

STANDARD FILM RESISTOR - SFR25

FEATURES

- Metal film technology;
- Non-flammable;
- General purpose resistors;
- High stability;
- Low cost;
- Low noise;
- Different forming styles available;
- Different packaging and taping configurations;
- Jumper available (0Ω).

MARKET SEGMENTS AND APPLICATIONS

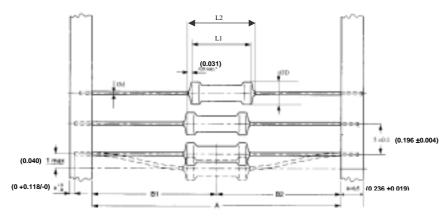
Industry sector	Application segment	End-user equipment	
Industrial	Power	Power supplies	
	Fowei	Motor speed controls	
Telecom	Data Communication	Line protection resistor	
l elecom		Power supplies	
	Sound & Vision	Amplifiers, Television,	
Congumer	Souria & Vision	Video cassette recorder	
Consumer	Kitchen Appliances	Blender	
	Lighting	Ballast equipment	
		Dashboard electronics	
		Lighting equipment	
Automotive	Electronic Systems	Window/mirror steering	
		ABS system, Alarm system	
		Airbag, Electronic fuel injection	

TECHNOLOGY

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with non-flammable light green lacquer, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

QUICK REFERENCE DATA

	SFR25 ± 5%	SFR25 ± 1%		
DESCRIPTION	(E24 serie)	(E24/E96 series)		
	Cu-	lead		
Resistance range	0.22Ω to $10M\Omega$	1 Ω to 10M Ω		
Temperature coefficient:				
$R \le 1M\Omega$	≤ ±100	ppm/°C		
$R > 1M\Omega$	≤ ±250	ppm/°C		
Absolute maximum dissipation at Tamb = 70°C	0.4W			
Thermal resistance. R _{th}	200KW			
Limiting voltage (DC or RMS)	25	VOV		
Rated Voltage (1)	√Pn	x R		
Basic specification	IEC 60115-1	and 60115-2		
Climatic category (IEC 60068)	55 / 1:	55 / 56		
Stability, ∆R/Rmax., after:				
Load	± 1% +0.05Ω	± 0.5% +0.05Ω		
Climatic tests	± 1% +0.05Ω	± 0.5% +0.05Ω		
Resistance to soldering heat	$\pm 0.25\% +0.05\Omega$	± 0.1% +0.05Ω		
Short time overload	± 0.25% +0.05Ω	± 0.25% +0.05Ω		


Note:

¹⁻ Maximum rated voltage is the "Limiting voltage".

MECHANICAL DATA

Axial style

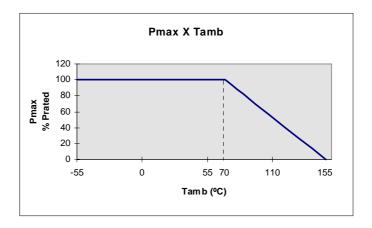
Max. displacement between any two resistors. Dimensions in mm.

Table 1.

Туре	Α	φD max.	L1 max.	L2 max.	φd	B1-B2	Mass per 100 units
SEDAE	52 +1.5 / -0 (2.047 +0.059/-0)	2.5	6.5		0.58 ± 0.05	±1.2	21g
SFR25	26 ± 1.5 (1.024 ±0.059)	(0.098)	(0.256)	-	(0.023 ±0.002)	(±0.047)	15g

Dimensions in mm / (Inches)

MOUNTING


The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines. A radial taped version economizes space on the PCB. The double kink style offers great advantages for manual insertion improving the mounting stability for the customer. They have a real *snap in* function to fix the resistor in PCB without weakening the connecting leads.

ELECTRICAL CHARACTERISTICS

DERATING

The power that resistor can dissipate depends on the operating temperature.

Maximum dissipation (Pmax) in percentage of rated power as a function of the ambient temperature (Tamb).

APPLICATION INFORMATION

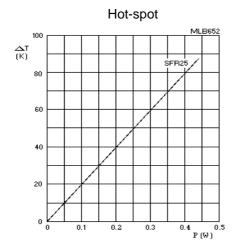


Fig. 1 - Hot spot temperature rise (ΔT) as a function of dissipated power.

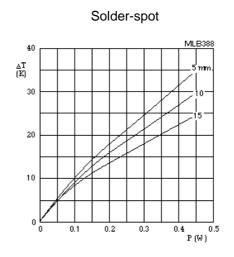


Fig. 2 - Temperature rise (ΔT) at the lead (soldering point) as a function of dissipated power at various lead lengths after mounting.

Note:

The maximum permissible hot-spot temperature is 155°C.

PULSE LOADING CAPABILITIES

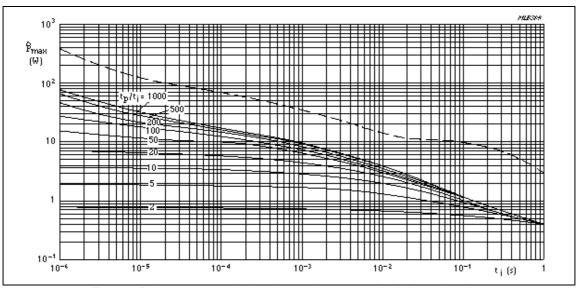


Fig. 3 – Pulse on a regular basis, maximum permissible peak pulse power (^Pmax) as a function of pulse duration (ti).

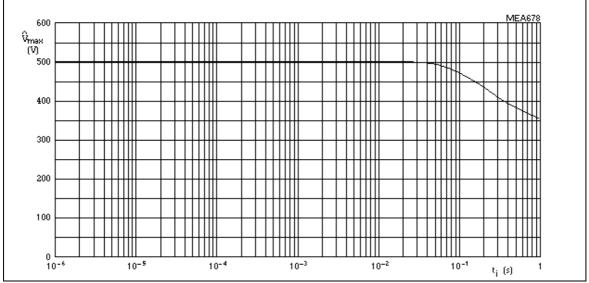


Fig. 4 - Pulse on a regular basis, maximum permissible peak pulse voltage (^Vmax) as a function of pulse duration (ti).

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC publication 60062 "color code for fixed resistors".

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of ±5% or 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

ORDERING INFORMATION

Table 2. Ordering code indicating resistor type and packaging

			ORDERING CODE 23xx xxx xxxxxx					
	TYPE LEAD Ø mm	TO 1	BANI	BANDOLIER ON REEL				
TYPE		TOL %		STRAIGI	HT LEADS			
		76	52	26	52	52		
			(2.047)	(1.024)	(2.047)	(2.047)		
			5000 units	4000 units	1000 units	5000 units		
	0 0 50	1	2322 188 2xxxx	-	-	2306 181 8xxxx		
SED'A I	,	Cu 0,58 (Cu 0.023) 5	2322 181 43xxx	2306 181 43xxx	2322 181 53xxx	2322 181 63xxx		
	(00 0.020)		-	-	-	2306 181 63xxx ⁽¹⁾		

Dimensions in mm / (Inches)
(1) Min. Order Quantity 50.000pcs.

Note: For formed types see "Formed Types Specification"

ORDERING CODE

- The resistors have a 12 digit ordering code starting with 23
- The subsequent 6 or 7 digits indicate the resistor type and packaging, see table 2.
- For 5% tolerance the remaining 3 digits indicate the resistance value;
 - The first 2 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with table 3.
- For 1% tolerance the remaining 4 digits indicate the resistance value;
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with table 3.

Table 3 .Last digit (12NC)

Resistance Decade for 5%	Resistance Decade for 1%	Last Digit
0.22 to 0.91Ω	-	7
1 to 9.1Ω	1 to 9.76Ω	8
10 to 91Ω	10 to 97.6Ω	9
100 to 910Ω	100 to 976Ω	1
1 to 9.1kΩ	1 to 9.76kΩ	2
10 to 91kΩ	10 to 97.6kΩ	3
100 to 910kΩ	100 to 976kΩ	4
$1M\Omega$ to $9.1~M\Omega$	$1M\Omega$ to $9.76~M\Omega$	5
10ΜΩ	10ΜΩ	6

Example:

The ordering code for resistor type SFR25 resistor, value of 1000Ω $\pm 5\%$, taped on a bandolier of 5000 units in ammopack, is: 2322 181 43102.

SFR25

NAFTA ORDERING INFORMATION – CROSS REFERENCE

NAFTA ORDERING CODES

Table 4. Ordering code indicating resistor type and packaging

Туре	Tol. %	Resistance range	12NC	NAFTA Part Number	Taping	SPQ units
	± 1	1 Ω to 10M Ω	2322 188 2xxxx	5043EDxxxxxF18AF5	52 (2.047)	5000; ammopack
	- ' '	152 TO TOIVIS2	2306 181 8xxxx	5043EDxxxxxF12AF5	52 (2.047)	5000; reel
SFR25	SFR25 ± 5	±5 0.22 Ω to 10M Ω	2322 181 43xxx	5043EMxxxxxJ18AFX	52 (2.047)	5000; ammopack
			2322 181 53xxx	5043EMxxxxxJ08AFX	52 (2.047)	1000; ammopack
			2322 181 63xxx	5043EMxxxxxJ12AFX	52 (2.047)	5000; reel

Dimensions in mm / (Inches)

COMPOSITION OF OHMIC VALUE

The ohmic value is represented by 5 digits; see table 5.

Table 5. Examples of the ohmic value

Value	5 Digits (All Other)
1 Ω	1R000
10 Ω	10R00
100 Ω	100R0
1 ΚΩ	1K000
10 KΩ	10K00
100 ΚΩ	100K0
1 ΜΩ	1M000

PACKAGING

Bandolier in ammopack

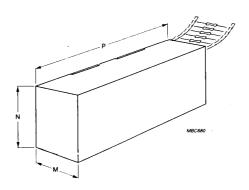


Table 6

Туре	Quantity	М	N	Р	Bandolier Width
	5000	78 (3.071)	98 (3.858)	260 (10.236)	52 +1.5/-0 (2.047 +0.059/-0)
SFR25	1000	82 (3.228))	28 (1.102)	262 (10.315)	52 +1.5/-0 (2.047 +0.059/-0)
	5000	52 (2.047)	98 (3.858)	255 (10.039)	26 ±1.5 (1.024 ±0.059)

Dimensions in mm / (Inches)

Bandolier in Reel

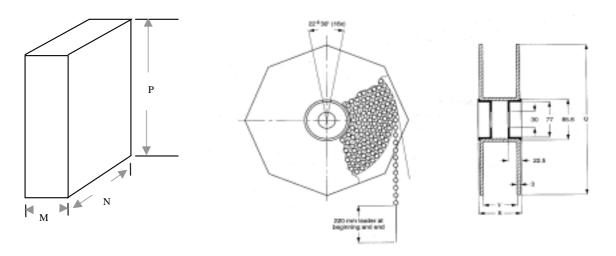


Table 7.

Туре	Quantity	М	N	Р	Q	V	R	Bandolier Width
SFR25	5000	92 (3.622)	311 (12.244)	311 (12.244)	305 (12.008)	75 (2.953)	86 (3.386)	52 +1.5/-0 (2.047 +0.059/-0)

Dimensions in mm / (Inches)

SFR25

TEST AND REQUERIMENTS

Essentially all tests are carried out in accordance with the schedule of "*IEC publication 60115-1*", category 55/155/56 (rated temperature range -55 °C to +155°C; damp heat, long term, 56 days).

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1" subclause 5.3.

In Table 8 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60 115-1 and 60068" a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

Table 8. Test procedures and requirements

IEC 60115 1	IEC IEC 60068-2 60115-1 TEST		PROCEDURE	REQUIR	EMENTS
CLAUSE	METHOD	TEST	PROCEDURE	SFR25 5%	SFR25 1%
4.6.1.1		Insulation resistance	500V (DC or RMS) during 1 minute; V-block method	R_{ins} min.: 10^4 $M\Omega$	
4.7		Voltage proof on insulation	600V (RMS) during 1 minute; V-block method	no brea	akdown
4.8.4		Temperature coefficient	Between -55 °C and + 155 °C (TC ppm/°C)	-	± 100ppm/°C ± 250ppm/°C
4.12		noise	IEC publication 60195	_	nax. 0.1μV/V nax. 1.5μV/V
4.13		Short time overload	Room temperature; $P = 6.25 \times P_n$; 5s on 45s off $(V \le 2 \times V_{max})$; 10 cycles;	Δ R/R max.: $\pm 0.25\% + 0.05\Omega$	Δ R/R max.: $\pm 0.25\% + 0.05\Omega$
4.16	U	Robustness of terminations:			
4.16.2	Ua	Tensile all samples	Load 10N; 10s	Number of failures < 10x10 ⁻⁶	
4.16.3	Ub	Bending half number of samples	Load 5N; 4 x 90°	Number of failures < 10x10 ⁻⁶	
4.16.4	Uc	Torsion other	3 x 360° in opposite directions	no da	mage
		half of samples		Δ R/R max.: \pm 0.25% + 0.05 Ω	Δ R/R max.: \pm 0.1% + 0.05 Ω
4.17	Та	Solderability	2s; 235°C; flux 600	Good tinning	ı; no damage
4.18	Tb	Resistance to soldering heat	Thermal shock: 3s; 350 °C; 6 mm from body	Δ R/R max.: \pm 0.25% + 0.05 Ω	Δ R/R max.: \pm 0.1% + 0.05 Ω
4.19	Na	Rapid change of temperature	30 minutes at -55 °C and 30 minutes at +155 °C; 5 cycles	Δ R/R max.: \pm 0.25% + 0.05Ω	Δ R/R max.: \pm 0.1% + 0.05Ω
4.22	Fc	Vibration	Frequency 10 to 500 Hz;	no da	mage
			displacement 1.5 mm or acceleration 10g; 3 directions; total 6 hours (3x2 hours)	Δ R/R max.: $\pm 0.25\% + 0.05\Omega$	Δ R/R max.: \pm 0.1% + 0.05 Ω

IEC 60115-1	IEC 60068-2 TEST	TEST	PROCEDURE	REQUIR	EMENTS
CLAUSE	METHOD	IESI	PROCEDURE	SFR25 5%	SFR25 1%
4.23		Climatic sequence:		R _{ins} min.	: 10 ³ MΩ
4.23.2	Ва	Dry heat	16 hours; 155 °C		
4.23.3	Db	Damp heat (accelerated) 1 st cycle	24 hours; 55 °C; 90 to 100% RH		
4.23.4	Aa	Cold	2 hours; - 55 °C		
4.23.5	М	Low air pressure	2 hours; 8.5 kPa; 15 to 35 °C		
4.23.6	Db	Damp heat (accelerated) remaining cycles	5 days; 55 °C; 95 to 100% RH	ΔR/Rmax.: ±1% +0.05Ω	Δ R/R max.: \pm 0.5% + 0.05Ω
4.24.2	Ca	Damp heat	56 days; 40 ° C; 90 to 95%	R _{ins} min.	: 10 ³ MΩ
		(steady state)	RH; dissipation 0.01 Pn	Δ R/R max.: ± 1% + 0.05 Ω	Δ R/R max.: $\pm 0.5\% + 0.05Ω$
4.25.1		Endurance	1000 hours at 70 °C;		
4.20.1		Lituation	Pn or Vmax	Δ R/Rmax.: ±1% +0.05Ω	Δ R/R max.: $\pm 0.5\% + 0.05\Omega$
See 2 nd amend 60115-1".	Iment to "ÏEC	Pulse load		See Figs	. 3 and 4