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1 DYNAMIC MODEL OF THE SPINDLE

1.1 Overview

The Spindle is a Brushless DC motor (BLDC). This kind of motor is popular due to the absence of commutators
and brushes, as found in ordinary DC motors and to their ability to respond to digital input pulses.

The most important characteristic that makes brushless DC motors different to DC motors, by the mathematical
modeling point of view, is the torque-speed curve (linear [non linear] for ordinary DC [BLDC] motors). In the next
section, this relationship will be derived.

by Maurizio Scavazzon

SPINDLE MOTOR CONTROL
FLL AND DIGITAL FILTER ANALYSIS

In the disk drive market the need for sinusoidal spindle motor drive is getting more and more important
due to factors like acoustic noise, motor wear out, torque ripple, speed control accuracy, etc. In partic-
ular, the speed control precision is a key feature and only a flexible and reliable digital solution allows
programmability, external components reduction and silicon real estate savings. This invention de-
scribes a means to implement the spindle speed control loop in digital way with a fully integrated filter.

It is desirable to design a system capable to include a complete speed control loop in order to alleviate
the micro from the task to monitor the speed and correct it. It is also desirable to implement the speed
control loop with a digital filter to get flexibility through coefficients setting, reliability (in the case of analog
filter, the charge pump pin is a very sensitive node), low cost (measure in terms of silicon real estate),
board space and cost reduction with the removal of the passive external components and finally speed
accuracy. The implementation described here is a second order IIR filter with setting of three coefficients
embedded in a FLL speed control.

In Chapter 1 a mathematical model of the spindle motor will be derived. The mechanical and electrical
characteristics will be studied in order to obtain a simplified transfer function of the motor. An example
with real spindle parameters will be considered and frequency analysis will be performed.

Chapter 2 talks about designing of an analog compensator. Based on the desired requirements, a sec-
ond order filter will be derived. At the end an example describes how the filter improve the performances
of the overall system.

In Chapter 3, the digital control issue will be analyzed. The technique called "emulation" will be studied
and a digital FLL filter will be derived using bilinear transforms.

In Chapter 4 a Mathcad analysis is performed.

In Appendix, the list of symbols used and their units, a Torque conversion table and the External FLL
routine (written in C language) can be found.
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1.2 Torque-Speed Characteristics

To obtain the Torque-Speed equation, the following assumptions are taken:

• No damping (B=0) 

• The motor is running at constant speed ωm. 

The motor is driven with a circuit such that the voltage across each winding (n=0,1,2) is given by

 Eq. 1-1

The back-emf voltage ([3]) is

 Eq. 1-2

where 

Since the motor is running at a constant speed ωm and θe = θm, the angular displacement is

θe = ωm · t  Eq. 1-3

To solve this sinusoidal equation, the phasors theory can be used. 

A sinusoidal voltage e(t) and its phasor E are related by

e(t) = Re[E · ejω·t] = E · cos(ω · t + θ)  Eq. 1-4

where E and θ are, respectively, the magnitude and the angle of E. Using the phasors, the voltage equation
becomes ([3])

Vn + En = (R + jωL)I  Eq. 1-5

where

Vn = Vs∠  Eq. 1-6

and

En = -Keωn∠  Eq. 1-7

Solving for In

In =  Eq. 1-8

The instantaneous current in (t) is:

in(t) = Io sin(ωmt + αn - β)  Eq. 1-9
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where

and

Using the above equations in the torque equation

 Eq. 1-10

the following expression results

 Eq. 1-11

Using some trigonometric manipulation to the above equation, the following expression for the torque is derived

 Eq. 1-12

Now

Substituting the expression for Io  and cosβ  in Eq. 1-12, the final torque equation results

 Eq. 1-13

The above equation give the torque-speed curve and it's obviously non-linear. However, if the inductive term in
the Eq. 1-13 is small enough to be neglected, the torque-speed becomes linear just like the DC motor.

1.3 Dynamic Model of a DC Motor

1.3.1 Physical Description

A brushless dc motor is a mechanism that converts electrical power to mechanical power via magnetic coupling.
The electrical power is provided by a voltage source, while a spinning rotor provides the mechanical power.

A brushless dc motor consists of three main components: stator, rotor and sensors. Figure 1.1 shows a cross-
sectional view of an idealized three-phase brushless dc motor. It has six stator poles with opposite poles being
the same phases around which coils are wound. The winding in each pole is called phase winding, signifying
that current in each winding is independently excited and offset by an appropriate electrical angular displace-
ment. The idealized motor is a three-phase motor since it has three independent windings. The rotor is a per-
manent magnet with opposite poles facing the gap.

Classical brushless dc motors have also sensors, required to monitor the position of the rotor. In the Spindle
motors, in place of the sensors, position information is obtained by processing the back emf.

Io
Vs Keωm–

R
2 ωmL( )2

+
-------------------------------------=

β tan
1– ωmL

R
------------=

T Kt In

n 0=

2

∑ ωmt αn+( )sin⋅–=

T KtIo ωmt αn β–+( ) ωmt αn+( )sinsin

n 0=

2

∑–=

T
3
2
---KtIo βcos–=

βcos tan
1– ωmL

R
------------ 

 cos
R

R
2 ωmL( )2

+
-------------------------------------= =

T
3KtR VS Keωm–( )

2 R
2 ωmL( )2

+[ ]
------------------------------------------------=



AN1373 APPLICATION NOTE

4/32

Figure 1.1. Cross section of an ideal brushless DC Motor.

1.3.2 Electrical Characteristics

The equivalent electrical circuit of a dc motor is illustrated in Figure 1.2. It can be represented by a voltage
source (V) across the coil of the armature. The electrical equivalent of the armature coil can be described by an
inductance (L) in series with a resistance (R) in series with an induced voltage (e), which opposes the voltage
source. The induced voltage is generated by the rotation of the permanent magnets through the fixed flux lines
of the electrical coil. This voltage is often referred to as the back emf (electromotive force).

Figure 1.2. Electrical representation of a DC motor

Using Kirchoff's voltage law around the electrical loop can derive a differential equation for the equivalent circuit.
Kirchoff's voltage law states that the sum of all voltages around a loop must equal zero, or

V – VR – VL – e = 0  Eq. 1-14

According to Ohm's law, the voltage across the resistor can be represented as

VR = R · i  Eq. 1-15

where i is the armature current. The voltage across the inductor is proportional to the change of current through
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the coil with respect to time and can be written as

 Eq. 1-16

where L is the inductance of the armature coil. Finally, the back emf can be written as

e = Ke · ω  Eq. 1-17

where Ke is the velocity constant determined by the flux density of the permanent magnets, the reluctance of
the iron core of the armature, and the number of turns of the armature winding. ω = θ is the rotational velocity
of the armature.

Substituting Eq. 1-15, Eq. 1-16 and Eq. 1-17 into Eq. 1-14 gives the following differential equation:

 Eq. 1-18

1.3.3 Mechanical Characteristics

Performing an energy balance on the system, the sum of the torques of the motor must equal zero. Therefore,

Te – Tω’ – Tω – TL = 0  Eq. 1-19

where Te is the electromagnetic torque, Tω’ is the torque due to rotational acceleration of the rotor, Tω is the
torque produced from the velocity of the rotor, and TL is the torque of the mechanical load. The electromagnetic
torque is proportional to the current through the armature winding and can be written as

Te = Kt · i  Eq. 1-20

where Kt is the torque constant and like the velocity constant is dependent on the flux density of the fixed mag-
nets, the reluctance of the iron core, and the number of turns in the armature winding. Tω’ can be written as

 Eq. 1-21

where J is the inertia of the rotor and the equivalent mechanical load. The torque associated with the velocity is
written as

 Eq. 1-22

where B is the damping coefficient associated with the mechanical rotational system of the machine.

Substituting Eq. 1-20, Eq. 1-21 and Eq. 1-22 into Eq. 1-19 gives the following differential equation:

 Eq. 1-23

1.3.4 Transfer Function Block Diagram

The differential equations given in Eq. 1-18 and Eq. 1-23 for the armature current and angular velocity can be
written as

VL L
di
dt
-----⋅=

V R– i L–
di
dt
----- Ke ω⋅–⋅ ⋅ 0=

Tω' J
dω
dt
-------⋅=

Tω B ω⋅=

Kt i J dω
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------- B ω TL–⋅–⋅–⋅ 0=
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 Eq. 1-24

 Eq. 1-25

Applying the Laplace transform to each of the equations results

 Eq. 1-26

 Eq. 1-27

If perturbations around some steady state value are considered, initial conditions go to zero and all the variables
become some change around a reference state and the equations can be expressed as follows:

 Eq. 1-28

 Eq. 1-29

In the case of a sun tracking servo system, the only load torque to be concerned with is the friction in the system,
which is relatively constant while the motor is moving. Since the change in TL  is zero, it does not need to appear
in the block diagram. Also, if one only focuses on the angular velocity as the response of interest, the block di-
agram becomes as shown in Figure 1.3.

Figure 1.3. Block diagram of the DC motor (driven in voltage mode) as modeled in this study
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This block diagram is then reduced, using block diagram algebra, to an overall transfer function between the
output angular velocity and input applied voltage. The equation can be expressed as follows:

 Eq. 1-30

1.4 Frequency Analysis of the System

Before starting to design any kind of speed control scheme, it's a good rule to perform a frequency analysis of
the plant to better understand the kind of controller needed.

For this purpose an example in which the parameters are picked up from the technical manual of a 5400rpm
hard disk drive is presented.

EXAMPLE 1.1

Draw the Bode plot of the open loop transfer function of a spindle motor with the following physical parameters:

Back emf constant Ke = 0.091 V · s

Torque constant  Kt = 147.86 g · cm/A

Winding inductance L = 500µH

Winding resistance  R = 1.8Ω

Inertia J = 0.732 g · cm · s2

Damping coefficient  B = 0.36 g · cm · s

and determine the stability margin.

Solution.  Substituting the above values in the Eq. 1-30, the following transfer function results:

Ω s( )
V s( )
------------

Kt

J L⋅( ) s
2

J R L B⋅+⋅( ) s R B Kt Ke⋅+⋅( )+⋅+⋅
--------------------------------------------------------------------------------------------------------------------------=

G s( ) 147.86

0.0001098 s
2

1.318 s 14.1+⋅ ·
+⋅

--------------------------------------------------------------------------------------=
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The Bode diagrams are the following

Figure 1.4. Bode Diagrams

The magnitude plot shows there is a pole at very low frequency and another one at very high frequency (there
is a 40db/decade attenuation). The phase margin sketch in the phase plot is very good. Below the open loop
step response is plotted

Figure 1.5. Open-Loop step response

The above graphic shows that applying a unity step input, the output present a quite large steady state error. 

1.5 Conclusions

The mathematical equations of the spindle's model have been derived in the previous section.

The example presented above is very important because it is represent the priori knowledge about the plant that
has to be controlled.

Figure 1.5. shows that a regulator is needed in order to make the system's output track the desired input without
steady state errors. In the next chapter some techniques to control the above plant will be studied.
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2 DESIGN OF THE ANALOG FLL FREQUENCY LOCKED LOOP

2.1 Overview

In this chapter some techniques to accomplish speed control of the spindle motor will be presented. As the spin-
dle is a brushless motor without output sensors, the output signal is processed starting from the back emf. 

Figure 2.1. shows the Frequency Locked Loop used to control the spindle's speed. 

Since the most basic requirement of a spindle motor is that it should rotate at the desired speed, the steady-
state error of the motor should be very low (less than 0.1%). One more requirement is that the motor must ac-
celerate to its steady-state speed as soon as it turns on. In this case it is necessary to have the settling time less
than 5 seconds. Since a speed faster than the reference may damage the equipment, it is also necessary the
overshoot is less than 5%.

The desired requirement can be summarized as follows:

1.  Steady-state error of the motor speed less than 0.1%

2.  Settling time lass than 5 seconds

3.  Overshoot less than 5%

In order to satisfying the first requirement, a pure integrator will be insert in the controller, moreover a propor-
tional gain will be inserted in order to reduce the rise time. This first configuration will be analyzed in section 2.2,
while in section 2.2.1 a more complicated controller including a lead-lag filter (to improve system stability) will
be presented.

Figure 2.1. Frequency Locked Loop block diagram
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2.2 Controller Design

The meaning of the controller is to make the system fast react to speed perturbation maintaining the stability.
As discuss in previous section, the requirement to make the steady-state error very low is the why an integrator
is needed.

EXAMPLE 2.1

Based on the control scheme sketched in Figure 2.1. and the system parameters introduced in Example 1.1,
design a controller that satisfy the following requirements:

• Steady-state error of the motor speed less than 0.1%

• Settling time lass than 5 seconds

• Overshoot less than 5%

Plot the step response of the closed loop system and verify how the system reacts to Torque perturbances.

Solution.  The first controller presented is sketched below:

Figure 2.2. Gain-Integrator controller

The above controller allows the user to change the gain K, in order to change the system dynamics.

Next Figure shows the closed loop step response respect to K variations.

Figure 2.3. Step response of the system with the PI controller.

The above plot shows that the gain modifies the system's characteristics (especially rise time and overshoot). 

At time 4 seconds, an impulsive disturbance in the load torque has been generated. 

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

time (sec)

Out
rpm

Closed Loop Step Response

K = 2

K = 1.8

K = 1.6

Load Torque Impulse

reaction time



11/32

AN1373 APPLICATION NOTE

The controller described in the previous example satisfies the requirements. However it is present weak in noise
rejection. In many applications it should be desirable to make the recovery time (time the controller take to make
the output equal to the input, after a perturbation has fired) as small as possible.

In order to reduce the recovery time, a more complicated controller will be designed. 

The new controller is made by the series connection of the previous controller with a filter called Lead-Lag filter.

To analyze the behavior of this filter, the integrator is considered part of the plant. In such a way the plant be-
comes a 3rd order type-1 system (three poles, one of them in the origin), as shown below:

Figure 2.4. 

2.2.1 Lead Compensation

The main purpose of the compensator is to increase the phase (or lead) still occurs, keeping the amplification,
at high frequencies, limited. The resulting lead compensation has a the following transfer function

 Eq. 2-1

where τp < τz. It is often useful to fix the zero-pole displacement and express the Eq. 2-1 in the following way

 Eq. 2-2

where α=τp/τz and t = 1/2πƒ. Figure 2.5. shows the frequency response of this lead compensation.

Figure 2.5. Lead compensation frequency response with 1/ α = 10
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Figure 2.5. shows that a significant amount of phase lead is provided with less amplification at high frequencies.

To understand how the compensator will improve the overall system performances, the system introduced in
the example 1.1 will be considered with the addiction of a pole in the origin making the system a 3rd order type
I system.

EXAMPLE 2.2

Consider the system introduced at page 7. A pure integrator is connected in series, giving the following system

Design a lead compensator for the above system. 

Compare the noise rejection performances of the designed control system respect to the system designed in
Example 2.1.

Solution.  The plant is a 3rd order type I system that means there are three poles with one of them in the origin. 

The Eq. 2-2 gives the transfer function of the lead filter.

To understand where to place the pole (ƒp = 1/2πτz) and the zero (ƒz = 1/2πτz) of the compensator, the following
graphs can be useful.

Figure 2.6. Open Loop TF of the system (Filter+Plant) Vs changing in K (fz and fp constants)
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Figure 2.7. Filter TF Vs changing in fz (K and fz/fp constants)

Figure 2.8. Open Loop TF of the system (Filter+Plant) Vs changing in fz (K and fz/fp constants)
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Figure 2.9. Closed loop step response comparison.

Figure 2.6. shows that the gain of the controller does not affect the phase plot of the system. Increasing the gain
results in moving up the Magnitude plot. Consequently the crossover frequency moves to the right and the
phase margin too (solid line on the phase plot).

The phase plot of Figure 2.7. shows that increasing or decreasing the frequency of the zero in the filter, keeping
the zero-pole displacement and the gain constants, corresponds to move the phase shape respectively, to the
right or to the left.

In order to get more stability, the center of the phase shape should be placed where the crossover frequency of
the system is. In such a way the overall phase margin grow up due to the lead effect of the filter.

Figure 2.8. shows how the zero frequency of the filter change the phase shape of the overall open loop transfer
function. Frequency F1 should be kept to get more stability. After some manual adjustments the following FLL
filter's parameters results:

K = 0.25

ƒz = 0.5Hz

ƒp = 5Hz

Figure 2.9. compares the step responses of the system with and without Lead Filter. An impulse torque load
noise has been added (at time t = 4 sec) to compares the noise rejection  performances. 

2.3 Noise Rejection

An important issue in control design is the ability of the overall compensated system to reject some kind of noise
that gets into the system (e.g. noise due to the sensor or to the actuator).

In the hard disk spindle speed control it is important to avoid the disturbances on the torque, for example due
to the oscillations of the hard disk's head. By the way, if it is not possible to avoid them, the compensator has
to be able to reject them as fast as possible avoiding degradations of the dynamic performances. 

To view the noise rejection performances of the FLL control scheme presented in previous examples, the Figure
2.1. is now redraw focusing the relationship between the input torque noise and the output speed.
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Figure 2.10. Block diagram of the compensated system focusing the relationship between input
torque noise and output speed.

From the above block scheme it is possible to derive the bode plots of the transfer function between the input
noise and the output speed (Figure 2.11.a). Figure 2.11.b shows the step and impulse responses. It can be seen
that both the step and impulse noises in the load torque are suppressed as desired.

Figure 2.11. Input torque noise to output speed Transfer Function. (a) Bode plots, (b) step and im-
pulse responses

2.4 Conclusions

Figure 2.9. shows that the Lead Filter is better than the pure integrator in term of recovery time. 

The requirement of fast recovery time is becoming one of the main requirements of the last hard disk applica-
tions. Due to increasing of DPI (track density per inch), using of faster spindle combined with hard disk support-
ed software (for example using HD as virtual memory in Windows operating system) it is important to recover
the desired speed as fast as possible if some perturbations arise. In some applications like laptop computers or
smart cards for portable devices (e.g. digital camera), perturbations of the load or suddenly accelerations are
common noises that a well-designed controller has to reject quickly.

For the above reasons the FLL filter described in Example 2.2 should be used.
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3 DIGITIZATION - DESIGN OF THE DIGITAL CONTROL FLL

3.1 Overview

In the previous chapter an analog controller to allow speed spindle control has been designed. The next step is
to derive a digital filter that allows the same control.

Many techniques can be used, but the one presented it is called emulation. This technique procedes through
the following steps:

•  Designing of a continuous compensator (as described above)

•  Digitizing the continuous compensation

Figure 2.1. at page 9 shows the topology of a typical continuous control system. The computation of the error
signal and the dynamic compensation can all be accomplished in a digital computer as shown in Figure 3.1.

The most important differences between the two implementations are that the digital system operates on sam-
ples of the sensed spindle output rather than on the continuous signal and that the dynamics represented by
the analog controller must be approximated by algebric recursive equations.

Figure 3.1. Block diagram for a basic control system with a digital computer

It is fundamental to know that the most important impact of implementing a control system digitally is the delay
associated with the Hold1. This issue will be explained further.

The analog controller has been studied in the previous chapter. Now some issues in digital control design will
be presented.

Note: 1. The result of the difference equations is a discrete u(kT)  at each sample instant. This signal is converted to a continuos u(t)  by
the digital-to-analog (D/A) converter and the hold: the D/A changes the binary number to an analog voltage and a zero-order hold
(ZOH) maintains that same voltage throughout the sample period.
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3.2 Bilinear Transform

This technique approaches the problem as one of numerical integration. Suppose

 Eq. 3-1

which is integration. Therefore,

 Eq. 3-2

which can be written as

u(kT) = u(kT – T) + area under e(t) over last T  Eq. 3-3

where  T is the sample period.

For bilinear approximation (also called Tustin's method), the task at each step is to use trapezoidal integration
that is, to approximate e(t) by a straight line between the two samples (Figure 3.2.).

Writing u(kT) as u(k) and u(kT – T) as u(k – 1) for short, Eq. 3.3 become

 Eq. 3-4

Or, taking the z-transform,

 Eq. 3-5

In fact, given a continuous transfer function  D(s) and substituting

 Eq. 3-6

for every occurrence of s  yields a D(z)  based on the trapezoidal integration formula.

Figure 3.2. Trapezoidal integration
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EXAMPLE 3.1

Use the bilinear transform to obtain a first order IIR filter from the following analog filter,

 Eq. 3-7

The sampling period for the digital filter is T seconds. Express the digital filter's coefficients as functions of the
analog filter's parameters.

Solution.  τx = 1/2πƒx  is the time constant. Eq. 3-7 can be written, for convenience, as follows

 Eq. 3-8

Substituting Eq. 3-6 into the Eq. 3-8

 

where 

are the digital filter's coefficients.

The above digital filter can be implemented using the following difference equation:

Sometimes (if few bits are available to store the filter's coefficients) a scaling factor λ can be applied having a
better resolution. This issue is explained in the next section. 

Below are the results

 A0 = λ A1 = λ · a1

 B0 = λ · b0 B1 = λ · b1

In Mozart™ internal FLL digital filter (in which the coefficients have ten bits length) λ has been set to 16.
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3.3 Scaling

Some applications have the FLL integrated in the microchip. In this case the internal representation of the digital
filter's coefficients is a fixed-point integer representation. To better understand this issue the Mozart internal FLL
is considered. 

The internal representation of the digital filter's coefficients is a 10-bit fixed-point integer representation. This
means that only integer values can be stored and for decimal numbers, the ROUND function will be applied.

Below, the generic digital filter formula is presented

 Eq. 3-9

The results do not change if the Eq. 3.9 is multiplied and divided by the same factor:

 

Consider the effect of prescaling the b0 coefficient. Suppose the real value for that coefficient is 2.49.

If no prescaling is performed, the value stored on the coefficient register is

and the percentage error is

Now a prescaling with a factor K=10 is applied.

With this scaling, the value stored on the coefficient register is

After all the coefficients have been scaled, everything goes like the coefficient used in the filter equations was 

and the error is

It can be seen that a prescaling factor of ten allows a better resolution on the filter coefficients.

Often, it is preferable to scale the coefficients with a factor that is a power of 2, to easily compute the multipli-
cation (the factor 16 is better than 10, because it is correspond to a 4 bit shift left).

3.4 Applicability Limits

Performing an exact discrete analysis or a simulation of a system and determining the digitization for a wide
range of sample rates, it can be seen that the system would typically be unstable for rates slower than approx-
imately 5ωn (five times the cross-over frequency) and the damping would be substantially degraded for rates
slower than 10ωn. At sample rates on the order of 20ωn, design by emulation yields reasonable results and can
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be used with confidence for sample rates of 30 times the bandwidth.

The errors come about the technique ignores the lagging effect of the Zero-Order Holder, which, on the average,
is T/2 sec. A method to account for this is to approximate the T/2 delay including a transfer function approxima-
tion for the ZOH:

 Eq. 3-10

It could be therefore improved the original discrete design by inserting Eq. 3.10 into the original plant model and
finding the compensator that yields a satisfactory response. However, one of the advantages of using the em-
ulation design method is that the sample rate does not need to be selected until the basic feedback design is
completed.

In the examples introduced in the previous sections, the bandwidth was very small compared to the sample fre-
quency used in the most common applications. 

Figure 3.3. shows the bode plots of the controlled system. The solid line represents the continuous controlled
system without the holder has been considered. The other lines represent the same system but with a zero-
order holder considered in the plant. Due to the small bandwidth of this application (less than 4 Hz) it can be
seen that for the most common applications (desired speed greater than 5400 rpm) the lag effects of the holder
are not relevant.

Figure 3.3. Closed Loop bode plots of the controlled system, without holder model (solid), and with 
zero-order holder and a sample time of 30 ms (line), 11 ms (dot), 8.3 ms (dot line).

3.5 Conclusions

To recapitulate, the process of designing by emulation consists of the following steps:

1. Assume that the system and compensation are continuous and use the design method discussed in the pre-
vious chapters to meet all specifications.

2. Use digitization procedure to approximate D(s) with D(z).

3. Implement D(z) directly with a difference equation in the control computer.
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4 MATHCAD ANALYSIS OF THE SPINDLE FLL CONTROL

4.1 Overview

The results derived in this Mathcad analysis are referred to the following FLL scheme:

Figure 4.1. Block scheme of the analog FLL spindle control.

Figure 4.2. Block scheme of the used spindle model

4.2 Spindle Parameters

The mechanical and electrical characteristics of the spindle motor are defined below:

L: = 150 · 10-6 [H] Winding Inductance (coil to coil)

R: = 1.8 [Ω] Winding Resistance

J: = 0.732 [g cm s2] Moment of Inertia

B:=0.36 [g cm rad s-1] Damping Coefficient

ke:= 0.091 [V s / rev] Back emf Constant

conversion constant from  [V s / rev]  to [N m / A]

Kt:= Ke · λ [g cm / A] Torque Constant

λ :
50000
9.8 π⋅
----------------=
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The definitions of the frequency and s complex variable are as follows. These are used to perform the frequency
analysis:

f:= 0.1,0.2..100 Frequency Range [Hz]

w(f):= 2 · π ·f requency Range [rad/sec]

s(w):= i · w Complex variable used for the Bode plot

Now, the Open Loop transfer function of the Spindle model will be defined 

Spindle Transfer Function:

Integrator Transfer Function:

Spindle plus Integrator T.F.: Gi(s) = I(s) · G(s)

Spindle poles location  

Mechanical pole location  ƒm = 1.704Hz

Electrical pole location  ƒe = 1.908 · 103Hz

Analog Filter's Parameters

The analog filter will be designed first. Afterwards, using bilinear transforms, the coefficients of the FLL digital
filter can be derived.

Trick: place the zero before the mechanical pole and let the pole frequency be located a decade after the zero
(fp=10*fz). 

K: = 0.2 Gain:

fz: = 0.5 Zero Frequency (Hz)

fp: = 5 Pole Frequency (Hz)

a: = Zero-Pole displacement
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Below is the Filter's transfer function:

Filter Transfer Function

The overall open loop transfer function (Filter + Integrator + Spindle) becomes

Controlled Spindle TF C(s) = F(s) · I(s) · G(s)

Digitization - FLL Digital Filter's Coefficients Calculation

Applying the bilinear transform to the analog filter F(s) defined above, the following digital filter can be obtained

For better resolution of the filter's coefficient, a scaling factor of 16 will be applied to the derived coefficients
(equivalent to a 4 bit left shift). The resulting filter transfer function is:

Digital FLL filter

It is shown in Figure 3 the block diagram for the above IIR filter using a direct form realization:

Figure 4.3. Direct form II of a first order IIR digital filter

This discrete transfer function can be implemented via software using the following difference equations:

16 · y(n) = B0 · x(n) - B1 · x(n - 1) + A1 · y(n - 1)

Design parameters: 

rpm:= 5400 Desired Speed[rpm]

npoles:= 6 Number of motor poles

cycle: = 1 Use 1, if Mechanical cycle is selected, npoles otherwise.

Ts = 0.011 Period of the updating frequency [s]

Now the FLL digital filter's coefficient will be obtained using bilinear transform. 
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A0 = 16

4.3 Bode Plots

Figure 4.4. 
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6 APPENDIX

6.1 Symbols and their Units

6.2 External FLL routine

The Frequency Locked Loop control scheme introduced in the previous sections can be implemented both in internal
scheme, using a microcontroller on board or using an external PC connected properly via serial or parallel port. 
Below the C language code routine used for the external FLL with Mozart is presented.

Symbol Quantity Unit Abbreviation

B damping coefficient Newton meter sec N m s

Vn voltage across winding n Volt V

Vs voltage supply Volt V

θ electrical angle Radians rad

Kt torque constant Newton meter/Ampere N m / A

Ke back emf constant Volt   sec V  sec

T torque Newton meter N m

R resistance ohm Ω

L inductance Henry H

J inertia kilogram meter2 Kg m2

ωm angular velocity of the motor radians/sec rad / sec
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long int __export run_fll(long int init, fll_struct *fll_par_ptr,
  long int *rcc_log, long int *out_log)

{
/* Closes the spindle speed control loop externally:

 - Waits for FCOM signal to arrive.
 - Reads zero-cross timer result from FPGA
 - Calculates KFLL for the next spindle revolution.
 - Writes the KFLL register.

Resturns the number of revolutions processed since the last FLL state 
initialization. 
Revolution clock count and FLL outputs are stored in the arrays designated by 
the pointers err_log and out_log.*/

static fll_struct fll; /* FLL parameters */
static long int cyc_count[12]; /* past cycle count values */
static long int err_bad; /* error value after a glitch, 0 otherwise 

*/
static long int err_km1; /* mechanical timing error in previous cycle 

*/
static long int flt_km1; /* filter ouotput in previous cycle */
static long int acc_km1; /* accumulator value in previous cycle */
static long int out_km1; /* FLL output in previous cycle */
static long int *rcc_ptr; /* pointer to array for error storage */
static long int *out_ptr; /* pointer to array for FLL output storage 

*/
static long int necpr; /* electrical cycles per revolutions */
static long int krev; /* revolutions since last initialization */
long int rev_count; /* clock cycle counts in one revolution */
float rev_time; /* revolution time in microseconds */
long int err_k, flt_k, acc_k; /* error, filter and accumultaor outputs */
long int out_min, out_k; /* minimum and current FLL outputs */
long int c, ec, mc; /* cycle indices */
long int zcross, rev; /* zero cross and revolution indices */
char msg[128];

if (init>0)
/* copy FLL parameters */
{ fll = *fll_par_ptr;
/* Initialize FLL state if specified. */

if (init>1)
{ necprt = spin.npole / 2;

if (spin.simulate == 0)
{ set_timer(TM_IDLE, 0 );

/* Setup timer for mechanical or electrical cycle count. */
if ((fll.cyc_type == 0) || (fll.cyc_type == 2))

set_timer(TM_MCYC,60000L);
else 

set_timer(TM_ECYC,60000L);
} 
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else
sim_spindle(-fll.out_init);

for (c=0; c<spin.npole;c++)
cyc_count[c] = 10 * fll.ref_time / necpr;
err_bad = 0;
err_km1 = 0;
flt_km1 = 0;
acc_km1 = fll.out_init << fll.acc_shift;
out_km1 = fll.out_init;
rcc_ptr = rcc_log;
out_ptr = out_log;
krev = 0;

} /* end if (init > 1) */
/* Initialize pointers always if the calling routine passes pointers 

to single variables instead of arrays. */
rcc_ptr = rcc_log;
out_ptr = out_log;

} /* end if (init >0) */

rev = 0;
zcross = 0;
while (rev < fll.nrev)

/* Shift past cycle time count values. */
{ if (fll.cyc_type > 3)

for (c = 2*necpr -1; c >= necpr; c--)
cyc_count[c] = cyc_count[c-1];

if (fll.cyc_type > 2)
{ for (c = necpr -1; c >= 1; c--)

cyc_count[c] = cyc_count[c-1];
/* Get the timer count of current cycle. */

if (spin.simulate == 0)
cyc_count[0] = set_timer(TM_MCYC, 40000L);

else cyc_count[0] = set_timer(TM_ECYC, 40000L);
}

else
/* sim_spindle(.) returns the electrical cycle count. */
{   cyc_count[0] = sim_spindle(out,km1);
    if ((fll.cyc_type == 0) || (fll.cyc_type ==2)) /* needs mech. 

cycle */
for (c=1; c<necpr; c++)

cyc_count[0] += sim_spindle(out_km1);
}
/* Calculate one revolution time according to FLL cycle type. */
switch (fll.cyc_type)

{
    case 0: /* open loop, get mechanical cycle */

rev_count = cyc_count[0];
zcross += necpr;

    break;
    case 1: /* electrical pole */
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rev_count = necpr * cyc_count[0];
zcross++;

    break;
    case 2: /* mechanical pole */

rev_count = cyc_count[0];
zcross += necpr;

    break;
    case 3: /* interleaved: sum of electrical cycles in last revolution */

rev_count = 0;
     /*  Add up last necpr (npole/2) number of electrical cycle counts. */

for (c=0; c<necpr; c++)
rev_count += cyc_count[c];

zcross++;
    break;
    case 4: /* average of mechanical cycles ended in last revolution */

rev_count = 0;
for (mc = 0; mc < necpr; mc++)

for (ec = 0; ec < necpr; ec++)
rev_count += cyc_count[mc + ec];

rev_count /= 4;
zcross++;

    break;
    default:

rev_count = cyc_count[0];
} /* end switch */

rev_time = (float)rev_count / 10.0;
/* Add 1us to the error to compensate for acquisition delays. */
err_k = (long int)rev_time - fll.ref_time + 1;
if (err_bad == 0)
/* Normal history. Keep going. */
{ if (labs(err_k) > fll.err_glitch)
/* Unexpected error. See if it will be the same in next revolution. */

{ err_bad = err_k;
err_k = 0;

}
}
else

/* There was a jump in error in the previous revolution. */
{ if (labs(err_k) > fll.err_glitch)
/* Error is still too bad. Process it this time. */

err_bad = err_k;
else 

/* It was a glitch or detection fault. Resume normal operation. */
err_bad = 0;

}
/* Clip error value. */
if (err_k > fll.err_clip) err_k = fll.err_clip;
if (err_k < -(fll.err_clip)) err_k = -(fll.err_clip);
/* Calculate compensation filter response. */
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flt_k = ((fll.a1*flt_km1) + (fll.b0*err_k) -fll.b1*err_km1)) / fll.a0;
err_km1 = err_k;
flt_km1 = flt_k;
/* Upsate accumulator. */
acc_k = acc_km1 + flt_k;
if (acc_k > fll.acc_clip) acc_k = fll.acc_clip;
if (acc_k < 0) acc_k = 0;
acc_km1 = acc_k;
/* Find output to be sent to the device. */
out_k = acc_k >> fll.acc_shift;

/* Minimum setting depends on the current spindle speed. fll.out_clamp 
gives the maximum allowed drop as percentage of the rated 
spindle speed.

*/
out_min = (long int)((60.0R+6 / rev_time - 

(float)spin.speed*(float)fll.out_clamp/100.0)/spin.Kt);
switch (Device)
{
case L7200:

if (out_min < 50) out_min = 50;
if (out_k < out_min) out_k = out_min;
if (out_k > 511) out_k=511;
/* Check if the bits other than the 8 LSBs need to be modified. */
if ((0xFF00L & (out_k ^ out_km1)) != 0)

write_reg(0x8EL, (out_k >> 8) & 0xFFL);
write_reg(0x7EL,out_k & 0xFFL);
break;

case L72XX:
if (out_min < 50) out_min = 50;
if (out_k < out_min) out_k = out_min;
if (out_k > 255) out_k = 255;
write_reg(0x06L, out_k);
break;

} /* end switch*/
out_km1 = out_k;

if (zcross == necpr)
{ zcross = 0;

rev++;
krev++;
*rcc_ptr = rev_count;
rcc_ptr++;
*out_ptr = out_k;
out_ptr++;

} 
}

return (krev-1);

}
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6.3 Torque Conversion Table

To convert from A to B, multiply by entry in Table

6.4 Speed-Frequency Conversion Table

To convert from A to B, multiply by entry in Table

B
A dyne·cm g·cm oz·in Kg·cm lb·in Newton·m lb·ft Kg·m

dyne·cm
1 1.01972

x10-3
1.41612

x10-5
1.01972

x10-5
8.850731

x10-7
10-7 7.37561

x10-8
1.01972

x10-8

g·cm
980.665 1 1.38874

x10-2
10-3 8.67960

x10-4
9.80665

x10-5
7.233
x10-5

10-5

oz·in
7.06157

x104
72.0079 1 7.20079

x10-2
6.25
x10-2

7.06157
x10-3

5.20833
x10-3

7.20079
x10-4

Kg·cm
9.80665

x105
1000 13.8874 1 0.86796 9.80665

x10-2
7.23300

x10-2
10-2

lb·in
1.12985

x106
1.15213

x103
16 1.15213 1 0.112985 8.33333

x10-2
1.15213

x10-2

Newton·m 107 1.01972
x104

141.612 10.1972 8.85073 1 0.737561 0.101972

lb·ft
1.35582

x107
1.38255

x104
192 13.8255 12 1.35582 1 0.138255

Kg·m
9.80665

x107
105 1.38874

x103
100 86.7960 9.80665 7.23300 1

B
A rad/sec Hz rpm

rad/sec 1 1/2π 60/2π

Hz 2π 1 60

rpm 2π/60 1/60 1
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