
  Electrical Machines II Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao  

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras  

 

3 Synchronous Generator Operation

3.1 Cylindrical Rotor Machine
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Figure 30: Equivalent circuits

The synchronous generator, under the assumption of constant synchronous
reactance, may be considered as representable by an equivalent circuit comprising an ideal
winding in which an e.m.f. Et proportional to the field excitation is developed, the winding
being connected to the terminals of the machine through a resistance ra and reactance
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(Xl + Xa) = Xs all per phase. This is shown in Fig. 30. The principal characteristics of the
synchronous generator will be obtained qualitatively from this circuit.

3.1.1 Generator Load Characteristics

Consider a synchronous generator driven at constant speed and with constant exci-
tation. On open circuit the terminal voltage V is the same as the open circuit e.m.f. Et.
Suppose a unity-power-factor load be connected to the machine. The flow of load current
produces a voltage drop IZs in the synchronous impedance, and terminal voltage V is re-
duced. Fig. 31 shows the complexor diagram for three types of load. It will be seen that
the angle σ between Et and V increases with load, indicating a shift of the flux across the
pole faces due to cross- magnetization. The terminal voltage is obtained from the complex
summation

V + Zs = Et

or V = Et − IZs (24)

Algebraically this can be written

V =
√

(E2

t − I2X2
s ) − Ir (25)

for non-reactive loads. Since normally r is small compared with Xs

V 2 + I2X2

s ≈ E2

t = constant (26)

so that the V/I curve, Fig. 32, is nearly an ellipse with semi-axes Et and Isc. The
current Isc is that which flows when the load resistance is reduced to zero. The voltage V
falls to zero also and the machine is on short-circuit with V = 0 and

I = Isc = Et/Zs ≈ Et/Xs (27)

For a lagging load of zero power-factor, diagram is given in Fig. 31 The voltage
is given as before and since the resistance in normal machines is small compared with the
synchronous reactance, the voltage is given approximately by

V ≈ Et − IXs (28)
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Figure 31: Variation of voltage with load at constant Excitation
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Figure 32: Generator Load characteristics

which is the straight line marked for cos φ = 0 lagging in Fig. 32. A leading load of
zero power factor Fig. 31. will have the voltage

V ≈ Et + IXs (29)

another straight line for which, by reason of the direct magnetizing effect of leading
currents, the voltage increases with load.

Intermediate load power factors produce voltage/current characteristics resembling
those in Fig. 32. The voltage-drop with load (i.e. the regulation) is clearly dependent upon
the power factor of the load. The short-circuit current Isc at which the load terminal voltage
falls to zero may be about 150 per cent (1.5 per unit) of normal current in large modern
machines.

3.1.2 Generator Voltage-Regulation

The voltage-regulation of a synchronous generator is the voltage rise at the terminals
when a given load is thrown off, the excitation and speed remaining constant. The voltage-
rise is clearly the numerical difference between Et and V, where V is the terminal voltage
for a given load and Et is the open-circuit voltage for the same field excitation. Expressed

46



  Electrical Machines II Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao  

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras  

 

as a fraction, the regulation is

ε = (Et − V )/V perunit (30)

Comparing the voltages on full load (1.0 per unit normal current) in Fig. 32, it will
be seen that much depends on the power factor of the load. For unity and lagging power
factors there is always a voltage drop with increase of load, but for a certain leading power
factor the full-load regulation is zero, i.e. the terminal voltage is the same for both full and
no-load conditions. At lower leading power factors the voltage rises with increase of load,
and the regulation is negative. From Fig. 30, the regulation for a load current I at power
factor cos φ is obtained from the equality

E2

t = (V cos φ + Ir)2 + (V sin φ + IXs)
2 (31)

from which the regulation is calculated, when both Et and V are known or found.

3.1.3 Generator excitation for constant voltage
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Figure 33: Generator Excitation for constant Voltage

Since the e.m.f. Et is proportional to the excitation when the synchronous
reactance is constant, the Eqn. 31 can be applied directly to obtain the excitation necessary
to maintain constant output voltage for all loads. All unity-and lagging power-factor loads
will require an increase of excitation with increase of load current, as a corollary of Fig. 32.
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Low-leading-power-factor loads, on the other hand, will require the excitation to be reduced
on account of the direct magnetizing effect of the zero- power-factor component. Fig. 33
shows typical e.m.f./current curves for a constant output voltage. The ordinates of Fig. 33
are marked in percentage of no-load field excitation, to which the e.m.f Et exactly corresponds
when saturation is neglected.

3.1.4 Generator input and output

For any load conditions as represented by Fig. 30, the output per phase is
P = V I cos φ. The electrical power converted from mechanical power input is per phase

P1 = EtI cos(φ + σ) (32)

Resolving Et along I

P1 = EtI cos(φ + σ) = (V cos φ + Ir).I = V I cos φ + I2R (33)

The electrical input is thus the output plus the I2R loss, as might be expected. The
prime mover must naturally supply also the friction, windage and core losses, which do not
appear in the phasor diagram.

In large machines the resistance is small compared with the synchronous reactance
so that θ = arc tan(xs/r) ≈ 90◦, it can be shown that

V

sin(90 − θ + σ)2
=

Zs

sin σ
(34)

and hence,
P = P1 = EtI cos(φ + σ) ≈ (Et/Xs).V sin σ (35)

Thus the power developed by a synchronous machine with given values of Et

V and Zs is proportional to sinσ: or, for small angles, to σ, and the displacement angle
σ representing the change in relative position between the rotor and resultant pole- axes is
proportional to the load power. The term load-, power- or torque-angle may be applied to
σ.

An obvious deduction from the above Eqn. 35is that the greater the field excitation
(corresponding to Et) the greater is the output per unit angle σ: that is, the more stable
will be the operation.
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3.2 Salient Pole Rotor Machine

As discussed earlier in Sec. 3.1 the behaviour of a synchronous machine on load can
be determined by the use of synchronous reactance xs which is nothing but the sum of xa

and xl , where xa is a fictitious reactance representing the effect of armature reaction while
xl is the leakage reactance. It was also mentioned that this method of representing the
effect of armature reaction by a fictitious reactance xa was applicable more aptly only for a
cylindrical rotor (non-salient pole) machine. This was so as the procedure followed therein
was valid only when both the armature and main field m.m.f.’s act upon the same magnetic
circuit and saturation effects are absent.

3.2.1 Theory of Salient-pole machines (Blondel’s Two-reaction Theory)

It was shown in Sec. ?? that the effect of armature reaction in the case of a salient
pole synchronous machine can be taken as two components - one acting along the direct
axis (coinciding with the main field pole axis) and the other acting along the quadrature
axis (inter-polar region or magnetic neutral axis) - and as such the mmf components of
armature-reaction in a salient-pole machine cannot be considered as acting on the same
magnetic circuit. Hence the effect of the armature reaction cannot be taken into account by
considering only the synchronous reactance, in the case of a salient pole synchronous machine.

In fact, the direct-axis component Fad acts over a magnetic circuit identical with
that of the main field system and produces a comparable effect while the quadrature-axis
component Faq acts along the interpolar space, resulting in an altogether smaller effect and,
in addition, a flux distribution totally different from that of Fad or the main field m.m.f.
This explains why the application of cylindrical-rotor theory to salient-pole machines for
predicting the performance gives results not conforming to the performance obtained from
an actual test.

Blondel’s two-reaction theory considers the effects of the quadrature and direct-axis
components of the armature reaction separately. Neglecting saturation, their different effects
are considered by assigning to each an appropriate value of armature-reaction “reactance,”
respectively xad and xaq . The effects of armature resistance and true leakage reactance
( xl ) may be treated separately, or may be added to the armature reaction coefficients on the
assumption that they are the same, for either the direct-axis or quadrature-axis components
of the armature current (which is almost true). Thus the combined reactance values can be
expressed as :
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xsd = xad + xl and xsq = xaq + xl (36)

for the direct- and cross-reaction axes respectively. These values can be determined experi-
mentally as described in Sec. 3.2.3

In a salient-pole machine, xaq, the cross- or quadrature-axis reactance is smaller than
xad, the direct-axis reactance, since the flux produced by a given current component in that
axis is smaller as the reluctance of the magnetic path consists mostly of the interpolar spaces.

It is essential to clearly note the difference between the quadrature- and direct-axis
components Iaq, and Iad of the armature current Ia, and the reactive and active components
Iaa and Iar. Although both pairs are represented by phasors in phase quadrature, the former
are related to the induced emf Et while the latter are referred to the terminal voltage V .
These phasors are clearly indicated with reference to the phasor diagram of a (salient pole)
synchronous generator supplying a lagging power factor (pf) load, shown in Fig. ??(a). We
have

Iaq = Ia cos(δ + φ); Iad = Ia sin(δ + φ); and Ia =
√

(I2
aq + I2

ad) (37)

Iaa = Ia cos(φ); Iar = Ia sin(φ); and Ia =
√

(I2
aa + I2

ar) (38)

where σ = torque or power angle and φ = the p.f. angle of the load.

The phasor diagram Fig. 34 shows the two reactance voltage components Iaq ∗xsq and
Iad ∗ xsd which are in quadrature with their respective components of the armature current.
The resistance drop Ia ∗ Ra is added in phase with Ia although we could take it as Iaq ∗ Ra

and Iad ∗ Ra separately, which is unnecessary as

Ia = Iad + jIaq

Actually it is not possible to straight-away draw this phasor diagram as the power angle σ is
unknown until the two reactance voltage components Iaq ∗xsq and Iad ∗xsd are known. How-
ever this difficulty can be easily overcome by following the simple geometrical construction
shown in Fig. 34(d), assuming that the values for terminal voltage V , the load power factor
(pf) angle φ and the two synchronous reactances xsd and xsq are known to us.

The resistance drop Ia ∗ Ra (length AB) is added to the tip of the voltage phasor
(OA) in phase with the current phasor (i.e. in a direction parallel to OQ ). Then we draw
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line BC ( of length equal to Ia ∗ xsq ) and extend it to D such that BD will be (of length
equal to Ia ∗ xsd ) at the extremity B of Ia ∗ Ra and at right-angles to Ia . Draw OC and
extend it (to F ). From D draw the perpendicular DF on OC extended. Then OF represents
the induced voltage Et. The proof for this can be given as follows:. If DF is extended to G
such that this line is perpendicular to BG drawn parallel to OF, we have :

BG = BD ∗ cos(90 − (σ + φ)) = Ia ∗ xsd ∗ sin(σ + φ) = Iad ∗ xsd and (39)

GF = CH = BC ∗ sin(90 − (σ + φ)) = Ia ∗ xsq ∗ cos(σ + φ) = Iaq ∗ xsq (40)

3.2.2 Power relations in a Salient Pole Synchronous Machine:

Neglecting the armature winding resistance, the power output of the generator is
given by:

P = V ∗ Ia ∗ cos φ (41)

This can be expressed in terms of σ, by noting from Fig. 34 that :

Ia ∗ cos φ = Iaq ∗ cos σ + Iad ∗ sin σ (42)

V ∗ cos σ = Eo − Iad ∗ xsd

and V ∗ sin σ = Iaq ∗ xsd

Substituting these in the expression for power, we have.

P = V [(V ∗ sin σ/xsd) ∗ cos σ + (Eo − V ∗ cos σ)/xsd ∗ sin σ] (43)

= (V ∗ Eo/xsd) ∗ sin σ + V 2
∗ (xsd − xsq)/(2 ∗ xsq ∗ xsq) ∗ sin 2σ

It is clear from the above expression that the power is a little more than that for
a cylindrical rotor synchronous machine, as the first term alone represents the power for a
cylindrical rotor synchronous machine. A term in (sin 2σ) is added into the power - angle
characteristic of a non-salient pole synchronous machine. This also shows that it is possible
to generate an emf even if the excitation E0 is zero. However this magnitude is quite less
compared with that obtained with a finite E0. Likewise we can show that the machine
develops a torque - called the reluctance torque - as this torque is developed due to the
variation of the reluctance in the magnetic circuit even if the excitation E0 is zero.

3.2.3 Experimental Determination of xd and xq

The unsaturated values of xd and xq of a 3-Phase synchronous machine can be easily
determined experimentally by conducting the following test known as slip test. The rotor of
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the synchronous machine is driven by means of a prime mover (usually a DC motor in the
laboratory) at a speed close to the synchronous speed in the proper direction but not equal
to it. The armature is supplied with a low voltage 3-Phase balanced supply through a variac,
while the field circuit is kept open. The armature current varies between two limits since
it moves through, since the synchronously rotating armature mmf acts through the varying
magnetic reluctance paths as it goes from inter-polar axis to pole axis region. The values of
xsd and xsq are determined based on the applied voltage and the armature current values.
The ratio of applied voltage to the minimum value of the armature current gives the direct
axis synchronous reactance xsd which is usually the same as the synchronous reactance
xs that we usually determine from normal no-load and short-circuit tests as explained in
Sec. ?? The ratio of applied voltage to the maximum value of the armature current gives
the the quadrature-axis reactance xsq. For more accurate determination of these values the
oscillogram of the armature current and voltage can be recorded.

3.3 Losses and Efficiency

To calculate the efficiency of a synchronous generator, a procedure is to be followed
for establishing the total losses when operating under load. For generators these losses are,

1. Rotational losses such as friction and windage.

2. Eddy current and hysteresis losses in the magnetic circuit

3. Copper losses in the armature winding and in the field coils

4. Load loss due to armature leakage flux causing eddy current and hysteresis losses in
the armature-surrounding iron.

With regard to the losses, the following comments may be made,

1. The rotational losses, which include friction and windage losses, are constant, since the
speed of a synchronous generator is constant. It may be determined from a no-load
test.

2. The core loss includes eddy current and hysteresis losses as a result of normal flux
density changes. It can be determined by measuring the power input to an auxiliary
motor used to drive the generator at no load, with and without the field excited. The
difference in power measured constitutes this loss.
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3. The armature and field copper losses are obtained as I2

aRa and VfIf Since per phase
quantities are dealt with, the armature copper loss for the generator must be multiplied
by the number of phases. The field winding loss is as a result of the excitation current
flowing through the resistance of the field winding.

4. Load loss or stray losses result from eddy currents in the armature conductors and
increased core losses due to distorted magnetic fields. Although it is possible to separate
this loss by tests, in calculating the efficiency, it may be accounted for by taking the
effective armature resistance rather than the dc resistance.

After all the foregoing losses have been determined, the efficiency η is calculated as,

η =
kV A ∗ PF

kV A ∗ PF + (total losses)
∗ 100% (44)

where η = efficiency,

kvA = load on the generator (output)

PF = power factor of the load

The quantity (kVA*PF) is, of course, the real power delivered to the load (in kW) by
the synchronous generator. Thus, it could in general be stated as

η =
Pout

Pin

∗ 100 =
Pout

Pout + Plosses

∗ 100 (45)

The input power Pin = Pout + Plosses is the power required from the prime mover to
drive the loaded generator.
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