LT 1160 Switch Driver
LT1160 High (& Low) Side Driver

- N channel high side
- $V_{\text{gate}} \sim V_{\text{source}} + 10\text{V}$
- $< 75\text{V}$
- Drives 3000 pF
 - 140 ns to 600 ns
- $f_{\text{max}} > 100\text{kHz}$
LT1160 Bootstrap High-side Drive
LT1160 Bootstrap High-side Drive

Purdue University EET 257 Power & RF Electronics
LT1160 Bootstrap Low-side Drive
LT1160 Performance – Truth Table

<table>
<thead>
<tr>
<th>IN TOP</th>
<th>IN BOTTOM</th>
<th>T GATE DR</th>
<th>B GATE DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Purdue University Power & RF Electronics
Output Capacitor

Waveform at MOSFETS S-D

High-side on => charge

Low-side on => discharge

Waveform across load
Output Capacitor

High-pass filter

\[f_{-3dB} = \frac{1}{(2 \pi R_{load} C)} \]

\[C_{coupling} = ? \]

Voltage rating
Layout

[Diagram of a circuit with components labeled and connections indicated.]
Filter Design

LCR second order filter (resonant tank)

\[\alpha = \frac{1}{Q} = 0.7 \quad (\text{ECET 307} \Rightarrow \text{Butterworth}) \]

\[Q = \frac{X}{R} \quad R = 8 \ \Omega \quad X = ? \quad f = 10 \ \text{kHz} \quad L = ? \quad C = ? \]
Class D - Full Bridge
110 W, $\text{eff} = 91\%$, THD = 7.8\%