1 Introduction

This application note explains how to implement the infrared light (IR) RC-5 decoder software module on Freescale’s microcontroller unit (MCU) MC9RS08KA2. The MCU KA2 can be used with a standard IR receiver as the remote control module with five output pins for common use. One standard GPIO pin is connected to a standard IR receiver. The other free pins of the MCU are used as standard GPIO pins. Although, you can choose which pins are used as the IIC bus pins, the PTA0 and PTA1 pins are used in this example.

2 RC-5 Coding Summary

Several standards exist for IR wireless communication for remote control applications. The widely used coding scheme is RC-5 from Philips. This coding type is briefly described in the following section. Figure 1 shows the RC-5 frame format.
The frame consists of 14 bits. The first two are the start bit 0 (S0) and start bit 1 (S1). S0 is always equal to logical 1. S1 is the negation of the data bit D6 if used. The toggle bit (T) changes between 0 or 1 and is valid for one transmission. The one transmission consists of several frames sent in 114ms. The toggle bit is followed by address information A4 – A0 (address). The address area length is five bits. The address differs among addressed device types. For example, it could be a television, set-top box (home video station), DVD player, audio set, or a similar device. The address is followed by data part of the length of six or seven bits (data). Data carries information about the command to be executed such as changing the television channel, playing audio, or entering standby or sleep.

2.1 Bit Transfer

Figure 2 shows the bit coding of log 0 or log 1. Each bit has a 1709us duration. Each bit consists of the mark and space parts and is 895usec long. During the mark time, and unlike during the space time, the carrier signal (36kHz) is transmitted. If the space time follows the mark time, then log 0 is sent. If the mark time follows the space time, then log 1 is sent.

The IR receiver (as a standard type could be used TSOP32236) receives the modulated IR signal. The IR light envelope is this receiver’s output signal. It has the same bit shape as on Figure 2, but without a 36 kHz carrier. This output signal has a standard 3 V or 5 V logic level and can be processed by the MCU.

2.2 Standard RC-5 Codes

Many devices are controlled by IR RC-5 coding with a lot of used address and commands. Table 2 shows the commonly used devices with their RC-5 addresses. Table 2 shows RC-5 commands most used for television or VCR devices.
Table 1. RC-5 Standard Addresses

<table>
<thead>
<tr>
<th>RC-5 Address</th>
<th>Hex – Dec</th>
<th>Device</th>
<th>RC-5 Address</th>
<th>Hex – Dec</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00 – 0</td>
<td>0x00 – 0</td>
<td>TV1</td>
<td>0x10 – 16</td>
<td>Pre-amp</td>
<td></td>
</tr>
<tr>
<td>0x01 – 1</td>
<td>0x01 – 1</td>
<td>TV2</td>
<td>0x11 – 17</td>
<td>Tuner</td>
<td></td>
</tr>
<tr>
<td>0x02 – 2</td>
<td>0x02 – 2</td>
<td>Teletext</td>
<td>0x12 – 18</td>
<td>Recorder1</td>
<td></td>
</tr>
<tr>
<td>0x03 – 3</td>
<td>0x03 – 3</td>
<td>Video</td>
<td>0x13 – 19</td>
<td>Pre-amp</td>
<td></td>
</tr>
<tr>
<td>0x04 – 4</td>
<td>0x04 – 4</td>
<td>LV1</td>
<td>0x14 – 20</td>
<td>CD Player</td>
<td></td>
</tr>
<tr>
<td>0x05 – 5</td>
<td>0x05 – 5</td>
<td>VCR1</td>
<td>0x15 – 21</td>
<td>Phono</td>
<td></td>
</tr>
<tr>
<td>0x06 – 6</td>
<td>0x06 – 6</td>
<td>VCR2</td>
<td>0x16 – 22</td>
<td>SatA</td>
<td></td>
</tr>
<tr>
<td>0x07 – 7</td>
<td>0x07 – 7</td>
<td>Experimental</td>
<td>0x17 – 23</td>
<td>Recorder2</td>
<td></td>
</tr>
<tr>
<td>0x08 – 8</td>
<td>0x08 – 8</td>
<td>Sat1</td>
<td>0x18 – 24</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x09 – 9</td>
<td>0x09 – 9</td>
<td>Camera</td>
<td>0x19 – 25</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x0A – 10</td>
<td>0x0A – 10</td>
<td>Sat2</td>
<td>0x1A – 26</td>
<td>CDR</td>
<td></td>
</tr>
<tr>
<td>0x0B – 11</td>
<td>0x0B – 11</td>
<td>—</td>
<td>0x1B – 27</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x0C – 12</td>
<td>0x0C – 12</td>
<td>CDV</td>
<td>0x1C – 28</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x0D – 13</td>
<td>0x0D – 13</td>
<td>Camcorder</td>
<td>0x1D – 29</td>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>0x0E – 14</td>
<td>0x0E – 14</td>
<td>—</td>
<td>0x1E – 30</td>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>0x0F – 15</td>
<td>0x0F – 15</td>
<td>—</td>
<td>0x1F – 31</td>
<td>Phone</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. RC-5 Standard Commands

<table>
<thead>
<tr>
<th>RC-5 Command</th>
<th>Hex – Dec</th>
<th>TV Command</th>
<th>VCR Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00 – 0</td>
<td>0x00 – 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0x01 – 1</td>
<td>0x01 – 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0x02 – 2</td>
<td>0x02 – 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0x03 – 3</td>
<td>0x03 – 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0x04 – 4</td>
<td>0x04 – 4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0x05 – 5</td>
<td>0x05 – 5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0x06 – 6</td>
<td>0x06 – 6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0x07 – 7</td>
<td>0x07 – 7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0x08 – 8</td>
<td>0x08 – 8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0x09 – 9</td>
<td>0x09 – 9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0x0A – 10</td>
<td>0x0A – 10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x0C – 12</td>
<td>0x0C – 12</td>
<td>Standby</td>
<td>Standby</td>
</tr>
<tr>
<td>0x0D – 13</td>
<td>0x0D – 13</td>
<td>Mute</td>
<td>—</td>
</tr>
</tbody>
</table>

Implementing the Infrared RC-5 Decoder on MC9RS08KA2, Rev. 0
3 Application Description

The MCU RS08KA2 receives the demodulated IR signal by the input-only port PTA2. After parsing the received frame, the DATA part of the frame puts it into port PTA0, PTA1, PTA3, PTA4, or PTA5. The actual usage of the mentioned port depends on the concrete application. Figure 3 shows a basic configuration.

<table>
<thead>
<tr>
<th>RC-5 Command</th>
<th>Hex – Dec</th>
<th>TV Command</th>
<th>VCR Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10 – 16</td>
<td>Volume +</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x11 – 17</td>
<td>Volume –</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x12 – 18</td>
<td>Brightness +</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x13 – 19</td>
<td>Brightness –</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0x20 – 32</td>
<td>Program +</td>
<td>Program +</td>
<td></td>
</tr>
<tr>
<td>0x21 – 33</td>
<td>Program –</td>
<td>Program –</td>
<td></td>
</tr>
<tr>
<td>0x32 – 50</td>
<td>—</td>
<td>Fast Rewind</td>
<td></td>
</tr>
<tr>
<td>0x34 – 52</td>
<td>—</td>
<td>Fast Forward</td>
<td></td>
</tr>
<tr>
<td>0x35 – 53</td>
<td>—</td>
<td>Play</td>
<td></td>
</tr>
<tr>
<td>0x36 – 54</td>
<td>—</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>0x37 – 55</td>
<td>—</td>
<td>Recording</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Application Configuration

4 RC-5 software for MCU

The software is based on the KBI interrupt and MTIM interrupt. The main state of the MCU is in wait mode because of low current consumption. When the IR-demodulated signal appears on the input PTA2 pin, the KBI interrupt is generated to wake up the MCU. When the MCU runs, the KBI interrupt is disabled, and the MTIM internal module generates the proper time-delay to read received data.

When the data is received, the software compares the received address. If the received address matches the internally saved valid address, the software continues processing the received data. The received data is masked in accordance to the used port’s width and then written to the port. The MCU then returns to wait mode.

The valid addresses for the comparison are saved in the valid address table in the flash. The real contents of this table depends on the application.
The valid addresses for this application are: 0, 1, 3, 5, 6, 8, 0xA, 0xC, 0x11, 0x14, 0x16, and 0x1A.

The valid commands belongs to the pressed button on the remote control. The numbers from zero to four are used for this example only, which represents the five controllable pins on the RS08KA2 MCU. The comparison of the S0, S1, and T bits is not used.

5 Conclusion

The whole software code example follows. The whole code is tested on the demo MC9RS08KA2 board assembled with the IR receiver. The standard IR receiver TSOP32236 is used.

```
;******************************************************************************
;                                                                            *
; Freescale Semiconductor Inc.                                              *
; (c) Copyright 2004-2006 Freescale Semiconductor, Inc.                      *
; ALL RIGHTS RESERVED.                                                       *
;                                                                            *
;******************************************************************************
;******************************************************************************
;* Example for RS08KA2 as RC5 Receiver                                      *
;******************************************************************************
;
; MCU pins connection:
;
; pin 1 - RST / BDM / PTA2 / RC5 input (Input only);
; pin 2 - BKGD / BDM / PTA3 / GPO (output only);
; pin 3 = Vdd / Power
; pin 4 = Vss / Power
; pin 8 - PTA0 / GPIO (configured as output);
; pin 7 - PTA1 / GPIO (configured as output);
; pin 6 - PTA4 / GPIO (configured as output);
; pin 5 - PTA5 / GPIO (configured as output);
;
; export symbols
XDEF _Startup, main
; we export both '_Startup' and 'main' as symbols. Either can
; be referenced in the linker .prm file or from C/C++ later on
;
; Include derivative-specific definitions
INCLUDE 'derivative.inc'

RC5_PIN  equ PTAD_PTAD2    ; RC5 = PTA2;
RC5_MASK equ mPTAD_PTAD2

; variable/data section
TINY_RAM_VARS: SECTION  RS08_SHORT       ; Insert here your data definition
temp          DS.B   1
Address       DS.B   1
Command       DS.B   1
bit_cnt_RX    DS.B   1
bit_length    DS.B   1

; MACRO Definitions:
FEED_WTD:     MACRO
    mov    #HIGH_6_13(SRS),PAGESEL
```
Conclusion

sta MAP_ADDR_6(SRS) ; feed the watchdog
ENDM

WTIME: MACRO
brclr MTIMSC_TOF,MTIMSC,1
mov #$FE,MTIMMOD
dbnz bit_length,1
brset RC5_PIN,PTAD,2
ENDM

; Table of Active RC-5 Code:
ORG $3FC0 ; Last page
; insert RC-5 code table /max $3FDF/ = 32 bytes;
Table_Addr DC.B $0,$1,$3,$5,$6,$8,$A,$C,$11,$14,$16,$1A

ORG $3FE0 ; /max $3FEF/ = 16 bytes;
Table_Cmd_ON DC.B 0,1,2,3,4,5,6,7,8,9

ORG $3FF0 ; /max $3FF7/ = 8 bytes;
Table_Cmd_OFF DC.B $0C

; code section
MyCode: SECTION
main: _Startup:

;CONFIGURES SYSTEM CONTROL
mov #HIGH_6_13(SOPT), PAGESEL
mov #$C0, MAP_ADDR_6(SOPT) ; Enable COP, disable STOP mode
; and RST pin;
; and PTA3 pin as output;

;CONFIGURES CLOCK (FEI Operation Mode)
mov #HIGH_6_13(NV_ICSTRM),PAGESEL
lda MAP_ADDR_6(NV_ICSTRM)
sta ICSTRM ; Sets trimming value
clr ICSC1 ; Selects FLL as clock source
; and disables it in stop mode
clr ICSC2 ; ICSOUT = DCO output frequency
wait_clock:
FEED_WTD ; feed the watchdog
brset 2,ICSSC,wait_clock ; Waits until FLL is engaged

;CONFIGURES PORT A
clr PTAD
mov #$3B,PTADD ; PTA as outputs, PTA2 as input;

;**
mainLoop:
FEED_WTD ; feed the watchdog
lda PTAD ; wait for RC5 bus not active, then go to WAIT mode
and #RC5_MASK
cmp #RC5_MASK
bne mainLoop

;INITIALIZE VARIABLES
init_var:
clra
sta Address
sta Command
sta temp
sta bit_cnt_RX
sta bit_length

;CONFIGURES KEYBOARD INTERRUPT MODULE
bclr 1,KBISC ; Disable KBI interrupt;
mov #HIGH_6_13(PTAPE), PAGESEL
mov #RC5_MASK, MAP_ADDR_6(PTAPE) ; Enable Pull-up on RC5 pin;
bset RC5_PIN,KBIPE ; Enable KBI on RC5 pin;
bset KBISC_KBACK,KBISC ; Clear the flag;
bset KBISC_KBIE,KBISC ; Enable KBI interrupt;

;CONFIGURE MTIM MODULE
mov #$FE,MTIMMOD
mov #$0D,bit_length ; 3/4 of bit length if bus = 8MHz
clr MTIMCLK
bset MTIMSC_TRST,MTIMSC ; reset timer counter;

low_power_mode:
nop
wait ; MCU in low power mode - will wake-up by KBI interrupt;
; instruction needs to be disabled for debug option;

mov #HIGH_6_13(SIP1), PAGESEL
brset SIP1_KBI,MAP_ADDR_6(SIP1),rec_RC5 ; Branch if KBI interrupt pending
brset SIP1_LVD,MAP_ADDR_6(SIP1),make_RST ; branch if LVD interrupt pending
bra low_power_mode

make_RST:
stop ; illegal operation (STOP not allowed);

rec_RC5:
bclr KBISC_KBIE,KBISC ; Disable KBI interrupt;
bset KBISC_KBACK,KBISC ; Clear the flag;
bclr MTIMSC_TSTP,MTIMSC ; start counting;

;--------- start receive RC5 code ---
clra
;--------- receive first bit13 (S0) --------------------------------------

bit13:
WTIME bit13,bit13a ; wait for period of 36kHz
add #$01 ; read RC5 = 1

bit13a:
lsla ; read RC5 = 0
;--------- receive first bit12 (S1) --------------------------------------
mov #$37,bit_length

bit12:
WTIME bit12,bit12a ; wait for period of 36kHz
add #$01 ; read RC5 = 1

bit12a:
lsla ; read RC5 = 0
;--------- receive first bit11 (T0) --------------------------------------
mov #$37,bit_length
Conclusion

bit11:
 WTIME bit11, bit11a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit11a:
 lsla ; read RC5 = 0
 ;--------- receive first bit10 (A4) ---------------------
 mov #$37, bit_length
bit10:
 WTIME bit10, bit10a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit10a:
 lsla ; read RC5 = 0
 ;--------- receive first bit9 (A3) ---------------------
 mov #$37, bit_length
bit9:
 WTIME bit9, bit9a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit9a:
 lsla ; read RC5 = 0
 ;--------- receive first bit8 (A2) ---------------------
 mov #$37, bit_length
bit8:
 WTIME bit8, bit8a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit8a:
 lsla ; read RC5 = 0
 ;--------- receive first bit7 (A1) ---------------------
 mov #$37, bit_length
bit7:
 WTIME bit7, bit7a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit7a:
 lsla ; read RC5 = 0
 ;--------- receive first bit6 (A0) ---------------------
 mov #$37, bit_length
bit6:
 WTIME bit6, bit6a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit6a:
 and #$1F ; select the Address byte
 sta Address ; save RC5 ADDRESS byte;
 clra
 ;--------- receive first bit5 (D5) ---------------------
 mov #$37, bit_length
bit5:
 WTIME bit5, bit5a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit5a:
 lsla ; read RC5 = 0
 ;--------- receive first bit4 (D4) ---------------------
 mov #$37, bit_length
bit4:
 WTIME bit4, bit4a ; wait for period of 36kHz
 add #$01 ; read RC5 = 1
bit4a:
Implemening the Infrared RC-5 Decoder on MC9RS08KA2, Rev. 0

```assembly
lsla                ;read RC5 = 0
;base receive first bit3 (D3) ----------------------

bit3:
    mov #$37,bit_length
    WTIME bit3,bit3a ;wait for period of 36kHz
    add #$01          ;read RC5 = 1

bit3a:
    ls la                ;read RC5 = 0
   ;base receive first bit2 (D2) ----------------------
    mov #$37,bit_length

bit2:
    WTIME bit2,bit2a   ;wait for period of 36kHz
    add #$01           ;read RC5 = 1

bit2a:
    ls la                ;read RC5 = 0
   ;base receive first bit1 (D1) ----------------------
    mov #$37,bit_length

bit1:
    WTIME bit1,bit1a   ;wait for period of 36kHz
    add #$01           ;read RC5 = 1

bit1a:
    ls la                ;read RC5 = 0
   ;base receive first bit0 (D0) ----------------------
    mov #$37,bit_length

bit0:
    WTIME bit0,bit0a   ;wait for period of 36kHz
    add #$01           ;read RC5 = 1

bit0a:
    and #$3F           ;select the Command byte
    sta Command        ;save RC5 DATA byte;
    bset MTIMSC_TSTP,MTIMSC       ; stop counting;
    clra

;base Compare with Table ------------------------------------------
    mov #HIGH_6_13(Table_Addr),PAGESEL
    ldx #$C0          ; load start address of the address table;
    lda Address       ; load received RC-5 Address byte;
    mov #$20,temp     ; compare 32 bytes (defined table length);
    comp_addr:
        cbeq ,x,fit_addr ; address match;
        incx
        dbnz temp,comp_addr
        JMP back        ; address don't match;

fit_addr:
    mov #HIGH_6_13(Table_Cmd_ON),PAGESEL
    ldx #$E0           ; load start address of the command_ON table;
    lda Command        ; load received RC-5 Command byte;
    mov #$10,temp      ; compare 16 bytes (defined table length);
    comp_cmd_ON:
        cbeq ,x,fit_cmd_ON
        incx
        dbnz temp,comp_cmd_ON
```

Freescale Semiconductor
Conclusion

```
mov #HIGH_6_13(Table_Cmd_OFF),PAGESEL
ldx #$F0             ; load start address of the command_OFF table;
lda Command          ; load received RC-5 Command byte;
mov #$08,temp

comp_cmd_OFF:
    cbeq ,x,fit_cmd_OFF
    incx
    dbnz temp,comp_cmd_OFF
    jmp back

fit_cmd_ON:
    cmp #0               ; compare if command = 0;
    bne cmp_1
    lda PTAD
    brclr 0,PTAD,set_bit0
    bclr 0,PTAD          ; clear bit PTA0;
    jmp back

set_bit0:
    bset 0,PTAD          ; set bit PTA0;
    jmp back

cmp_1:
    cmp #1               ; compare if command = 1;
    bne cmp_2
    lda PTAD
    brclr 1,PTAD,set_bit1
    bclr 1,PTAD          ; clear bit PTA1;
    jmp back

set_bit1:
    bset 1,PTAD          ; set bit PTA1;
    jmp back

cmp_2:
    cmp #2               ; compare if command = 2;
    bne cmp_3
    lda PTAD
    brclr 3,PTAD,set_bit2
    bclr 3,PTAD          ; clear bit PTA3;
    jmp back

set_bit2:
    bset 3,PTAD          ; set bit PTA3;
    jmp back

cmp_3:
    cmp #3               ; compare if command = 3;
    bne cmp_4
    lda PTAD
    brclr 4,PTAD,set_bit3
    bclr 4,PTAD          ; clear bit PTA4;
    jmp back

set_bit3:
    bset 4,PTAD          ; set bit PTA4;
    jmp back

cmp_4:
    cmp #4               ; compare if command = 4;
    bne fit_cmd_OFF
    lda PTAD
    brclr 5,PTAD,set_bit4
    bclr 5,PTAD          ; clear bit PTA5;
    jmp back

set_bit4:
```
bset 5, PTAD ; set bit PTA5;
jmp back

fit_cmd_OFF:
 mov #0, PTAD ; clear whole portA;
back:
 JMP mainLoop

;---
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.