete (digital) computers

• abacus [3000 BCE]
• Pascal tax collector [1642]
• Babbage’s Analytical Engine [1837]

– steam powered computer, but never built

• Babbage’s Difference Engine [1847-49]
– mechanical trig and log tables

• Enigma and code breakers
• relay computers

analog computers
• fluids
• electrical current
• slide rule

11

The transistor
key invention enabling electronic computers

• transistor
– John Bardeen, Walter Brattain, and William Shockley [Bell Labs, 1947]

• integrated circuit (microchip)
– Jack Kilby [TI 1958], Robert Noyce [Fairchild Semiconductor, 1958]

transistor as a switch
• control input opens and closes switch

– high voltage closes switch: input flows to output
– low voltage opens switch: output disconnected

physically
• semiconductor that conducts only when charged

– control charges the semiconductor
– the input passes through to output iff it is conducting

• many different implantations
– e.g., TTL, ECL, and CMOS

input output
control

12

13

Using transistors to compute
simple functions are easy

• the function f(x,y,z)
– if x==1 then f=y else f=z

• three transistors and a resistor

processors are made of transistors
• transistors, wires, resistors and capacitors

– Pentium 4
~ Willamette: 42 million transistors at 180 nm, 1,75 V, aluminum conductor
~ Northwood: 55 million transistors, at 130 nm, 1.5 V, copper conductor

– memory chip has 256 million
• on a chip

– silicon wafer substrate
– layers of conductor, insulator and semiconductor applied photographically

~ P-III used 21 masks, 1 silicon layer and 6 metal (aluminum)
– cut from wafer, lead-stitched and encased in plastic

multi-million transistor functions are ... hard!
• we need an abstraction

y

z

x
0

1

f

14

15 16

17 18

19 20

21

Boolean algebra
algebra on two-valued (binary) variables

• G. Boole [1850] and C. Shannon [1938]
• straight-forward mapping to transistor-switches

– high voltage => 1
– low voltage => 0

operators (lowest to highest precedence)
• or

– x + y = 1 if and only if either x or y is 1

• and
– x • y = xy = 1 iff x and y are both 1

• complement
– x’ = 1 iff x is 0

example
• f = x + y´z

22

Truth tables
a truth table is

• a way to represent a boolean function
• useful for optimizing and sometime for designing functions

it is written as a two dimensional array with
• column for each input variable
• row for all possible input values
• column for resulting function value

for example
• f = x + y’z

x y z | y´z | F
-------+-----+---
0 0 0 | 0 | 0
0 0 1 | 1 | 1
0 1 0 | 0 | 0
0 1 1 | 0 | 0
1 0 0 | 0 | 1
1 0 1 | 1 | 1
1 1 0 | 0 | 1
1 1 1 | 0 | 1

23

Axioms
you know an algebra with axioms like

• identity and zero
– x + 0 = x
– x * 0 = 0

• commutative
– x + y = y + x

• associative
– x + (y + z) = (x + y) + z

• distributive
– x (y + z) = x y + x z

axioms of boolean algebra
• same basic stuff
• plus DeMorgans theorems

24

Boolean algebra axioms (I)

notice
every axiom has a dual
replacing +,0 with •,1

identity x + 0 x
x •!1 x

zero x + 1 1
x •!0 0

idempotence x + x x
x •!x x

complement x + x’ 1
x •!x’ 0

commutative x + y y + x
x •!y y •!x

associative x + (y + z) (x + y) + z
x •!(y •!z) (x •!y) •!z

distributive x •!(y + z) xy + xz
x + (y •!z) (x + y)(x + z)

25

DeMorgan’s theorem for complementing a function
• complement variables
• change ANDs or ORs and ORs to ANDs

DeMorgan’s axioms

Boolean algebra axioms (II)

(x + y)’ x’y’ called a NOR

(xy)’ x’ + y’ call a NAND

26

Boolean algebra axioms
identity x + 0 = x

x •!1 = x
zero x + 1 = 1

x •!0 = 0
idempotence x + x = x

x •!x = x
complement x + x’ = 1

x •!x’ = 0
commutative x + y = y + x

x •!y = y •!x
associative x + (y + z) = (x + y) + z

x •!(y •!z) = (x •!y) •!z
distributive x •!(y + z) = xy + xz

x + (y •!z) = (x + y)(x + z)
DeMorgan’s (x + y)’ = x’y’

(xy)’ = x’ + y’

x and y can be either
a binary variable or
a boolean function

27

Simplification using axioms
simplification is

• process of transforming function by repeated application of axioms
• to yield an equivalent new function with fewer boolean operators
• useful because, as we’ll see soon, each operator requires transistors

examples ...
• f = ab’ + c’d + ab’ + c’d
• f = abc + abc’ + a’c
• f = ab + a(cd + cd’)

28

axioms can also be used to prove new theorems
• theorem is of the form f = f’
• prove by using simplification of f to yield f’
• useful because these higher-level abstractions simplify simplification

examples ...
• (a + b)’(a’ + b’)’ = 0
• absorptive law: a + ab = a

how do we “prove” axioms?
• inspection of truth tables

Proof using axioms

29

Summary
goal is to explain what a computer is

• taking deconstructionist approach
• starting with transistors and working up to complete PC system

transistor
• implements an electronically controlled switch
• on integrated circuit --- lots very small ones

circuits of transistors can be described three ways
• boolean algebra

– algebra of binary variables
• truth table

– expressing some functions (easier than algebra)
– optimizing functions before implementing with transistors

• logic diagram
– next

• can convert from any one to any of the others
30

web page
• www.ugrad.cs.ubc.ca/cs218
• course info and lecture notes

– contact information for TAs and me
– handout form 10 PM day before class
– final form of notes replace handout form on web after class

• WebCT
– supplemental problems, answers to textbook problems, grades
– discussion bboard

office hours
• MW 2-3 in CISR 339 or by appointment

approximate grading scheme
• midterm=20%, final=50%
• labs=10%
• problem sets=18%
• group participation=2%

Administrative stuff

