
Freescale Semiconductor
Application Note

Document Number: AN3471
Rev. 0, 07/2008

Contents

Introduction . 1
Solution . 2

2.1 Single Phase Induction Motor Control Theory. 2
2.2 Typical Solutions . 3
2.3 Proposed Solution and Phase Angle Control 3
Design Requirements . 4
Instructions . 4

4.1 Board Configuration. 4
4.2 Rectifier and Transformer . 5
4.3 Connection from Rectifier to Board 6
4.4 Pulse Width Modulation (PWM). 6
4.5 Checking the PWM . 7
4.6 Optocouplers (MOC) . 9
4.7 TRIAC and SNUBBER . 10
Code . 12

5.1 Description. 12
5.2 Flow Diagram . 14
Testing and Validation . 17
Conclusion. 17
References . 17
Glossary . 17

ppendix ABill Of Materials (BOM) . 18
ppendix BSource Code . 19

Ceiling Fan Speed Control
Single-Phase Motor Speed Control Using MC9RS08KA2
by: Cuauhtemoc Medina

RTAC Americas
1 Introduction
This application note introduces a method for controlling
a single-phase AC induction motor. This motor is widely
used in ceiling fans due to various advantages over other
types of motors. It is low cost, low maintenance, and has
direct connection to the AC power source.

Using the MC9RS08KA2 MCU series combined with
the basic TRIAC topology is cost-performance solution.
The traditional mechanical speed control of the ceiling
fan can be replaced with this solution avoiding problems
such as non-linearity on speed.

1
2

3
4

5

6
7
8
9
A
A

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Solution
2 Solution

2.1 Single Phase Induction Motor Control Theory
Single-phase induction motors are the most used. These motors have only one stator winding, operate with
a single-phase power supply, and are also squirrel cage. Because of the single phase, the motor is not
self-started when connected to a power supply. The necessary torque is not generated therefore causing the
motor to only vibrate and not rotate.

To provide the starting torque most single-phase motors have a main and auxiliary winding, both in
quadrature to help generate the phase-shifted magnetic field.

Figure 1. Capacitor Start AC Induction Motor

The auxiliary winding current from the main winding is phase-shifted. Connecting a capacitor in series
with the auxiliary winding causes the motor to start rotating. Using a centrifugal switch disconnects the
capacitor and the auxiliary winding at 75% of the motor nominal speed. This topology is used if high
torque is required. In most fan motors, the capacitor and the auxiliary winding remain connected. This
configuration is called permanent split capacitor (PSC) AC induction motor. No centrifugal switch is used
and are considered to be the most reliable single-phase motors. At rated load, they can be designed for
optimum efficiency and high power factor (PF).
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor2

Solution
Figure 2. PSC Starting Mechanism

2.2 Typical Solutions
Motors commonly used in ceiling fans are single-phase induction motors with a PSC starting mechanism.
Most of them have three different speeds that are mechanically selected by pulling a chain. Every time the
chain is pulled, the motor circuit changes to a predefined coil winding that causes the speed to vary. It is
recommended that the fan be set at maximum speed. Considering that the load of the motor is proportional
to the consumed current it is not the same range of speed variation with the load then without it. The range
of speed variation needs to be recalculated.

2.3 Proposed Solution and Phase Angle Control
When the TRIAC switch is connected between the AC power supply and the motor, the power flow can
be controlled by varying the RMS of the AC voltage. This is called an AC voltage controller. There are
two types of control normally used:

— On-off control — TRIAC switches connect the load to the AC source for a few cycles and then
disconnect it for another few cycles of the source voltage

— In phase control — TRIAC switches connect the load to the AC source for a moment in each
cycle Figure 3

A reliable speed control of a ceiling fan AC motor can be accomplished by combining the MC9RS08KA2
and the phase angle control using a TRIAC. A benefit of this approach is avoiding non-linearity that is
present if using only the TRIAC. Another benefit is, it can replace the mechanical speed variation
commonly used in ceiling fans.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 3

Design Requirements
Figure 3. Line Voltage vs. Motor Voltage

3 Design Requirements
• DEMO9RS08KA2 board and a computer running with CodeWarrior

• A ceiling fan motor

• Components Section Appendix A, “Bill Of Materials (BOM)”

4 Instructions

4.1 Board Configuration
Steps for configuring the board:

1. Pull out every jumper in j101 except for RESET and LED 0

2. Connect the j101 SW0 pin on the push button side of PTA5 on j102. The push button SW0 connects
to PTA5

3. Make sure the board is in host mode, j202 in the USB, and j203 VDD enabled

4. Set jumpers on j101 to RESET and LED
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor4

Instructions
Figure 4. Board Configuration

In Figure 4, the upper left image shows the board. The following image to the right shows the board with
the proper connections and the last image shows a close-up of the jumper configuration and connections.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 5

Instructions
4.2 Rectifier and Transformer
1. Identify the primary and secondary windings of the transformer (127 V – 60 Hz/ 6 V – 500 mA).

2. Connect common to GND. The GND must be common on the board

3. Connect the two cables of the secondary winding to the AC input on the bridge. Consult the
transformer data sheet to identify the cables.

4. Connect the positive side of the bridge to GND with a 10 K resistor.

5. Connect the negative side of the bridge to GND.

6. Check with an oscilloscope the voltage on the 10 K resistor. It must show the full wave rectified.

Figure 5. Rectifier and Transformer

Figure 6. AC Wave vs. Rectified Wave

4.3 Connection from Rectifier to Board
1. Connect the positive bridge output to j102 PTA1. This the negative input of the controller

comparator.

2. Make sure j102 GND is connected to the line GND.

3. Connect j102 PTA0 to the voltage on the output divider.

If j102 PTA0 is connected directly to 0 volts, the 0 voltage is not always reached. To ensure this detection
the voltage on j102 PTA0 is near 0 (0.1 volts must work).
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor6

Instructions
4.4 Pulse Width Modulation (PWM)
A pulse width modulation (PWM) signal is generated by using the timer and the comparator. The controller
performs the following tasks:

• The controller is constantly checking for zero crossings through the comparator

• If this condition is true the output pin is cleared and the timer is started

• The timer counts up to a certain value. If it reaches a predefined value (MODULO), it is stopped
and reset for the next cycle. The output pin is also set.

• The cycle is repeated by waiting for the next zero crossing.

The timer must not count more than the time it takes to detect a new zero cross. Calculate the correct value
for the MODULO. For example, the line is 120 V, 60 Hz (1 cycle: 1/60 =.016 s). The rectified wave is 120
Hz MODULO and has an 8-bit value. Each half-wave is .008 s (.008 s/ 255 bit = 31.3 s/bit). The
duty cycle = t/T. The calculated values are:

— MODULO = 128 (half). Timer counts 128*31.3 s = 4.006 ms. The output is 0 when it detects
the zero crossing. The timer counts up to 128 and the output value is 1 until the next zero
crossing occurs. The duty cycle is 50%.

— MODULO = 64 (quarter). Timer count 64*31.3 s = 2.003 ms. The output is 0 when it detects
the zero crossing. The timer counts to 64 and the output value is 1 until the next zero crossing.
The duty cycle of 75%.

4.5 Checking the PWM
1. Open the project DEMO.mcp in the demo folder. If CodeWarrior is not installed refer to the starter

kit user´s manual.

2. Connect the board to the computer. Use the USB cable.

3. Click on the green arrow with the bug, it enters debug mode. This downloads the program. See
Figure 7.

4. The true time simulator real time debugger is opened and requests the MCU configuration. Choose
DEMO9RS08KA2. See Figure 8.

5. Click on the green arrow to run the program. See Figure 9.

6. Connect the oscilloscope to see the signal in j102 PTA4. This is the PWM output.

7. On the windows for data variables find the duty cycle. See Figure 10.

8. Double-click on the number to select it and change it. This is an 8-bit number and only varies from
0 to 255.

9. Watch the signals on the oscilloscope by varying the duty_cycle variable.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 7

Instructions
Figure 7. CodeWarrior Menu

Figure 8. True Time Simulator – Real Time Debugger Configuration Window

Figure 9. True Time Simulator Menu

Figure 10. True Time Simulator Data Window
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor8

Instructions
Figure 11. Rectified Wave and PWM at 87%, 50%, and 25%

4.6 Optocouplers (MOC)
Optocouplers (MOCs) are used to transmit signals between circuits that do not share a power source.
MOCs have a LED and a sensor inside. If the led is turned on, it activates the sensor and lets the current
flow.

This circuit is used to isolate signal circuitry from transients generated or transmitted by power supply and
high-current control circuits.

1. Connect j102 PTA4 (PWM output) to pin1 of the MOC

2. Connect pin 2 to GND

3. Connect pin 4 to the TRIAC gate
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 9

Instructions
Figure 12. Schematic of the Power Circuit

4.7 TRIAC and SNUBBER
The TRIAC is an electronic bi-directional switch. If there is voltage on the gate, it transmits over its
terminals until the current through it drops below a certain threshold value. A snubber network is used to
assist the turn off and prevent premature triggering. In this circuit the combination of resistors and
capacitors are used to suppress the rapid rise and fall of the voltage.

1. Connect to pin 6 of the MOC a resistance of 180 in series with 2 K
2. Between the two resistances connect a capacitor of .2 uF to the reference.

3. Connect any of the terminals of the TRIAC in series with the 2 K
4. Connect the other TRIAC terminal to the reference.

5. Connect pin 4 of the MOC to the gate of the TRIAC.

6. Connect the motor one cable where the 2 K and the TRIAC are connected and the other to the
reference Figure 13.

7. Check the output of the TRIAC and compare it with the AC voltage. See Figure 14.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor10

Instructions
Figure 13. Complete Circuit

The PWM output signal starts with 0, after a certain time it triggers the TRIAC and conducts until AC
reaches 0 again. Starting with one on the cross detection, the motor always runs at a certain speed. To see
what the gate and terminals are consult the motor documentation.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 11

Code
Figure 14. AC Voltage vs. TRIAC Output at Different PWM Values

5 Code

5.1 Description
The code can be divided into three modules:

• Init — This section of code is in charge of configuring the controller for this task. It disables the
COP, configures FLL as clock source, configures the timer (8 Mhz input, and prescaler 256),
configures the comparator (external reference, falling edge), and the GPIO’s (PTA4 as output,
PTA5 as input).

The timer is configured to fit the frequency of 120 Hz of the rectified wave. Equation 1 and
Equation 2.

 Eqn. 1

Eqn. 2

8Mhz prescaler 256 31.250Khz=

31.250Khz 256counts 122Hz=
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor12

Code
• Main Flow — This the infinite loop of the program. It waits for the zero crossing detected with the
comparator. The timer then starts. When the timer overflows it activates the output PTA4 and the
TRIAC gate. On the next zero crossing detection, it turns off the TRIAC gate and the cycle is
repeated. It is also calls the check button function.

• Check button — This in charge of validating the button pushes. When a push is validated it changes
the duty cycle of the PWM. This is the value to load in MODULO. Special care must be taken of
the button. The code checks if the pin is low every cycle. If it is, the button is then pressed. In the
next cycle the controller checks again if the pin remains low. The pin level is checked each cycle,
120 times each second.

There are two options for the button:

• When pressed, cpcb_count counts how many cycles the button remains pressed. If cpcb_count
equals cyc_per_check_b the speed is changed.

• When pressed, each change of speed checks the low pin, considers the button pressed, and waits
until the pin is high to check it again.
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 13

Code
5.2 Flow Diagram

Figure 15. Init Flow Chart

Start

Configures system control
• Disables COP
• Enables BKGD

• Enables reset

Configures clock
• Set trimming value

• FLL as CLK source
• ICSOUT = DCO

Configures timer
• Enables interrupt
• Resets counter

• Stop timer

• fBUS (8M) as
reference

• Prescaler = 256

Configures comparator
• Enables comparator
• ACMP+ as external

reference
• Enables interrupt

• Output disabled

• Falling edge event

Configures GPIO’s
• PTA4 as output
• PTA5 as input

• PTA4 = 0

Return

Init controller
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor14

Code
Figure 16. Main Program

Main flow:

Start

Init controller

Resets DC pointer
speed_count= 0

Resets DC value
duty_cycle= 0

Resets buttons time counter
cpcb_count= 0

1

1

No

Yes

No

No

Yes

Yes

Activate comparator

Comparator
event?

Timer overflow?

Deactivates comparator

Clears comparator flag

Timer MODULO = duty_cycle

PWM output PTA4 = 0

Start timer

Is turned on?
speed_count != 0

Check button

Stop timer

Clear timer flag

PWM output PTA4 = 1
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 15

Code
Figure 17. Push Button Flow Chart

Button pressed
PTAS = 0

Start

The button counter =
Cycles per check?
(cyc_per_check_b)

Button already
pressed

Last
element

Button counter = 0

Clear button
pressed tag

Increments button
counter

Set button
already pressed

Button counter = 0

Increment index
speed_count

Reset index

Set new duty cycle
value (duty_cycle)

Return

No

Yes

No

No

No

Yes

Yes

Yes
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor16

Testing and Validation
6 Testing and Validation
The entire circuit can be divided in three modules and can be checked independently.

• The first module is the transformer and rectifier. At the end of this stage there is a rectified AC
wave at 120 Hz at half of the original voltage peak-peak.

• The next module is the zero cross detection circuit. To test this module the previous is needed and
the MCU with the program running. The designated output pin of the MCU is expected to have a
pulse at 120 Hz. If this signal and the previous stage signal outputs are viewed at the same time, it
generates a pulse each time the rectified sine wave reaches zero.

• The last module has the MOC and TRIAC. To test if this part of the circuit is working properly,
disconnect the side of the MOC connected to the MCU and replace it with 3.3 VDC. The motor
has to start working when on and if off the motor has to turn off. When the motor switches on/off
it makes a sound, to be sure wait a lapse of time while the motor is off. It must come to a complete
stop.

7 Conclusion
Using an MC9RS08KA2 microcontroller combined with the TRIAC topology, a reliable solution is
reached for varying the speed of a ceiling fan. This solution is viable for replacing the existing commonly
used mechanism.

8 References
See the Freescale web page www.freescale.com.

• DRM039 — Single Phase AC Induction Motor Control Designer Reference Manual

• MC9RS08KA2 MC9RS08KA1 Data Sheet

• RS08 Core Reference Manual
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 17

http://www.freescale.com/files/microcontrollers/doc/ref_manual/DRM039.pdf

References
Appendix A Bill Of Materials (BOM)
• Transformer, Input: 127 Vac, Output: 6 V 500 mA

• Rectifier bridge 50 V, 2 A

• 10 K resistor

• 7 K resistor

• 220 resistor

• MOC 3011

• 0.1 uF capacitor

• 180 resistor

• 2.2 K resistor

• MAC223A TRIAC
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 18

References
Appendix B Source Code
;**
; MAIN.ASM
;**;
; Single Phase Demo for the DEMO9RS08KA2
; ---
; This example controls a single phase motor through a PWM.
; The PWM is generated with the comparator (to detect zero crossing) and the timer (to; generate
duty cycle
;
; ACMP - is fed with a value approximate to 0
; ACMP + rectified wave
; PTA4 PWM output to feed the MOC, also connected to a LED to show the speed
; through LED's;intensity
; PTA5 push button to vary the speed
; RESET/PTA2 turns off the motor
;
;
; ********* If you want the button to run free the comment values, button to comment
; ********* set cyc_per_check_b to the value wanted
; ********* notice that cyc_per_check_b also avoids bouncing.
; ********* understand RUN FREE as the button is checked every
; ********* cyc_per_check_b * 8.4 ms (120 ;hz) that is, if kept pressed it
; ********* changes duty or press and release the button in
; ********* order to change duty values
; ***

; export symbols
 XDEF _Startup, main
 ; export both '_Startup' and 'main' as symbols. Either can
 ; be referenced in the linker .prm file or from C/C++ later on

; Include derivative-specific definitions
 INCLUDE 'derivative.inc'

D_X equ $0000000E
X_ equ $0000000F
CLKST EQU 2
PTA4 EQU 4
PTA5 EQU 5
ACF EQU 5
ACME EQU 7
TOF EQU 7
TSTP EQU 4
BUTTON_PRESSED EQU 0 ; line for button pressed
 ; Variable/Data Section
MY_ZEROPAGE: SECTION SHORT
speed_count: DS.B 1 ; this is a pointer to select
 ; which value is used in line_speed array
button_control DS.B 1 ; flag for button
duty_cycle: DS.B 1 ; this value is how long (timer) it
 ; stays up/down
cpcb_count DS.B 1 ; cycles to check button counter
 ; number of cycles it waits to check the
 ; button again
; Const Section
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 19

References
ConstSection: SECTION
cyc_per_check_b DC.B $09 ; number of counts (wave cycles) it takes to
 ; read button
size_speed DC.B $07 ; number of elements in line speed array
line_speed DC.B $01,$20,$40,$80,$C0,$E0,$F0 ; if you change the size of the
 ; linespeed do not forget to modify Project.map
;line_speed DC.B $F0,$E0,$C0,$80,$40,$20,$01 ; if you change the size of the
 ;linespeed do not forget to modify Project.map
; Code Section
MyCode: SECTION
;**
; Peripheral Initialization
;**
init:

;CONFIGURES SYSTEM CONTROL
 MODE: EQU 0 ; MODE=0 Background Mode, MODE=1 Run Mode
 IFNE MODE
 mov #HIGH_6_13(SOPT), PAGESEL
 mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin
 ELSE
 mov #HIGH_6_13(SOPT), PAGESEL
 mov #$03, MAP_ADDR_6(SOPT) ; Disables COP and enables BKGD (PTA3) and
 ; RESET (PTA2) pins
 ENDIF

;CONFIGURES CLOCK (FEI Operation Mode)
 mov #HIGH_6_13(NV_ICSTRM),PAGESEL
 lda MAP_ADDR_6(NV_ICSTRM
 sta ICSTRM ; Sets trimming value
 clr ICSC1 ; Selects FLL as clock source and disables it
 ; in stop mode
 clr ICSC2 ; ICSOUT = DCO output frequency
wait_clock:
 brset CLKST,ICSSC,wait_clock ; Waits until FLL is engaged

;CONFIGURES TIMER
 mov #$70, MTIMSC ; Enables interrupt, stops and resets timer counter
 mov #$08, MTIMCLK ; Selects fBUS as reference clock (8 MHz)
 ; prescaler = 256 (increments timer counter every
 ; 32 us)

;CONFIGURES ACMP
 mov #$F0, ACMPSC ; Comparator enabled, ACMP+ as external reference
 ; clear flag and enable interrupt, output disabled
 ; Comparator falling edge
;CONFIGURES PORT
 bset PTA4, PTADD ; set port A4 as output
 bclr PTA5,PTADD ; sets port A5 as input
 bclr PTA4, PTAD ; clears port PTAD4

 rts

;**
; Entry Point
;**
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor20

References
_Startup:

main:
 bsr init
 mov #0, speed_count ; this is a pointer for the main speed wanted, first
 ; set it to 0
 mov #0, duty_cycle ; this is a parameter for the timer, indicating when
 ; it stops counting
 mov #0, cpcb_count ; reset cycles count for button check
tag1:
 bset ACME,ACMPSC ; activates analog comparator
loop1:
 ;wait ; sends controller to wait state
 brclr ACF,ACMPSC,loop1 ; waits until there is a comparator event
 bclr ACME,ACMPSC ; deactivates comparator
 bset ACF,ACMPSC ; clears comparator flag
 mov duty_cycle,MTIMMOD ; sets Modulo to maximum count, also resets
 ; counter and clears timer flag
 bclr PTA4, PTAD
 bclr TSTP,MTIMSC ; starts timer
 bsr check_button
check_timer:
 ;wait ; sends controller to wait state
 brclr 7,MTIMSC,check_timer ; waits until there is a timer overflow
 bset TSTP,MTIMSC ; stops timer
 bclr TOF,MTIMSC ; clears timer overflow flag
 lda #$00 ; turns off completely when it points to
 ; the minimum speed
 cmp speed_count
 beq end_main
 bset PTA4, PTAD
end_main:
 jmp tag1

check_button:
 brclr PTA5,PTAD,chb_cont ; if the button is pressed, it goes to check_button
 mov #$00,cpcb_count ; if button is released, it resets the counter to
 bclr BUTTON_PRESSED,button_control ; bit 0 as flag for button already pressed
 jmp button_return ;
chb_cont:
 ; check counter to wait to check button
 brset BUTTON_PRESSED,button_control,button_return ; BUTTON TO COMMENT
 ;if the button has not been released, it returns
 ; from subroutine
 inc cpcb_count ; increments counter for push button
 lda cpcb_count ; compares cpcb_count value with defined
 ; constant value
 mov #HIGH_6_13(cyc_per_check_b), PAGESEL
 cmp MAP_ADDR_6(cyc_per_check_b)
 bhs chb_cont2 ; if the value is reached it jumps chb_count2, or
 ; returns and continues counting
 jmp button_return
chb_cont2:
 bset BUTTON_PRESSED,button_control ; sets it to mark the button as already pressed
 mov #$00,cpcb_count ; resets counter because the button has been
 ; pressed long enough
 inc speed_count ; increments pointer, (this value is used
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 21

References
 ; with X)
 lda speed_count ; compares pointer value with array size
 mov #HIGH_6_13(size_speed), PAGESEL
 cmp MAP_ADDR_6(size_speed)
 blo set_duty
 mov #0,speed_count ; if pointer > array size then resets 0
set_duty:
 mov #HIGH_6_13(line_speed), PAGESEL;load duty value into duty_cycle variable
 lda #MAP_ADDR_6(line_speed)
 add speed_count
 sta X_
 mov D_X,duty_cycle
button_return:
 rts
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 22

THIS PAGE IS INTENTIONALLY BLANK
Ceiling Fan Speed Control, Rev. 0

Freescale Semiconductor 23

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: AN3471
Rev. 0
07/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Solution
	2.1 Single Phase Induction Motor Control Theory
	2.2 Typical Solutions
	2.3 Proposed Solution and Phase Angle Control

	3 Design Requirements
	4 Instructions
	4.1 Board Configuration
	4.2 Rectifier and Transformer
	4.3 Connection from Rectifier to Board
	4.4 Pulse Width Modulation (PWM)
	4.5 Checking the PWM
	4.6 Optocouplers (MOC)
	4.7 TRIAC and SNUBBER

	5 Code
	5.1 Description
	5.2 Flow Diagram

	6 Testing and Validation
	7 Conclusion
	8 References

