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Chapter 3: Phase-Lock and Frequency Feedback Techniques

Figure 3-1 depicts a block diagram of a phase-lock loop (PLL).  A considerable number

of variations of this basic architecture have been proposed and used.  However, many of these

variants are mathematically equivalent to the loop described here.  For reasons that will become

clear as the topic is pursued, Figure 3-1 depicts what is often referred to as a short loop or a base

band model of the PLL.

The PLL depicted by Fig. 3-1 contains 1) a phase comparator (also known as a phase

detector), 2) a loop filter, and 3) a voltage controlled oscillator (VCO).  The phase comparator

may be a simple analog multiplier.  A different, usually more complicated, phase comparator

may be used to exploit attributes (like a high input signal-to-noise ratio) of a given application.

When present, the loop filter is low pass in nature, and it may be active or passive.  The VCO

oscillates with an instantaneous frequency that is functionally related to its control voltage e.

The external reference signal supplied to the loop is modeled as the sum of a desired

signal 2A tsin ( )θ i  and an undesired additive noise component η(t).  In addition to random

noise, the output of the phase comparator contains a component that quantifies the phase error φ

≡ θi - θv.  This component is processed by the loop filter, and the results are applied to the input

of the VCO.  Hopefully, this controls the VCO phase and results in a small value of phase error

variance.

Under phase-locked conditions in a properly designed and operated PLL, the VCO
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Figure 3-1:  Basic phase-lock loop.
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instantaneous phase θv remains close to the phase θi of the desired input signal, and the phase

error φ(t) ≡ θi(t) - θv(t) is small in absolute value.  This implies that the VCO leads the reference

in phase by approximately π/2 radians.  Of course, the presence of input noise η insures that θv

and φ are random processes.  However, in many practical applications, the PLL can be designed

so that the variance of φ is acceptably small, and the PLL tracks well the phase θ i  of the desired

input signal.  In these applications, the PLL can be thought of as a filter that eliminates the bulk

of the noise appearing at its input.

Phase lock is the end result of a process known as pull in.  That is, pull in is the natural

mechanism by which phase lock is achieved after starting from an out-of-lock condition.  Pull in

may, or may not, be possible when the loop is closed.  If possible, it may not be achieved, or it

may not happen in a reasonable amount of time.  Often, the pull in mechanism must be aided by

circuitry added to the basic PLL.

Basic Applications

The subject of phase-locked loops first generated major interest with the advent of the

space program in the early 1960s.  Major advances in integrated circuits since this time have

brought down the cost and trouble of using PLL technology.  In addition to being used in

military and space applications, PLLs have been incorporated into consumer electronic products

which are taken for granted by the public.  Some of these applications are described in what

follows.

Coherent Demodulation of Amplitude Modulated Signals

Amplitude modulated (AM) signals can be demodulated coherently by using the system

depicted by Fig. 3-2.  When this PLL is phase locked to the AM signal carrier component, the

VCO produces a sinusoid that is in phase quadrature with the received carrier.  This implies that

the output of the −90° phase shifter will be in phase with the signal carrier component, and that

an estimate of the envelope 2 [A + m(t)] appears at the terminals of the output filter.

This method of AM demodulation can produce excellent results.  In a noisy environment,

it can produce performance which far exceeds the classical envelope detector.  Of course, along
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with the additional performance of coherent demodulation come the additional complexity and

cost.  Phase-locked AM demodulators are far more complicated and expensive than simple

envelope detectors.  For this reason, coherent demodulation of AM is not used in most

commercial broadcast receivers (AM radios).

Frequency Synthesis

The PLL plays a major role in the frequency synthesis of spectrally pure signals.  Figure

3-3 depicts a block diagram of a simple PLL-based frequency synthesizer.  As discussed below,

this system is capable of generating a sinusoid at a frequency of Nf0 Hz, where integer N is user-
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Figure 3-2: Coherent demodulation of AM.
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Figure 3-3:  A simple PLL-based frequency synthesizer.
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programmable.  The frequency stability of the generated sinusoid is dependent on the stability of

the reference, and it can be excellent.

In many applications, the reference signal at f0 Hz is obtained from a digital counter

(frequency divider) circuit driven by a highly stable crystal oscillator.  Hence, the phase

comparator is fed digital signals in this application.  Specialized phase comparators are used

which exploit the noise-free nature of the signals involved.  Often the phase comparator is

augmented by a frequency comparator that helps the loop achieve a stable phase-lock state.

The VCO oscillates at Nf0 Hz when the synthesizer is phase locked.  Since N is user-

programmable, this system can generate a wide range of frequencies at a basic resolution of f0

Hz.  In many applications, it is possible to do this while maintaining adequate frequency

stability, spectral purity and switching times of the synthesized output signal.

Demodulation of BPSK Signals

Binary phase shift keying (BPSK) is a popular form of modulation which is used in the

transmission of digital information.  Let d(t) denote a binary (±A volts) waveform representing

digital information.  The BPSK modulator forms the signal d(t)cosω0t; in applications, carrier

frequency ω0 is much higher than the rate of the clock used to generate d(t) (often, ω0 is an

integer multiple of the data clock frequency).

In many applications, data signal d(t) is constructed to have an average value of zero.

Usually, this is accomplished by constructing the data signal from specially formulated binary

symbols that have an average value of zero.  A zero average value for d(t) is desirable from an

efficiency standpoint; it insures that the transmitted signal has no carrier component at ω0, and

all of the transmitted power appears in the sidebands where it is used to convey information.

At the receiver, efficient demodulation of the BPSK signal requires the use of a sinusoid

that is phase coherent with the suppressed carrier.  This sinusoid can be generated by the

squaring loop depicted by Fig. 3-4.  First, the received signal is squared to produce a second

signal that has a strong component at 2ω0.  The band pass filter (BPF) passes this 2ω0

component, and it attenuates all other frequency components.  The PLL locks on the 2ω0
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frequency component found in the BPF output.  In this role, the PLL acts like a narrow band

filter centered at 2ω0.  A digital counter is used to divide by two the frequency of the VCO.  This

division operation produces a signal that is phase coherent with the suppressed carrier of the

received signal.  Finally, this locally generated reference signal is used to demodulate the

received signal and produce an estimate of data d(t).

Phase-Locked Receivers

There are many applications which require the reception of a Doppler shifted signal.

Often, the amount of Doppler shift is changing with time, and there is a large amount of

uncertainty in the received signal frequency.  One possible solution to the problem of receiving

this signal is to use a non-coherent approach based on a wide bandwidth receiver that can "hear"

the signal regardless of the Doppler shift.  However, this simple approach may bear a significant

noise penalty since received noise power is proportional to receiver bandwidth.  Large Doppler

shifts would require large receiver bandwidths, and large bandwidths would lead to large

amounts of received noise power and poor system performance.

A phase-locked receiver is a better solution to the problem of receiving a Doppler shifted

signal.  The receiver electronically tunes itself so that it tracks out Doppler on the received

signal.  Hence, such a receiver can have a bandwidth that is comparable to the signal, so no noise

penalty has to be paid to accommodate the unknown carrier frequency of the signal.  In most

cases, a solution based on a tracking receiver will be substantially better than that afforded by the

above-mentioned scheme that utilizes a wide bandwidth, fixed frequency receiver.
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Figure 3-4:  Squaring loop data demodulator.
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Figure 3-5 depicts a simplified block diagram of a tracking phase-locked receiver.  In the

PLL literature, this architecture is known as a long-loop.  Note that most of the receiver is in the

feedback path; this feature reduces practical problems that can result from noise rectification in

an imperfect phase comparator.  Practical phase detectors are limited in dynamic range, and this

limitation (known as the phase comparator threshold problem) is a major reason for using an

intermediate frequency (IF) path within the loop.  It can be shown that the PLL depicted by Fig.

3-5 is mathematically equivalent to a short loop of the type illustrated by Fig. 3-1.

Normally, the receiver locks to the carrier frequency of the received signal.  As the

carrier frequency changes due to Doppler, the VCO is tuned automatically by loop dynamics so

that the output of the down converter remains within the IF pass band.  In many practical

applications, the rate of Doppler change is small (even if the total amount of Doppler is large),

and the overall bandwidth of the closed loop may be on the order of a few tens of Hz.

For example, consider an S-band (2.4 GHz) satellite in low earth orbit.  Suppose that the

satellite is transmitting a carrier that a ground station must recover.  Depending on the particular

overhead pass, the satellite downlink signal may contain as much as ±70 kHz of Doppler as seen

by the ground station.  Without Doppler tracking abilities, the wide band receiver at the ground

station would need a bandwidth of 140 kHz.  However, in this application, the rate of change in

Doppler is moderate to small, and the satellite signal could be received by a PLL-based Doppler

tracking receiver that utilizes a bandwidth on the order of 10 Hz.
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Figure 3-5:  Simplified block diagram of a phase-locked receiver.
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Received noise power is directly proportional to receiver bandwidth.  For the example

outlined above, it turns out that the fixed-frequency, wide band receiver approach would pay a

signal-to-noise ratio penalty of approximately 42 dB as compared to the phase-locked receiver.

Penalties of this magnitude cannot stand; this is why narrow band, phase-locked, tracking

receivers are used in almost all applications involving earth-orbiting satellites.

The phase-locked receiver depicted by Figure 3-5 is based on what is called a long loop.

The distinguishing characteristic of a long loop is that it contains an intermediate frequency (IF)

signal path; an example of such a loop is illustrated by Fig. 3-6.  The received signal is

heterodyned twice in order to form the base band signal x(t) that drives the loop filter.  First, the

VCO output is used to heterodyne the received signal down to a band pass IF signal xbp(t) at an

IF frequency of ωif ;  then, xbp is passed through an IF filter/amplifier to produce ybp(t).  Next, the

output of a crystal oscillator at ωif is used to heterodyne ybp down to the base band signal x(t) that

drives the loop filter.  On Fig. 3-6, constant γ appears as an arbitrary phase angle in the crystal

oscillator output.  In what follows, this long loop is shown to be mathematically equivalent to a

base band, or short, loop (i.e., one that does not containing an IF signal path).

While the two loop architectures (i.e., long and short loops) are mathematically

equivalent, the long loop implementation is preferred in practical applications where the desired
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Figure 3-6:  A long loop containing an IF signal path.
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input reference signal is swamped in wide band noise (on Fig. 3-6, ηbp represents wide band

noise).  The reason for this is that a real phase comparator is imperfect; it has a finite dynamic

range, and it exhibits a threshold phenomenon due to rectification of the input noise.  Substantial

wide band noise power applied on the phase comparator input could cause a DC component to

appear at its output.  This noise rectification-induced DC component could dominate the desired

DC component due to normal operation of the loop.  The occurrence of this phenomenon could

degrade the signal acquisition and tracking abilities of the PLL.

This problem is minimized by using the long loop architecture depicted by Fig. 3-6.  Of

course, there is still the potential for noise rectification in the first down converter shown on this

figure.  However, the resulting DC component in xbp would be rejected by the IF filter.  This IF

filter serves to minimize the effects of noise rectification by limiting the total noise power that

reaches an imperfect phase comparator.

Base Band Model of the Long Loop

In this section, a base band model of the loop depicted by Fig. 3-6 is developed.  To

simplify the analysis, it is assumed that the input reference is noise free (set ηbp = 0 on Fig. 3-6).

Of course, this assumption in no way influences the base band architecture.

The output of the down converter on Fig. 3-6 is given by

bp 1 if ifx AK sin( t )= ω +ψ (3-1)

where ωif  ≡ ωi - ωlo ,  and ψ if  ≡ ψ i - ψ lo .   Here it is assumed that low-side injection is used so

that ωi > ωlo .  Also, the sum frequency term in xbp is omitted since it is rejected by the IF filter.

Finally, note that xbp can be written as
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bp c if s if

c 1 if

s 1 if

x x (t) cos( t ) x (t)sin( t )

x (t) AK sin( )

x (t) AK cos( ) .

= ω − ω

≡

≡ −

ψ

ψ

(3-2)

In what follows, low pass equivalent signals are used to analyze the IF path and find the

base band signal x(t) in the long loop depicted by Fig. 3-6.  IF signal xbp can be represented as

xbp = Re[xl p ifexp( j t )ω ], where

lp c sx x jx= + (3-3)

is its low pass equivalent.  The band pass IF filter hbp = Re[hl p ifexp( j t )ω ] in Fig. 3-6 is assumed

to be symmetrical.  This means that it has a real-valued low pass equivalent

lp ch h= . (3-4)

The low pass equivalent ylp of band pass output ybp is

lp lp lp c s c
1 1y x h (x jx ) h ,
2 2

= ∗ = + ∗ (3-5)

so that the band pass output of the IF filter can be expressed as

[ ]bp c s c if
1y Re  [(x jx ) h ]exp( j t ) 
2

= + ∗ ω . (3-6)

Now, the phase detector depicted on Fig. 3-6 forms the product

[ ]bp if c s c if if
1y 2cos( t ) Re  [(x jx ) h ]exp( j t )2cos( t ) 
2

⋅ ω + γ = + ∗ ω ω + γ (3-7)
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of ybp and the output of the crystal oscillator.  To simplify this last result note that

if if ifexp( j t )2cos( t ) exp[ j(2 t )] exp( j )ω ω + γ = ω + γ + − γ , (3-8)

and the base band component in this product is the constant e-jγ.  Hence, on Fig. 3-6, the base

band component in the output of the phase detector is

j
c c

1x Re  [(x jx ) h ]e  
2

− γ⎡ ⎤= + ∗⎣ ⎦s , (3-9)

a result obtained from inspection of (3-7) and (3-8).

The IF signal path on Fig. 3-6 can be removed by realizing that the IF filter/phase

comparator combination can be replaced by a phase comparator followed by a scaled version of

the low pass equivalent of the IF filter.  To see this, note that the product of xbp and 2cos(ωif t  +

γ) can be written as

[ ]bp if c s if ifx 2cos( t ) Re  [(x jx )exp( j t )2cos( t ) ⋅ ω + γ = + ω ω + γ , (3-10)

which has a base band component given by

j
c sRe[(x jx )e ]− γ+ . (3-11)

As can be seen from (3-9), the base band signal x results if (3-11) is passed through low

pass ½hc.  Hence, parts a) and b) of Fig. 3-7 depict mathematically equivalent methods of

generating base band x.  However, the two successive down conversions shown on Fig. 3-7b

produce
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i i 1 lo lo if2 Asin( t ) 2 K cos( t )2cos( t )ω + ω + ω + γψ ψ , (3-12)

and the base band component of this product is filtered by ½hlp .   But, the base band component

in

i i 1 i lo2 Asin( t ) 2 K cos( t )ω + ω + + γψ ψ (3-13)

is identical to the one in (3-12), so Fig. 3-7c is mathematically equivalent to parts a) and b) of

this diagram.  Finally, this last observation implies that Fig. 3-8 depicts a base band PLL which

is equivalent to the long loop illustrated by Fig. 3-6.  On Fig. 3-8, the VCO has a center

frequency that exceeds by ωif the center frequency of the VCO depicted on Fig. 3-6.
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Figure 3-7:  Three mathematically equivalent ways of producing base band signal x.
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As mentioned above, the IF filter serves to limit the broad band noise power that reaches

the phase detector.  The goal of the IF filter is to limit the undesirable side effects that can occur

when an imperfect phase detector is swamped with noise.  To a satisfactory degree, this goal can

be accomplished in many applications with an IF filter bandwidth that is large compared to the

overall closed loop bandwidth.  In these cases, a common perception is that the IF filter only has

a minor influence on the dynamics of the closed loop.  However, this perception may not be true

in practical applications.  The "small" effects of an IF filter can limit the pull-in range and cause

other unacceptable behavior.

Modeling the PLL’s Analog Phase Detector

A noiseless reference signal is used to drive the PLL depicted by Fig. 3-9.  The phase

VCO F(s)
e x
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2 1K cos( t )ωi lo+ +ψ γ

Figure 3-8:  A base band loop equivalent to the long loop.
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Figure 3-9: PLL with a noiseless reference signal.
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comparator used here is a simple analog multiplier with output

x K [ Asin ][ K cos ] AK K [sin( ) sin( )]≡ = − + +m i v 1 m i v i v2 2 1θ θ θ θ θ θ . (3-14)

The quantity Km is the phase comparator gain; as discussed in what follows, it has units of

volts/radians.

The sum frequency term AK1Kmsin(θ i  + θv) in (3-14) is considered to be a band pass

process centered around twice the input reference frequency.  In most applications, it is filtered

out by the combination of loop filter and VCO.  Hence, this sum frequency term is discarded in

what follows, and the phase comparator output is approximated as

x AK K sin( )= 1 m φ , (3-15)

where

φ θ θ≡ −i v . (3-16)

The quantity φ plays a prominent role in PLL analysis; it is known as the closed loop phase

error.

Modeling the PLL’s Loop Filter

The error signal x = AK1Kmsinφ shown on Fig. 3-9 drives the linear, time-invariant loop

filter to produce the VCO control voltage e.  The relationship between the error signal and

control voltage can be given in both the Laplace and time domains as is summarized by Fig. 3-

10.

In the Laplace domain, the filter can be described by the transfer function
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where integer n denotes filter order.  This rational function of s is the ratio of filter output to

input in the Laplace domain.  In practical PLLs, Equation (3-17) has no poles in the right half of

the s-plane.

In the time domain, the nth-order differential equation

L [e] L [x]

L b d
dt

b d
dt

b

L a d
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a d
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a

1 2

1 1
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1 0
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+ + +

+ + +

      

      

(3-18)

defines the loop filter.  This equation is linear, and it has constant coefficients.  Furthermore, it

has a unique solution e(t), t ≥ 0, once initial conditions
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Figure 3-10:  Laplace domain description of loop filter is given by a).
Time domain descriptions are given by b) and c).
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e( )

d e
dt

, ,
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0

1 1

0=

≤ ≤ −

e

e
k

k k k nYY = 0
=  

(3-19)

are specified.

A second time-domain relationship can be specified between the loop filter input and

output.  For t ≥ 0, this relationship is

e(t) x( )f(t )d e (t)
t

x(t ) f( )d e (t)
t

,= − + = − +z zτ τ τ τ τ τ    0 00 0
(3-20)

where

f(t) [F(s)]≡ −L 1 (3-21)

is the filter impulse response.  In (3-20), e0(t) is the zero-input response which depends only on

initial conditions existing in the circuit at t = 0.

Modeling the PLL’s Voltage Controlled Oscillator

The VCO accepts as input the error control voltage e and produces as output the

sinusoidal signal 2 K1cosθv.   The commonly-used VCO model relates variables θv and e by

d
dt

K ev
θ v

0= +ω , (3-22)

where ω0 and Kv are known constants.  As can be seen from inspection of (3-22), the VCO

oscillates at frequency ω0 radians/second when its input control voltage e is set to zero.  Hence,

ω0 is known as the VCO center, or quiescent frequency.  The frequency of the VCO oscillation

changes by Kv radians/second for every volt of control signal e applied as input. Hence, Kv is
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known as the VCO gain parameter, and it has units of radians/second-volt.

The analysis of the PLL is simplified by defining input reference and VCO phase

variables which are relative to the VCO quiescent phase ω0t.  The quantities

θ θ1 i 0(t) (t) t≡ − ω (3-23)

θ θ2(t) (t) t≡ −v 0ω (3-24)

are relative input reference and VCO phases, respectively.  From a modeling standpoint, relative

phase θ2 is considered as the VCO output even though a sinusoid is the physical output of this

oscillator.  Finally, note that closed loop phase error can be expressed in terms of these relative

phase variables as φ = θ1 - θ2.

With the aid of (3-22) and (3-24), it is easy to model the VCO as an integrator. Substitute

(3-24) into (3-22) and obtain

d
dt

K ev
θ2 = , (3-25)

a result depicted by Fig. 3-11.  Note that the VCO response θ2 falls off at a rate that is inversely

proportional to the frequency of forcing function e.  This, and the low pass nature of F(s), imply

that undesired high frequency signals in the phase detector output tend to have minimal influence

on the PLL.

Modeling the Nonlinear PLL

The component descriptions developed above are used in what follows to create a simple

e
θ 2 =  Kvz ezKv

Figure 3-11: Model of the VCO as an
integrator.
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block diagram depicting a nonlinear model of the PLL.  Two approaches are discussed for

mathematically describing this model.  First, the model is described by an (n+1)th-order ordinary

differential equation.  Next, an n+1 dimensional first-order system is used to describe the model.

PLL Description Based on an Ordinary Differential Equation

The PLL loop filter processes the phase comparator output x = AK1Kmsinφ to produce

voltage e that drives the VCO.  The nth-order differential equation

L [e] AK K L [sin ]1 1= m 2 φ , (3-26)

obtained by combining (3-15) and (3-18), describes this processing function.

Equation (3-26) contains the dependent variables φ and e.  A second independent

relationship must be obtained between these variables to complete the nonlinear dynamical

model of the PLL.  This required second equation can be derived by combining (3-25) with

(3-16).  This effort produces the results

d
dt

d
dt

K e d
dt

K e .v v
φ θ θ= − = − −1 i

0ω (3-27)

Equations (3-26) and (3-27) describe the closed loop dynamics of the PLL under

consideration.  They can be combined to produce

L d
dt

d
dt

L [sin ]1
1φ θ φ− = −G 2 , (3-28)

where

G ≡ AK K Kv1 m (3-29)
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is a closed loop gain constant, and L1, L2 are differential operators given by (3-18).  Constant G

is assumed to be positive (if G < 0, perform the transformation φ = π + φ~ , and take G as

positive).  Because of the dependence on sinφ, Equation (3-28) is a nonlinear differential

equation.  It is autonomous (time-invariant) since only multiplicative constants appear in the

equation, and it is of order n+1.

The block diagram depicted by Fig. 3-12 describes the nonlinear PLL model under

consideration.  Equations (3-15) and (3-16), which describe the phase detector, are implemented

by the summing junction and the block containing the nonlinear operation AK1Kmsin(·).  The

loop filter block implements the linear transformation described by Fig. 3-10. Finally, with a

gain of Kv, the VCO block integrates the control voltage e to form the relative phase angle θ2

defined by (3-24).

PLL Description Based on a First-Order Nonlinear System

Equation (3-28) can be written as a first-order system.  Define the n+1 dimensional

vector

[ ]
T2 nT

1 2 n 1 2 n
d d dx   x     x           .
dt dt dt

+
⎡ ⎤= = ⎢ ⎥⎣ ⎦

X φ φ φφ (3-30)

Then (3-28) can be used to write

d
dt
X X F X G= − +C G ( ) , (3-31)

where C is the (n+1)×(n+1) constant matrix
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C ≡

− − −

L

N

MMMMMM

O

Q

PPPPPP

0 1 0 0
0 0 1 0

0 0 0 1
0 0 1 1b / b b / b b / bn n n n-

 , (3-32)

and F , G  are the n+1 vectors

F X

G

( ) b L [sin x ]

b L d
dt

.

= LNM
O
QP

= LNM
O
QP

−

−

0 0 0 0

0 0 0 0

2 1

1
1

n
1

T

n
1

Tθ  

(3-33)

Equation (3-31) is an n+1 dimensional, nonlinear system that describes the PLL.

Modeling the Linear PLL

Consider the case when the PLL is phase locked, and phase error φ is small in absolute

value.  Under this condition, the approximation sinφ ≈ φ can be made, and the PLL model can be

linearized.  The linear loop can be described by the Laplace domain model depicted by Fig. 3-13;

the variables

Σ
−

+

e(t)VCO
2

x
Phase Comparator Loop Filter

θ

φ
]

Kv z

AK Km sin( )1 ⋅ x[ ]e1 2L L [=
1θ

L b d
dt b d

dt
b

L a d
dt a d

dt
a

n
n
n n

n
n

m
m
m m 1

m
m 1

1 1
1
1 0

2
1

0

= + + +

= + + +

−
−
−

−
−
−

θ θ

θ θ

1 0

2 0

= −

= −

i ω

ω

t

tv

Figure 3-12: Nonlinear time domain model
depicting the function of each component.
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Θ

Θ

Φ

1 1

2 2

(s) [ (t)]

(s) [ (t) ]

(s) [ (t)]

E(s) [e(t)]

≡

≡

≡

≡

L

L

L

L

θ

θ

φ
(3-34)

are employed in the Laplace domain model.

A transfer function H(s) can be obtained that relates output Θ2 to input Θ1.  From

inspection of Fig. 3-13, the open loop transfer function is

2
0

(s) F(s)G (s)
(s) s

Θ ⎡ ⎤≡ = ⎣ ⎦Φ
G , (3-35)

where closed loop gain constant G is given by (3-29).  This open-loop transfer function can be

used to express Θ2 as

Θ Φ2(s) (s) (s)= G0 . (3-36)

Now, substitute Φ = Θ1 - Θ2 into (3-36) and solve for

H(s) (s)
(s)

(s)
(s)

F(s)
s F(s)

.≡ =
+

=
+

Θ
Θ

2

1

0

01
G

  G   
G

G
(3-37)

Σ
−

+ Φ

VCO
E(s)

F(s)AK1Km

Θ1(s) X(s)
Loop Filter

Phase Comparator

Θ2(s)

K
s
v

Figure 3-13: Linear Laplace domain model
showing the function of each component.
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As given by (3-37), H(s) is the closed loop transfer function of the linearized PLL.  This transfer

function is used extensively in the practical design of PLL circuitry.  Since F(s) is low pass in

nature, the closed-loop transfer function H(s) is low pass, and it has a unity DC gain (H(0) = 1).

Also, for sufficiently high frequencies, ⎮H(jω)⎮ rolls off at 20dB per decade (if n = m) or faster

(if m < n).

The poles of H(s) are the roots of

s   F(s)+ =G 0 . (3-38)

Stability of the linear PLL model requires that these poles be in the left half of the complex

plane.  The stability issue can be studied by examining the loci of poles as G varies from zero to

infinity.  Examples of these root locus plots are considered below.  The PLL is said to be

unconditionally stable if, for all G > 0, the roots of (3-38) remain in the left-half of the s-plane.

As long as the phase error remains small, transfer function H(s) and standard linear

system theory can be used to determine the PLL response to any input. This is accomplished by

using the relationship

Θ Θ2(s) H(s) (s)= 1 (3-39)

to find the Laplace transform of the output given an input Θ1.  Then, time domain output θ2(t)

can be calculated by computing the inverse transform of Θ2.

The linear theory can be used to determine the closed loop phase error. This is

accomplished by using (3-39) with Φ = Θ1 - Θ2 to obtain

Φ = Θ Θ Θ1 1 11− = −H ( H) . (3-40)

Alternatively, the linear analysis can be carried out in the time domain with the use of
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h(t) [H(s)]≡ L -1 , (3-41)

the impulse response of the closed loop.  For t ≥ 0, the zero-state response for a given input θ1(t)

can be expressed by the convolution

θ θ2 10
(t) h(t ) ( ) d

t
= −z τ τ τ , (3-42)

and the closed loop phase error can be expressed as

φ θ θ(t) (t) h(t ) ( ) d
t

= − −z1 10
τ τ t . (3-43)

These results assume that input θ1(t) is applied at t = 0, and all initial conditions are zero (θ2 and

its derivatives are zero at t = 0−).

Modeling a PLL with an Angle Modulated Reference Source

Consider the PLL depicted by Fig. 3-1 with an angle modulated reference centered at a

frequency of ωi.  This reference signal is described in this section, and it can represent a

frequency modulated (FM) or phase modulated (PM) signal.  Assume that the loop is phase

locked and that the phase error remains small for all time so that the linear model can be used.

For the case under consideration the reference phase can be expressed as

θ χi i(t) t (t)= +ω   , (3-44)

where χ depends linearly on message m(t).  This implies that

θ χ1(t) t (t)= +ωΔ   , (3-45)
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where ωΔ ≡ ω i  - ω0 is known as the loop detuning parameter.  For the case of phase modulation

(PM), message-dependent function χ is given by

χ (t) K (t)= p m , (3-46)

where Kp is the modulation index with units of radians/volt.  For the case of frequency

modulation (FM), function χ is

χ (t) K ( )
t

d= zf m t t
0

, (3-47)

where modulation index Kf has units of radians/second-volt.

A simple case of practical importance has m(t) as a sinusoid of frequency ωm, and the

sinusoidal steady-state loop response is desired.  To unify the treatment of the two types of

modulation during the solution of this problem, assume that

m m m

m m
(t)

A sin t for
A cos t for

=
RST

ω
ω

 PM
 FM

. (3-48)

Then, for both cases

χ β(t) sin( t)= ωm , (3-49)

where

β =
R
S|
T|

 
 PM

 FM

A K for
A K for

m p
m f

mω
, (3-50)
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so that

θ1(t) t sin t= ω ωΔ  +  β m . (3-51)

The steady-state loop response can be obtained by substituting (3-51) into (3-42) and

considering the limiting form of the results as time becomes large.  The first of these steps yields

θ 2 0 0
= − + −z zh(t ) d

t
h(t ) sin( ) d

t
τ τ τ τ β τ τω ωΔ m . (3-52)

The second integral on the right-hand side is the response of a linear system to a sinusoid at

frequency ωm.  The steady-state form of this response is

βY Y ∠H( ) sin( t H( ) )j jm m mω ω ω +  , (3-53)

where ⎮H(jωm)⎮ and ∠H(jωm) represent the magnitude and phase, respectively, of the system

at ωm.  Through a simple change of variable, the first integral on the right-hand side of (3-52)

can be expressed as

ω ωΔ Δ(t ) h( ) d
t

t h( ) d
t

h( ) d
t

− = −z z zτ τ τ τ τ τ τ τ
0 0 0

. (3-54)

Now, as time becomes large, the limiting form of (3-54) follows from the observation that

limit h( ) d
t

H(s)

limit h( ) d
t dH(s)

ds
F( ) .

t s 0

t s 0

→∞

→∞
= −

z

z

= =

= −

τ τ

τ τ τ

0
1

0
0 1

YY

YY

=

=

G
(3-55)

Hence, the first integral on the right-hand side of (3-52) produces the component
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ω ω
Δ

Δt
F( )

 -  
G 0

(3-56)

in the steady state.  Finally, combine (3-53) and (3-56) to produce

θ 2 m m mj j(t) t
F( )

H( ) sin( t H( ) )= +ω ω ω ω ωΔ
Δ     +  − βY Y ∠

G 0
(3-57)

as the steady-state response of the linear model to a sinusoidally-modulated reference.

The sinusoidal steady-state phase error can be found by using (3-57) with (3-51). The

result of this combination is

φ(t)
F( )

sin t H( ) sin( t H( ) )= + −      +  ω ω ω ω ωΔ
G 0

β Y Y ∠m m m mj j . (3-58)

Note that the average value of the phase error is inversely proportional to GF(0), the open-loop

DC gain.  Also, note from (3-37) that ⎮H(jωm)⎮ and ∠H(jωm) approach unity and zero,

respectively, as ωm approaches zero.  This implies that, as ωm decreases (for ωm well within the

closed-loop bandwidth), the sinusoidal component in (3-58) becomes small, and the PLL tracks

the modulation very well.  Conversely, as ωm becomes large (for ωm well outside the closed-loop

bandwidth), the sinusoidal component of the phase error approaches β sinωmt, and the PLL

tracks the input modulation poorly.

Consider (3-58) applied to a first-order loop.  For this case, H(s) = G/(s+G) and we have

( )-1
m m m2 2

m

(t)    sin t   sin t  - tan ( / )Δ
⎡ ⎤ω ⎢ ⎥= + β ω − ω ω
⎢ ⎥+ ω⎣ ⎦

φ G G
G G

. (3-59)

For ωm well within closed-loop bandwidth G, φ ≈ ωΔ/G and the loop tracks the angle-modulated
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input very well (there is almost no sinusoidal component in the phase error).  However, for ωm

well outside of the closed-loop bandwidth G, φ ≈ ωΔ/G + βsinωmt and the loop tracks the angle-

modulated input very poorly (in the phase error, there is as much sinusoidal component as there

is on the input angle-modulated signal).

As a second example of a PLL’s response to an angle-modulated reference, consider the

first-order PLL and input angle modulation θ1 that is depicted by Fig. 3-14.  To simplify this

problem, we assume that the input reference has a center frequency of ω0, identical to the center

frequency of the VCO.  We want to determine one period of the Tm-periodic, steady-state closed

loop phase error.

To obtain the steady-state response, we must first obtain the equation that describes φ(t).

From

v
0 v

1 m

0 1 v

d K e
dt

e AK K sin

( t ) ,

= ω +

=

= ω + −

θ

φ

φ θ θ

(3-60)

we obtain the desired describing equation

VCO

0 12 Asin( t )ω +θ

2 1K cos( )θ v

t

b

-b

Tm

θ1(t)

Fig. 3-14: A first-order PLL with an angle modulated reference.  The modulating signal is a Tm-
periodic square wave θ1(t).



EE426/506 Class Notes 07/08/10 John Stensby

Latest Updates at http://www.ece.uah.edu/courses/ee426/ 3-27

1d d sin
dt dt

= −φ θ φG , (3-61)

where G = AK1KmKv is the closed-loop gain.  Now, if phase error φ remains small in magnitude,

we can make linear (“linearize”) (3-61) to obtain

1d d
dt dt

= −φ θ φG . (3-62)

The VCO integrates e = AK1Kmsinφ to form θv.  Since error control voltage e does not

contain any impulse functions, we can conclude that θv(t) is a continuous function of time t.

Hence, every time input θ1(t) jumps by ±2b, we must have a ±2b jump in phase error φ(t).  Also,

when θ1(t) is constant, Equation (3-62) tells us that φ(t) decays exponentially with a time

constant of 1/G.  As a result, we should expect that one period of steady-state φ(t) looks like the

dashed-line plot depicted on Fig. 3-15 (this plot shows one period of input θ1(t) and one period

of the steady-state phase error φ(t)).  All that remains is for us to determine the constant φ0.

Fig. 3-15:  One period of input θ1 (solid-line plot), and one period of the steady-state
closed loop phase error φ(t) (dashed-line plot). The phase error has discontinuous jumps
of 2b every time input θ1 jumps by 2b.

Time (Seconds)

Tm

0

θ1(t)

Tm/2

 m(t T /2)
0 e− −−φ G

−φ0
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b

-b
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 t
0 e−φ G
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At t = Tm/2, φ(t) must drop from φ0exp(-GTm/2) to φ0exp(-GTm/2) - 2b.  But, this last

value must be exactly -φ0.   Hence, we can write

m- T / 2
0 0 e 2b  − = −φ φG (3-63)

and solve for

m- T / 2
2b = 

1+e
0φ G . (3-64)

Note that φ0 approaches 2b as Tm becomes large compared to time constant 1/G; this observation

should be obvious.

PLL as FM Demodulator

The PLL can be used to demodulate an FM signal.  In the discussion of the linear model

(see Figure 3-13), we saw that the VCO acts like an integrator.  That is, VCO input voltage e(t)

can be expressed as

1 2
v

de K
dt

−= θ . (3-65)

Now, if the loop is tracking the input FM signal

t
i f2Asin t K m⎛ ⎞ω +⎜ ⎟

⎝ ⎠∫

very well (all frequency components of m are well within the closed-loop bandwidth), we have

θ2 ≈ θ1 which is equivalent to
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t
2 i f 0t K m t⎛ ⎞≈ ω + − ω⎜ ⎟

⎝ ⎠∫θ . (3-66)

Hence, from (3-65), the VCO control voltage is

( )1
v fe K K m−

Δ≈ ω + . (3-67)

So, message m(t) can be recovered from e(t), the loop filter output.

First-Order PLL With Constant Frequency Reference

This PLL contains no loop filter (F(s) = 1), and its reference consists of a sinusoid at

frequency ωi.  Set n = m = 0, a0 = b0 = 1 in (3-18) to obtain operators L1 = L2 = 1.  Then use θ1 =

ωΔt in (3-28) to obtain

d
dt sinφ φ= −ωΔ G (3-68)

as the equation that describes this first-order PLL.  Loop detuning ωΔ ≡ ωi - ω0 is assumed to be

positive in what follows (if ωΔ < 0, then replace φ by -φ to obtain the case ωΔ > 0).

The number of explicit constants in (3-68) can be reduced by utilizing τ ≡ Gt  to obtain

d
d sinφ φτ Δ= ′ −ω , (3-69)

where ωΔ′ ≡ ωΔ /G  > 0.  Since G is significantly larger than unity in practical applications, τ is

referred to as the slow-time variable.

Phase Plane Analysis of a First-Order PLL

Figure 3-16 depicts typical plots of dφ /dτ versus φ for the first-order PLL; it represents

graphically the differential equation given by (3-69).  Plots of this type are referred to as phase

planes, and they are useful in analyzing first and second-order nonlinear differential equations
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that have constant (i.e., time-invariant) coefficients.

Phase Plane For the Case 0 ≤ ωΔ′ < 1

The solid-line plot on Fig. 3-16 was drawn to represent the case 0 ≤ ωΔ′ < 1.  For ωΔ′ in

this range, values of phase φ exist such that dφ /dτ = 0.  These values of phase are known as

equilibrium points.  For (3-69), these points can be divided into two sets; the first is described by

φ1 2 sink k= + −π ′Δ
1 ω , (3-70)

and the second set is described by

φ 2k (2k 1)= − − −π ωsin 1
Δ′ , (3-71)

where k is an integer.  At the points described by (3-70), the phase plane plot crosses the φ axis

with a negative slope.  The plot crosses the φ axis with a positive slope at the points described by

(3-71).

The set of equilibrium points given by (3-70) represent stable phase-lock points of the

first-order PLL.  This follows from a simple argument that can be applied to point φ10 displayed

on Fig. 3-16.  First, assume that the phase error φ has a value which is slightly smaller than φ10

so that dφ /dτ is positive.  At this point, the phase error φ is increasing towards φ10.  Next, assume

1.0

π 2 π-π
φ 21 φ 11φ 1 0φ 20

d φ
d τ

φ

Figure 3-16: Phase plane for a first-order PLL.  Solid line graph depicts typical
results for 0 < ωΔ′ < 1.  Dashed line plot depicts the case ωΔ′ >1.
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that φ  has a value slightly larger than φ10 so that dφ /dτ is negative.  At this point, φ  is decreasing

towards φ10.  Hence, the point φ10 is a stable phase-lock point of the PLL, and it follows that

(3-70) describes the set of stable equilibrium points.  In a similar manner, it is easy to argue that

the equilibrium points described by (3-71) are unstable.

In general, the equilibrium points may vanish as ωΔ  increases through some positive

value Ωh.  Now, a loop that is phase-locked becomes unlocked when its equilibrium points

vanish.  For this reason, Ωh is known as the hold-in range, the value of ωΔ  at which the

equilibrium points vanish.  On Fig. 3-16, it is seen easily that the equilibrium points vanish for

ωΔ′ > 1.  For this reason, the hold-in range of the first-order PLL is Ωh = G.

Denoted here as Ωp, the pull-in range of a first or second-order PLL with a constant

frequency reference is the largest value of ωΔ  for which pull-in occurs regardless of initial

conditions.  If ⎮ωΔ⎮ is larger than Ωp, there exists initial conditions from which the PLL can

start and never pull-in successfully.  From Fig. 3-16 and the discussion provided above, it is seen

easily that the pull-in range of a first-order PLL is Ωp = G.  Hence, a first-order PLL has identical

pull-in and hold-in ranges.

Phase Plane For the Case ωΔ′ > 1

Consider the dotted-line plot on Fig. 3-16; this plot is typical of the case ⎮ωΔ′⎮ >  1.

Note that the value of (φ, dφ /dτ ) never leaves this path.  Also, the path does not intersect the φ

axis; the system never makes it to an equilibrium point, so phase lock is not possible.  In terms of

quantities that can be observed in a first-order PLL, this path corresponds to a periodic beat note

in the output of the phase comparator.

The period of this beat note can be computed.  To accomplish this, solve (3-69) for

d d
sinτ ′Δ

= −
φ

φω . (3-72)

For the case ⎮ωΔ′⎮ > 1, integrate the left-hand side of (3-72) from τ = 0 to τ = Tp and the right-
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hand side from φ(0) to φ(Tp) = φ(0) + 2π and write

pT
p 0

dT d
sin

(0)+2π
(0) Δ

= τ =
′ω −∫ ∫

φ
φ

φ
φ

. (3-73)

The integral on the right-hand side of (3-73) can be found in most tables.  From tabulated results,

we obtain

p
2

2T , 1
( ) 1

Δ
Δ

π ′= ω >
′ω −

, (3-74)

as the period of the beat note.  Note that Tp approaches infinity as ωΔ′ approaches unity from the

right (Tp → ∞ as ωΔ′ → 1+).

For the case ⎮ωΔ′⎮ > 1,  a simple numerical computation yields the beat note in the

phase comparator output.  After starting from any initial condition, Equation (3-69) can be

integrated numerically over one period, and this result can be used to calculate the beat note.

Figures 3-17a and 3-17b depict typical plots of sinφ(τ / Tp) for ωΔ′ = 1.1 and ωΔ′ = 5.0,

respectively.  Both plots show two complete periods of the beat note.  The nearly sinusoidal

results depicted by Fig. 3-17b is characteristic of the large ωΔ′ case.  However, as ωΔ′ decreases

towards unity, the beat note becomes more unsymmetrical (so that it has a larger DC component)

0.5 1.0 1.5 2.0
τ / Tp

-1.0

-0.5

0.0

0.5

1.0

si
n 

φ 
(τ

 /T
p )

 

ωΔ' = 1.1

(a)

0.5 1.0 1.5 2.0
τ / Tp

-1.0

-0.5

0.0

0.5

1.0

si
n 

φ 
(τ

 /T
p )

ωΔ' = 5.0

(b)

Figure 3-17:  Normalized phase comparator output for a first-order PLL.
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as is shown by Fig. 3-17a.

Closed-Loop Transfer Function of First-Order PLL

Figure 3-13 with F ≡ 1 illustrates the Laplace domain linear model of the first-order PLL.

From (3-37), the closed-loop transfer function of this PLL is

H(s)
s

=
+
G

G
, (3-75)

where G denotes a closed-loop gain factor.  This result can be used with (3-39) to determine the

VCO phase θ2 for an arbitrary input θ1.  Coupled with (3-40), it can be used to determine the

closed-loop phase error for an arbitrary input.

For G > 0, the pole of H(s) lies in the left half of the s-plane, and the first-order PLL is

unconditionally stable.  An inspection of (3-75) might lead to the naive and incorrect conclusion

that phase lock is not possible for G < 0 since the pole of H would be in the right-half s-plane.

However, the PLL with negative G has stable lock points that are displaced by π radians from

the stable lock points that exist for positive G.  Hence, without loss of generality, G > 0 can be

assumed.

Transient and Steady-State Tracking Errors

The response of the first-order PLL is calculated easily for common inputs.  Sample

results are given below for the cases when the input reference is subjected to a phase step,

frequency step, frequency ramp, and sinusoidal angle modulation.  Of course, superposition

applies for the linear model under consideration, so the results given below can be combined to

produce more complicated input/output pairs.

As a first example, consider a reference subjected to a phase step.  In this case, the

reference is a sinusoid at frequency ω0; the phase of this signal jumps by the constant θΔ so that
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θ θ

θ

1(t) U(t)

(s)
s

.1

=

=

Δ

ΔΘ
(3-76)

Along with (3-40), use this last result to obtain

Φ Θ(s) [ H(s)] (s) s
s s

= − =
+

1 1 G
θ Δ (3-77)

as the transform of the closed-loop phase error.  Hence, the response of the first-order PLL to a

phase step is simply

φ θ(t) [ (s)] e U(t) .t= = −L -1 Φ Δ
G (3-78)

Finally, note that the steady-state response of the loop to a phase step is

φ φss = =
→∞

limit (t)
t

0 . (3-79)

Consider applying a frequency step to the first-order PLL.  In this case, at t = 0, the

reference sinusoid jumps in frequency from ω0 to ωi .   This implies an input phase given by

θ1(t) t U(t)= ωΔ , (3-80)

where ωΔ ≡ ωi  - ω0 denotes the input frequency jump.  In a manner similar to that used to obtain

(3-78), the response of the PLL to this input is

φ(t) ( e )t= − −ωΔ
G

G1 . (3-81)
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Hence, the steady state error to a frequency step is

φ φss = =
→∞

limit (t)
t

ωΔ
G

. (3-82)

The first-order PLL incurs a constant steady-state phase error as the result of a frequency-

stepped reference.

A first-order loop cannot track a frequency ramp.  In this case, the relative phase of the

signal is given in the time and Laplace domains as

θ1
21

2
(t) t U(t)= R (3-83)

and

Θ1(s)
s

= R
3 , (3-84)

respectively, where R is a constant with units of radians/second2.  Due to the effects of Doppler,

such a signal could be received from a constant frequency transmitter aboard a vehicle moving

with a constant radial acceleration of Rc/ωi meters/sec2.  Here, the quantity ωi represents the

frequency of the transmitted signal, and constant c denotes the speed of light in meters/second.

The closed-loop phase error for this input is

φ(t) ( t e ) U(t)t= + −−R
G

G G 1 , (3-85)

which was obtained by using techniques similar to those given by (3-78) and (3-81).  Finally,

note that this result is unbounded as t approaches infinity, so the first-order loop cannot track a
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frequency-ramped reference.

As a last example of steady-state phase error calculation in a first-order PLL, consider the

case involving an angle-modulated reference.  Assume that a sinusoidal modulating signal is

employed so that θ1 has the form given by (3-51), where β is the modulation index, and ωm is the

frequency of the modulating signal.  Now, use the transfer function given by (3-75) with the

phase angle expression given by (3-58); the result of this combination is

φ(t) sin t sin( t Tan ( / ))= + −
+

−
L
NM

O
QP

−ω ω
ω

ω ωΔ
G

G

G
Gβ m 2

m
2 m m

1 . (3-86)

This equation represents the steady-state tracking error in a first-order PLL with an angle

modulated reference.

Consider the steady-state phase error given by (3-86) as a function of modulating

frequency ωm.  Note that the sinusoidal portion of φ is small when ωm << G .  In this case, the

frequency of the external sinusoidal modulation is inside of the closed-loop bandwidth G, and

the PLL tracks it with only a small error.  However, the amplitude of the sinusoidal portion of φ

is approximately β for ωm >> G;  in this case, the frequency of the external sinusoidal modulation

is outside of the closed-loop bandwidth, and the PLL ignores it.  Under these conditions, the PLL

is locked to the carrier component of the reference, and it ignores the data sidebands.

The Second-Order PLL with a Perfect Integrator

Consider the second-order PLL with the loop filter

F(s)
s

= +1 α  . (3-87)

Note that the loop filter contains a perfect integrator.  As discussed in this section, the PLL based

on (3-87) has a number of important properties that make it a very attractive choice for many
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applications.

Loop filter (3-87) is implemented easily with modern operational amplifier technology.

Figure 3-18 depicts a simple block diagram of such an implementation.  Due to the virtual

ground at the minus input of the operational amplifier, the input current is

1 1i v / R= . (3-88)

But the input impedance of the OP-AMP is very high (ideally, infinite), so this current flows up

through R2 and C.  Hence, output voltage v2 is

2 2
1v R i i
C

= − − ∫ . (3-89)

Combine the last two equations to obtain

2 2 1
1

1v R i v
R C

= − − ∫ . (3-90)

R1
+

+
+

C

F(s) R
R s= - +
L
N
MM

O
Q
PP

2
1

1 1/R2C

v1
v2

R2

i

i

Fig. 3-18:  Perfect integrator loop filter
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In the Laplace domain, the loop filter transfer function can be written as

2 2 2

1 1

V (s) R 1/ R C1
V (s) R s

⎡ ⎤= − +⎢ ⎥⎣ ⎦
. (3-91)

In the closed-loop model, the constant R2/R1 in (3-91) enters into the closed loop gain constant

G, and the minus sign only serves to shift the closed loop phase error by π (or -π since sin(φ ± π)

= - sin(φ)).

Transfer Function for Perfect Integrator Case

The linear, Laplace domain model of the PLL under consideration is depicted by Fig. 3-

13 when loop filter F(s) is given by (3-87).  For this model, the open loop transfer function is

obtained easily; simply substitute (3-87) into (3-35) and write the open loop transfer function

G (s) s
s

0 2= +L
NM
O
QPG α . (3-92)

Applying terminology from classical control theory, the PLL with open loop transfer function

(3-92) is referred to as a Type II loop since G0(s) has two poles at the s-plane origin.

From (3-37), the closed-loop transfer function of the PLL is calculated easily as

H(s) s
s s

= +
+ +

L
N
MM

O
Q
PP

G
G G

α
α2 , (3-93)

which can be written in the commonly used form
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H(s) 2 s
s 2 s

/

.

n n

n n

n

= +
+ +

=

=

ζ
ζ

ζ

ω ω
ω ω

ω

  
    

2

22

4G

G

α

α

(3-94)

The quantities ζ and ωn are the damping factor and natural frequency, respectively, of the PLL.

Equation (3-93) can be used with (3-39) and (3-40) to determine the output phase and phase

error for an arbitrary input.

Classical feedback control theory provides guidance in the selection of ζ and ωn.  In

general, practical designs of this PLL strive to maintain ζ ≈ 1 2/  in order to achieve a fast step

response (without ringing and excessive overshoot) for a given value of ωn.  Then, select ωn

large enough to meet specified settling-time requirements.

Loop Stability

The poles of (3-93) remain in the left-half s-plane for all G > 0; hence, this loop is

unconditionally stable.  This is best illustrated by the root locus plot depicted by Fig. 3-19.  This

diagram shows the locus of the closed-loop poles as gain G goes from zero to infinity.  At G = 0,

the poles break away from the real axis at s = 0; at G = 4α, they return at the value s = -2α .   For

G > 4α ,  the poles remain real valued; as G → ∞, one pole approaches s = -α , and the other

tends to minus infinity.  This type of plot can be constructed easily using graphical techniques

and the known location of the open-loop poles and zeros.

Transient and Steady-State Tracking Errors

The transient phase error response of the second-order Type II loop under consideration

is calculated easily for common inputs.  First, the phase error is calculated in the Laplace domain

by using
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Φ Θ Θ(s) ( H(s)) (s) s
s 2 s

(s) .
n n

= − =
+ +

1 1
2

2 1
    ζ ω ω2 (3-95)

Then the desired results are obtained by taking the inverse Laplace transform of (3-95).

This method was used to produce the results provided in Table 1.1.  The tabulated error

responses were obtained for inputs consisting of the phase step described by (3-76), the

frequency step described by (3-80), and the frequency ramp described by (3-83).  As expected of

the data in Table 1.1, the entries in the frequency step column are obtained by replacing θΔ by ωΔ

and integrating over [0, t] the entries in the phase step column.  A similar operation yields the

frequency ramp column data from the frequency step column data.

Plots of these phase error functions are depicted by Figs. 3-20 through 3-22.  Each figure

contains a plot for the heavily over damped case (ζ = 2) and the severely under damped case (ζ =

.3).  Also, on each figure is a plot for ζ = 1 2/ , a highly desirable value of damping factor.  For

a fixed value of ζ, a plot similar to the ones depicted here can be used to determine a value for ωn

once the desired settling time is known.

Re

Im
j

Increasing G

G → ∞

Double Open 
Loop Pole

-α-2α

G = 0

Closed Loop 
Zero

G → ∞

Figure 3-19: Root locus for a second-order PLL with a
perfect integrator.
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Table 1.1 Transient response of a second-order, Type II PLL containing a perfect integrator.
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The steady-state error response can be obtained from Table 1.1.  Let t → ∞ in these

results to obtain respectively, where H is given by (3-94).  Note the absence of a constant

component in the phase error.  This follows from the fact that this loop can track a frequency

step with zero phase error.

ωnt
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Figure 3-20: Normalized phase error due to a
phase step input.
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Figure 3-21: Normalized phase error due to a
frequency step input.
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Figure 3-22: Normalized phase error due to a
frequency ramp input.
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φ φss

n
2R

= =
R
S|
T|→∞

limit (t)
/

t

0
0
ω

for a phase step
for a frequency step
for a frequency ramp

(3-96)

for a second-order PLL with loop filter based on a perfect integrator.

It is interesting to compare (3-96) with similar results for the first-order PLL.  This

comparison points out some of the performance improvements which can be achieved by using a

loop filter based on a perfect integrator.  For example, the PLL that contains a perfect integrator

in its loop filter out performs the first-order PLL when the reference is subjected to either a

frequency step or a frequency ramp.

As a last example of steady-state tracking error in this second-order Type II PLL,

consider the application of an angle modulated reference.  Assume that angle θ1 has the form

given by (3-51), where β is the modulation index, and ωm is the frequency of the modulating

signal.  In this case, the VCO steady-state relative phase and the steady-state phase error are

θ 2(t) t H( ) sin( t H( ))= + + ∠ω ω ω ωΔ β j jm m m (3-97)

φ(t) sin t H( ) sin( t H( )) ,= − + ∠β ω ω ω ωm m m mj j (3-98)

Figure 3-23 depicts frequency response plots of ⎮H(jω)⎮ for several values of damping
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ω
 )⎮
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Figure 3-23: Frequency response of a 2nd-
order, Type II PLL.
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factor ζ .   This type of plot is useful for determining the magnitude of the sinusoidal component

in θ2.  A similar type of plot for the relative error ⎮Φ( jω )/Θ1( jω )⎮ is given by Fig. 3-24.

Note that the PLL tracks well the sinusoidal modulation as long as the frequency of this

modulation is significantly less than the PLL natural frequency ωn.  However, the tracking error

increases greatly as the modulation frequency approaches ωn.

Phase Plane Analysis of Second-Order, Type II PLL

The PLL considered here has a loop filter given by (3-87).  Also, it has a reference source

that supplies a sinusoid at the constant frequency ωi.  This section contains a phase-plane

analysis of this loop.  It is shown that this loop can achieve phase lock for an arbitrary value of

ωi and for arbitrary initial conditions.

The equation that describes this loop can be obtained from (3-18) by setting n = m = 1, a1

= b1 = 1 and a0 = α to obtain differential operators L1 and L2.  Then, use L1 and L2 with (3-28)

and θ1 = (ωi - ω0)t = ωΔt  to obtain

d
dt

d
dt

d
dt sinφ φ−LNM

O
QP = − +ωΔ αG (3-99)

d
dt

cos d
dt sin

2

2
φ φ φ φ+ + =G Gα 0 (3-100)
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Figure 3-24: Relative error.
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as the equation that describes the closed-loop phase error.  Equation (3-100) is nonlinear and

second-order; it is said to be autonomous, or time-invariant, since its coefficients α and G do not

vary with time.

The gain constant G in (3-100) can be eliminated by normalizing the time variable.  This

task is accomplished by using τ  = Gt  so that dφ /dt = Gdφ /dτ  and d2φ /dt2 = G2d2φ /dτ 2 .  When

τ  is used as the independent variable, Equation (3-100) becomes

d
d

cos d
d sin

2

2
φ φ φ φ

τ τ+ + ′ =α 0 , (3-101)

where α′  ≡ α /G > 0.

Equation (3-101) can be represented by the first-order system

d
d

d
d (cos ) sin

φ φ

φ φ φ φ

τ

τ α

=

= − − ′

(3-102)

in the dependent variables φ and φ
.
 ≡ dφ/dτ.

The equilibrium points of (3-102) are defined as those constant values of φ , φ
.
  that make

the right-hand side of (3-102) vanish (i.e., dφ/dτ = 0 and dφ
.
/dτ = 0).  All other points are called

ordinary points.  The equilibrium points of  (3-102) are found by inspection to be

φ

φ

=

=

k

0

π
, (3-103)

where k is an integer.  By using perturbation techniques, it is easy to show that equilibrium

points corresponding to even values of integer k are stable and those that correspond to odd k are
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unstable (in the literature, the points for odd k are called  saddle points).

The phase plane trajectories obey a first-order, ordinary differential equation.  By simple

division, it is possible to eliminate τ from (3-102) and obtain

d
d cos

sinφ
φ φ φ

φ
= − − ′

L
NM
O
QPα . (3-104)

This equation describes φ
.
 as a function of φ.  Note that the right-hand side of this equation is 2π-

periodic in φ.  This implies that φ can be taken modulo-2π;  solutions of (3-104) may be

restricted to the interval  -π  ≤ φ < π.  Note that the right-hand side of (3-104) is indeterminate at

the equilibrium points (φ,  φ
.

)  = (kπ, 0).

For the second-order PLL under consideration, plots of φ
.

 versus φ are known as phase

plane plots.  Such plots can be made by numerically integrating (3-102) or (3-104).  It can be

shown that a unique solution of (3-102) passes through every ordinary point on the phase plane.

Such a solution curve is referred to as a trajectory of the equation; the uniqueness property

implies that two trajectories cannot cross each other.

Figure 3-25 depicts a phase plane plot for α′ = 1; for this value of integrator gain, the

loop has ζ = 1/ 2 , a desirable value of damping factor.  Trajectories with φ
.

 > 0 move in the

direction of increasing φ (upper-half plane trajectories move from left to right) while trajectories

with φ
.

 < 0 move in the direction of decreasing φ  (lower-half plane trajectories move from right

to left).  Also, when an upper-half plane trajectory reaches φ = π, it is restarted at φ = −π  with

the same value of φ
.

; likewise, lower-half plane trajectories that reach φ = −π  are restarted at φ =

π.  A cycle slip is said to have occurred every time φ changes by 2π.  For every 2π increase in φ,

the value of φ
.

 decays by an amount that is small for large φ
.

 > 0, but the amount of decay

increases with decreasing φ
.

 (a similar statement can be made for lower-half plane trajectories)

In a neighborhood of (φ,  φ
.

)  = (0, 0), trajectories appear to spiral towards the origin.
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Other interesting elementary properties of these trajectories can be determined by

inspection of (3-104).  Trajectories that pass through ordinary points on the φ
.

 axis do so with a

slope of -1, while trajectories that pass through ordinary points on the φ axis do so with a slope

of infinity.  The phase plane plot is symmetrical; a trajectory remains a trajectory if both φ and φ
.

are negated.  Finally, for very large ⎮φ
.
⎮, the first term dominates the second term on the right-

hand side of (3-104), and the trajectories are nearly sinusoidal.

Pull In for a Second-Order Type II PLL

A process known as pull in is illustrated by Fig. 3-25.  It is the phenomenon by which a

PLL achieves phase lock naturally and without assistance.  The second-order, Type II PLL has

an infinite pull-in range.  As shown in this section, phase lock occurs regardless of the value of

ωΔ and the initial conditions in effect when the loop is closed.  Of course, these theoretical

properties cannot be realized in applications; all practical PLLs have an upper limit on their pull-

in range.  In fact, the pull-in phenomenon is unreliable and slow in many practical applications.

In these applications, additional circuits, that aid the acquisition process, are added to the PLL.

A simple argument leads to the fact that the PLL considered here has an infinite pull-in

range.  First, multiply both sides of (3-104) by φ
.

 and integrate over (−π,  π) to obtain

-π π
φ

 6

 4

 2

-2

-4

-6

φ

Figure 3-25:  Phase plane plot for α′ = 1.
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1
2

2 2[ ( ) ( )] cos sinφ φ φ φ φ φ φπ π
π

π
π

π
− − = −

−
− ′

−z zd dα . (3-105)

The second integral on the right-hand side evaluates to zero, and the first can be evaluated by

using integration by parts; these observations yield

1
2

2 2[ ( ) ( )] sinφ φ φ φπ π
π

π
− − =

−z d . (3-106)

Now, Equation (3-104) can be used to produce

d (cos )d
sin( )

dφ φ φ
φ

φφ= − − ′
L
NM
O
QPα , (3-107)

and this result can be substituted into (3-106) to obtain

1
2

2 2
2

[ ( ) ( )] sin dφ φ φ
φ

φπ π
π

π
− − = − ′

−zα . (3-108)

Consider what Equation (3-108) implies about trajectories which lie in the upper-half of

the phase plane.  For these trajectories, the integrand (sin2φ)/φ
.

  is positive, and the right-hand

side of (3-108) is negative.  Hence, φ
.

 decreases each time the PLL slips a cycle and the phase

increases by 2π.  In a similar manner, it is seen easily that trajectories in the lower-half plane

experience an increase in φ
.

 each time the PLL slips a cycle and the phase decreases by 2π.

Therefore, regardless of initial conditions, ⎮φ
.
⎮ decreases each time the PLL slips a cycle; this

fact implies an infinite pull-in range for the PLL under consideration.

The pull-in time is a function of the initial conditions, and it is defined as the time

required for the PLL to go from this initial condition to a frequency-locked state.  Roughly

speaking, a frequency-locked state is reached when the PLL no longer slips cycles.  The
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nonlinear nature of the pull-in phenomenon prevents the determination of an exact formula for

the pull-in time.  However, for an initial value of ⎮φ
.
⎮ = ωΔ′ ≡ ωΔ/G, it can be shown that pull-in

time grows proportional to the square of ωΔ′, for large ωΔ′ (i.e., when starting at ⎮φ
.
⎮ = ωΔ′ far

from the origin of the phase plane, the pull-in process is “slow”, and pull-in time is

approximately proportional to the square of ωΔ′).  Hence, the fact that the second-order, Type II

PLL has an infinite pull-in range is tempered by the observation that the time required to pull in

grows at a rate that is proportional to the square of the initial frequency error when this value is

large.  In many applications, the pull-in phenomenon is too slow and unreliable.  In these cases,

the PLL contains additional circuitry specifically designed to aid the process of obtaining phase

lock.

Costas Loop DSB Demodulator

Recall that a phase coherent carrier is required to demodulate a double sideband (DSB)

modulated signal.  At the receiver, the regeneration of such a carrier is made difficult by the fact

that, in most applications, no carrier is transmitted (for efficiency reasons, the goal is to allocate

all transmitter power to the data sidebands).  In practice, this problem can be solved by using a

Costas loop (invented by John P. Costas in the 1950’s).  A Costas loop can regenerate a phase-

coherent carrier and demoduate DSB modulation at the same time.  In digital communications,

the Costas loop is used widely as a demodulator of binary phase shift key (BPSK) modulated

(where d(t) = ±1 is a symmetrical binary data signal).  The basic Costas loop can be modified (by

including more channels) into a quadrature phase shift key (QPSK) demodulator.  Such

feedback-loop-based BPSK and QPSK demodulators are used in digital communication systems

that must have a high degree of tolerance to noise (especially broadband Gaussian noise).

Typical applications include wire-line data modems and deep-space digital communication

systems.

On Fig. 3-26, the two arm filters are shown to have transfer function Ha(s), and they are

low pass in nature.  In most application, simple RC filters are used so that Ha(s) = 1/(1 + RCs);

this arm-filter transfer function is used in the Costas loop model that is developed below.  The
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arm filters must have sufficient bandwidth in order to pass the demodulated data without

excessive distortion (usually, filter bandwidth is set at the data clock rate, or slightly higher).

A model is obtained easily for the Costas loop depicted by Fig. 3-26.  Assuming first-

order RC arm filters with ω0 ≡ 1/RC (this is the RC filter cut-off frequency in radians/second),

we can write

0 0

0 0

d sin
dt

d cos
dt

= −ω + ω

= −ω + ω

x x d

y y d

φ

φ

. (3-109)

The loop filter dynamics are modeled by the first-order differential equation

[ ] [ ]

[ ] [ ]

0 0 0 0

0 0

d d + sin cos
dt dt

2 cos sin .

= α = α + −ω + ω + −ω + ω

= α − ω + ω +

e xy xy xy y x d x y d

xy d x y

φ φ

φ φ

(3-110)

The VCO is modeled (as always) by dθv/dt = ω0 + Kve, where ω0 and Kv are the VCO center

d(t) sinωit
F(s) = 1+α/sVCO

-90°

Arm Filter
Ha(ω)

2cos θv

Demodulated
Output

2sinθv

dsinφ

dcos φ

x(t)

y(t)

Loop Filter

Arm Filter
Ha(ω)

xye

Fig. 3-26:  Costas loop data demodulator.  In most applications, the arm
filters are simple RC low pass filters so that Ha(s) = 1/(1+RCs).
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frequency and gain, respectively.  This VCO model leads to

v
d K
dt Δ= ω −φ e , (3-111)

where φ ≡ ωit - θv is the closed-loop phase error, and ωΔ ≡ ωi - ω0 is the loop de-tuning

parameter.  Equations (3-109) through (3-111) model the Costas loop, and the independent

(state) variables x, y, e and φ describe the Costas loop.

When phase-locked and operating properly, the closed-loop phase error φ = 0.   With this

value of φ , we obtain e = ωΔ/Kv from (3-111).  With φ = 0, we observe that x = 0 and y satisfies

0 0
d
dt

= −ω + ωy y d , (3-112)

an equation that describes an RC low pass filter driven by data signal d.  Finally, y ≈ d if the

bandwidth ω0 of the arm filters is sufficient to prevent significant amplitude and phase distortion

in the demodulated data, and we have demodulated the digital data.

FM Demodulation Using Frequency-Compressive Feedback

Consider the FM demodulator depicted by Figure 3-27.  The input to the demodulator is

x t A t tr c i i( ) cos[ ( )]= +2 ω θ , (3-113)

an angle-modulated signal.  The VCO output is

x t K t tv i if v( ) sin[( ) ( )]= − +2 ω ω θ , (3-114)

where ωi - ωif is the VCO’s center frequency (the VCO gain is Kv).  Hence, we have
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d
dt

K ev v
θ v = (3-115)

as the VCO equation.

The output of the down converter contains both sum and difference frequency terms.  The

difference frequency term is at ωif , the center frequency of the IF filter and discriminator.

Assume that the difference frequency term is passed without amplitude or phase distortion by the

IF filter.  The sum frequency term falls outside of the IF filter, and it can be ignored.  Hence, the

output of the IF filter can be written as

e t A K t t td c if i v( ) sin[ ( ) ( )]= + −ω θ θ . (3-116)

Also, this is the input to the discriminator.

The center frequency of the discriminator is ωif.  Hence, the base band discriminator

output is

[ ] i
v d i v d v v

1 d 1 d (t)e (t) K (t) (t) K K e
2 dt 2 dt

⎡ ⎤= − = −⎢ ⎥π π ⎣ ⎦
θθ θ . (3-117)

Down
Converter

VCO

 ed(t) =AcKsin(ωift + θi - θv)

FM
Discriminator

 ev(t) @Baseband

x (t) 2A cos t tr c i i= +[ ( )]ω θ

x (t) 2K t tv i if v= − +sin[( ) ( )]ω ω θ

FM Discriminator: Center Freq = ωif , Gain = Kd

VCO: Center Freq = ωi−ωif , Gain = Kv

IF Filter
@ ωif

Figure 3-27: Frequency feedback demodulator.
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This last equation can be solved for

1
2

1
2

2
1 2

+LNM
O
QP = ⇒ =

+
L
NM

O
QP

K K e K d t
dt

K
K K

d t
dt

d v
v d v

d

d vπ π
π

π
θ θi i( ) /

/
( )  e , (3-118)

which shows that base band ev is proportional to the input frequency deviation, and we have an

FM demodulator.

Assume that the input signal is FM modulated so that

θ i( )t f md
t

= z2π , (3-119)

where m(t) is a message.  Use (3-118) and (3-119) to write

e t K f
K K

m tv
d d

d v
( )

/
( )=

+
L
NM

O
QP1 2π

, (3-120)

so that we have demodulated the input and recovered the message.

This type of FM demodulator has certain advantages over a straight FM discriminator for

the case of wide band FM (where the deviation ratio D is large so that the transmission

bandwidth is large compared to the message bandwidth).  The advantage of this technique (over

a straight discriminator) is seen by examining (3-116), the discriminator input.  In (3-116), we

can use (3-115) and (3-118) to write

θ θ θ θ θ

θ

i i i i

i

( ) ( ) ( ) ( ) /
/

( )

/
( ) .

t t t K e t K K
K K

t

K K
t

v v v
t

v
d

d v

d v

− = − = −
+
L
NM

O
QP

=
+
L
NM

O
QP

z 2
1 2

1
1 2

π
π

π

. (3-121)
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Hence, the discriminator’s input can be written as

d c if i
d v

td
c if

d v

1e A K sin t (t)
1 K K / 2

fA K sin t 2 m( )d
1 K K / 2

⎡ ⎤⎧ ⎫
= ω +⎢ ⎥⎨ ⎬+ π⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫
= ω + π τ τ⎢ ⎥⎨ ⎬+ π⎢ ⎥⎩ ⎭⎣ ⎦

∫

θ

. (3-122)

As supplied to the ideal FM discriminator, the FM signal ed has a modulation index of fd/[1 +

KdKv/2π] Hz/volt.  By making KdKv >> 2π, a significant reduction can be effected in the

modulation index and frequency deviation of the discriminator input signal.  The effective

deviation ratio D, as seen by the discriminator, can be reduced significantly.  Equivalently, the

bandwidth of the discriminator input can be reduced (a wide band FM signal on the

demodulator’s input shows up as a narrow band FM signal on the discriminator input).  The

input wideband FM signal has been “compressed” into a narrow band FM signal.

Why is this significant?  Well, it turns out that FM demodulation is subjected to a

threshold phenomenon.  Basically, things “work well” if the input signal-to-noise ratio is above

threshold.  But, performance (SNR in the demodulator output) degrades sharply when input

signal-to-noise ratio falls below threshold.  By “compressing” the signal and reducing the

equivalent bandwidth seen by the discriminator (so that a narrow IF filter can be used), it is

possible to reduce the noise power seen by the discriminator, and this will result in a reduced FM

threshold.  For example, on commercial wide band FM (where D = 75/15 = 5), it is possible to

reduce the threshold by around four-to-five dB, according to published reports.
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