Decoders, muxes and intro to sequential circuits

Lecture 4-§2.2-2.3
Computer Science 218

Mike Feeley

Decoders and encoders

decoder selects one labelled output

- n-bit input pattern selects the output
- you can think of this pattern as a number (address)
- m outputs labelled with unique patterns

- output is 1 iff its label matches input
- $\mathrm{m} \leq 2^{\mathrm{n}}$ outputs
- its less if some input patterns are ignored
encoder does the opposite
- inputs are labelled with unique pattern
- output encodes pattern of input that $=1$
- there can be only one such input

uses
- addressing memory cells
- getting interrupt device address

Composing decoders using enable

build $2 n$-bit decoder from $n+1 n$-bit decoders

- high-order inputs to one decoder, low-order inputs to all others
- connect outputs of higher-order decoder to enables of each other

NAND decoders

NAND gates are cheaper than ANDs

- require fewer transistors to implement
a NAND decoder looks like this

and this inverted truth table

\mathbf{E}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	x	x	1	1	1	1

Implementing an Encoder

encoder does the opposite of decoder

$$
\begin{array}{ccccc|cc}
\mathbf{E} & \mathbf{D}_{\mathbf{0}} & \mathbf{D}_{\mathbf{1}} & \mathbf{D}_{\mathbf{2}} & \mathbf{D}_{\mathbf{3}} & \mathbf{A}_{\mathbf{1}} & \mathbf{A}_{\mathbf{0}} \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \mathrm{x} & \mathrm{x}
\end{array}
$$

its implemented like this ...

$$
\begin{aligned}
& \mathrm{A}_{0}=\mathrm{ED}_{1}+\mathrm{ED}_{3}=\mathrm{E}\left(\mathrm{D}_{1}+\mathrm{D}_{3}\right) \\
& \mathrm{A}_{1}=\mathrm{ED}_{2}+\mathrm{ED}_{3}=\mathrm{E}\left(\mathrm{D}_{2}+\mathrm{D}_{3}\right)
\end{aligned}
$$

or gates and an and for enable

Multiplexers

select one input to send to output

- 2^{n} data inputs plus n select inputs
- data inputs are labelled with unique n-bit number
- one output
- has value of data input with label matching select implementation

Comparing mux and decoder

 $=$$=$
$=$

Can you implement a mux using a dec? ...

Composing to form $2 n \times 1$ mux

Composing to form multipole mux

quadruple mux switchs 4 bits at once

$$
\begin{array}{cc|c}
\mathbf{E} & \mathbf{S} & \mathbf{Y} \\
\hline 0 & \mathrm{x} & \text { all } 0^{\prime} \mathrm{s} \\
1 & 0 & \text { A } \\
1 & 1 & \text { B }
\end{array}
$$

Demultiplexer

direct input to one of 2^{n} outputs

- one data input, n select inputs
- 2^{n} outputs each labelled with number - output label named by select $=$ input; others $=0$ what does this look like? ...

Fun with decoders and muxes

convert truth table to logic diagram

- not necessarily efficient, but its easy
decoder
- connect input variables to dec's select
- one dec output for each row of table

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- or dec outputs for row's where $f=1$

More fun

mux

- connect table row values to mux inputs
- connect input variables to mux select
- mux output is function output

can we use a smaller mux?

13

Summary

combinational circuits

- no loops - no state
- basic building block
- describe implementation with
- boolean algebra
- truth tables
- logic diagrams
- abstract as
- package

combinational circuits you know

- adders: half, full, multi-bit
- decoders, encoders and multiplexers

Overview

sequential circuits

- adding state to combinational circuits
- clocks

Flip flops and sequential circuits

flip-flops

- a state-holding component
- there are several of them: $\mathrm{SR}, \mathrm{D}, \mathrm{JK}$ and T
- excitation tables
designing a sequential circuit
- state tables and diagrams
- some examples

Sequential circuits

output depends on past as well as current inputs

- assembled by combining combinational circuit with memory
- memory elements are called flip flops

uses

- reduce combinational-circuit propagation delay by pipelining - divide circuit into multiple "stages" with flip flops between inputs and outputs
- use internal state as addition inputs
- just about any interesting problem requires this
~ e.g., clock, counter, microwave oven

approaches

- synchronous
- central clock controls when values are locked into flip-flops \qquad ఒ に几 ఒ
- asynchronous
- self timed circuits that do not use a clock

Examples

combinational circuit

time to get one answer $=7$ * inverter-gate-delay
answers per second $=1 /(7 *$ inverter-gate-delay $)$

pipelined sequential circuit
time to get one answer $=7$ * inverter-gate-delay +8 * flip-flop-gate-delay answers per second $=1 /(1 *$ inverter-date-delay $+1 *$ flip-flop-gate-delay

sequential circuit

one of inputs is output from previous step

