Binary numbers

Internally, computers rely on electrical current to represent data and execute instructions to manipulate that data

As we will see in later lectures computers that store and manipulate data can do so through combinations of simple electronic circuits

These circuits and data storage are controlled by provision of current. This is not a particularly sophisticated mechanism

The current is either ON or OFF This is a choice of two states - it is *binary*

Side

Side 2

104 Introduction to Computer Science 2

Binary numbers

Rather than discuss the values stored in the computer in terms of ON/OFF we use a convenient number system

We conceptually think of the smallest manipulable value as one instance of an ON/OFF value

We call this a *bit*, the value of which can be ON or OFF

Binary numbers

We use an abstraction

The *binary* number system contains only two symbols: 1 and 0

In place of electrical current we can use these symbols to *abstractly* represent some internal state of the computer achieved through combinations of ON/OFF values

We can represent - data - somewhere to store the data - instructions

by combining individual bits

Side 4

Binary numbers

The binary number system is a *positional* number system

We are practiced at using the decimal number system which is also positional

eg in the number 333 the digits are the same but are interpreted based on their position

(3x100) + (3x10) + (3x1)

or $(3x10^2) + (3x10^1) + (3x10^0)$

based on

100000 10000 1000 100 10 1 $10^5 \quad 10^4 \quad 10^3 \quad 10^2 \quad 10^1 \quad 10^0$ -

Where digits two 0	eas t 0,1,2 and	:he d 2,3,4 1	ecin ,5,6	nal s ,7,8,	syste 9 bi	em h nary	as te only	en / has
With p	oosit	ional	val	ues				
2	7 26	⁶ 2 ⁵	2	¹ 2 ³	2 ²	21	2 ⁰	
1	28 6	4 32	2 10	68	4	2	1	
conve	rted	to a	dec 24	imal	vali 22	Je 21	2 ⁰	
128	64	32	16	8	4	2	1	
	0	0	1	0	1	0	1	
0								
(1x2 ⁴)	+ (0)x2 ³)	+ (1	x22) + (0x21) + (1x2°)
(1x2 ⁴) = 16 +	+ (0)x2 ³) 4 +	+ (1 0 +	x2² 1) + (0x21) + (1x2º)

Side 6

2

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><section-header>

Data representation How is the data and instructions of our programs stored? an main memo? in orgnartments called bytes Obta 5 to piece of data or 1 piece of an contraction holds 1 piece of data or 1 piece of an contraction holds 2 piece of data or 1 piece of data or 1 piece of an contraction holds 2 piece of data or 1 piece o

Side 8

Wh	at can one	byte store?	
From	ı		
	00000000	(0 base 10)	
to	11111111	(255 base 10)	
So h prog	ow can we ha rams?	ve values > 255 i	n our
Use	more bytes!		
	k 00000001	k+1	addresses
	1x 28 + 1x2	5 + 1x2 ² + 1x2 ⁰	
so us num	sing <i>n</i> bits we bers from (che	can represent eck it out)	
	0 to	2 ⁿ -1	
0557.104 In	roduction to Computer Science	12	Side 10

Nega	tive in	teg	ers				
So far v (<i>unsign</i>	So far we have only non-negative (<i>unsigned</i>) integers						
In base	10 we i	use a	a mii	nus	sign		
-	213						
In binar (MSB) • if MS • if MS • other	In binary we use the most significant bit (MSB) if MSB is 1 number is negative if MSB is 0 number is positive other 7 bits represent magnitude						
	2 ⁶ 2 ⁵	24	2 ³	2 ²	21	2 ⁰	
	64 32	16	8	4	2	1	
	0 0	1	1	0	0	1	
• if this • if this Called Can rep	• if this is 0 value is 25 • if this is 1 value is -25 Called "sign-magnitude" form Can represent -127 to 127						
0557.104 Introduc	tion to Computer	Science 2					Slide 12

Sign-ma	gnitude probler	ns				
Representir	ng zero					
000	0 0 0 0 0 0 0 0 0 = ?					
100	1 0 0 0 0 0 0 0 0 = ?					
Adding neg	ative to positive					
	00101101		45			
+	10011000	+	- 24			
	11000101		- 69			
Need a bett	Need a better solution					
0557.104 Introduction to Co	emputer Science 2		Side 13			

positive ii form	ntegers are in sign-ma	agnitude
negative number v (complen	numbers are equivale vith all bits "flipped" nented), and 1 added	ent positive to result
eg		
	00000111	+7
flip	11111000	
add 1	11111001	-7

2's com	plement			
45 + (-24)				
+24	00011000			
flip	11100111			
add 1	11101000	-24		
	00101101		45	
Ŧ	00010101	Ŧ	21	
How do we know if result is negative or positive?				
0557.104 Introduction to	0657.104 Introduction to Computer Science 2			

Interpreting 2's complement	
If MSB is 0 number is positive, intepret normally	
If MSB is 1 number is negative • complement all bits • add 1	
 interpret as unsigned integer but remember value is negative 	
Try	
4 - 7	
10 - 18	
0557 TDJ Introduction In Computer Science 2 Side 15	

What else?

What range of values can we represent in 2's complement? • read Appendix G of the manual Do we need to think about any other number bases? • yes, in many situates base 8 (octal) and base 16 (hexadecimal) are important to consider • Lecture 5 • read Appendix G of the manual

Side 17

ater Science 2