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A Brief Introduction to Sigma Delta Conversion

Introduction

The sigma delta conversion technique has been in existence
for many years, but recent technological advances now make
the devices practical and their use is becoming widespread.
The converters have found homes in such applications as
communications systems, consumer and professional audio,
industrial weight scales, and precision measurement devices.
The key feature of these converters is that they are the only
low cost conversion method which provides both high
dynamic range and flexibility in converting low bandwidth input
signals. This application note is intended to give an engineer
with little or no sigma delta background an overview of how a
sigma delta converter works.

The following are brief definitions of terms that will be used
in this application note:

Noise Shaping Filter or Integrator: The noise shaping fil-
ter or integrator of a sigma delta converter distributes the
converter quantization error or noise such that it is very low
in the band of interest.

Oversampling. Oversampling is simply the act of sampling
the input signal at a frequency much greater than the
Nyquist frequency (two times the input signal bandwidth).
Oversampling decreases the quantization noise in the band
of interest.

Digital Filter. An on-chip digital filter is used to attenuate
signals and noise that are outside the band of interest.

Decimation: Decimation is the act of reducing the data rate
down from the oversampling rate without losing information.

Discussion
Figure 1 shows a simple block diagram of a first order sigma
delta Analog-to-Digital Converter (ADC). The input signal X
comes into the modulator via a summing junction. It then
passes through the integrator which feeds a comparator that
acts as a one-bit quantizer. The comparator output is fed
back to the input summing junction via a one-bit digital-to-
analog converter (DAC), and it also passes through the digi-
tal filter and emerges at the output of the converter. The
feedback loop forces the average of the signal W to be equal
to the input signal X. A quick review of quantization noise
theory and signal sampling theory will be useful before div-
ing deeper into the sigma delta converter.

FIGURE 1. FIRST ORDER SIGMA DELTA ADC BLOCK DIAGRAM

Signal Sampling

The sampling theorem states that the sampling frequency of a
signal must be at least twice the signal frequency in order to
recover the sampled signal without distortion. When a signal is
sampled its input spectrum is copied and mirrored at multiples
of the sampling frequency fS. Figure 2A shows the spectrum of
a sampled signal when the sampling frequency fS is less than
twice the input signal frequency 2f0. The shaded area on the
plot shows what is commonly referred to as aliasing which
results when the sampling theorem is violated. Recovering a
signal contaminated with aliasing results in a distorted output
signal. Figure 2B shows the spectrum of an oversampled sig-
nal. The oversampling process puts the entire input bandwidth
at less than fS/2 and avoids the aliasing trap.[1]

FIGURE 2A. UNDERSAMPLED SIGNAL SPECTRUM

FIGURE 2B. OVERSAMPLED SIGNAL SPECTRUM

Quantization Noise

Quantization noise (or quantization error) is one limiting fac-
tor for the dynamic range of an ADC. This error is actually
the “round-off” error that occurs when an analog signal is
quantized. For example, Figure 3 shows the output codes
and corresponding input voltages for a 2-bit A/D converter
with a 3V full scale value. The figure shows that input values
of 0V, 1V, 2V, and 3V correspond to digital output codes of
00, 01, 10, and 11 respectively. If an input of 1.75V is applied
to this converter, the resulting output code would be 10
which corresponds to a 2V input. The 0.25V error (2V -
1.75V) that occurs during the quantization process is called
the quantization error. Assuming the quantization error is
random, which is normally true, the quantization error can be
treated as random or white noise. Therefore, the quantiza-
tion noise power and RMS quantization voltage for an A/D
converter are given by the following equations:
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where q is the quantization interval or LSB size (see Figure 3).

FIGURE 3. CODE EXAMPLE OF A 2-BIT A/D CONVERTER

As an example, the RMS quantization noise for a 12-bit ADC
with a 2.5V full scale value is 176µV.

A quantized signal sampled at frequency fS has all of its
noise power folded into the frequency band of 0 ≤ f ≤ fS/2.
Assuming once again that this noise is random, the spectral
density of the noise is given by:

Converting this to noise power by squaring it and integrating
over the bandwidth of interest (f0), we get the following
result:

where n0 is the in-band quantization noise, f0 is the input
signal bandwidth, and fS is the sampling frequency. The
quantity fS/2f0 is generally referred to as the Oversampling
Ratio or OSR. It is important to note that Equation 5 above
shows that oversampling reduces the in band quantization
noise by the square root of the OSR.[2]

Sigma Delta Modulator Quantization Noise

The results of the above sampling and noise theory can now
be used to show how a sigma delta modulator shapes
quantization noise. Figure 4 shows the sampled data
equivalent block diagram of a first order sigma delta
modulator. The difference equation for the output of the
modulator is given by:

where e is the quantization noise.

FIGURE 4. FIRST ORDER SIGMA DELTA MODULATOR SAM-
PLED DATA EQUIVALENT BLOCK DIAGRAM

Assuming the input signal is active enough to treat the error
as white noise, the spectral density of the noise (ni = ei - ei-1)
can be expressed as

The noise power in the bandwidth of interest is

or

This means that increasing fS (which by default increases
the OSR) by a factor of 2 will decrease the in band noise by
9dB. Taking this one step further shows that for the second
order modulator shown in Figure 5 the noise is

and that increasing fs by a factor of 2 decreases the in band
noise by 15dB. In fact, the generalized formula for the noise
of an Mth order modulator is

and doubling the sampling frequency will decrease the in-
band quantization noise by 3(2M+1)dB.[3]

FIGURE 5. SECOND ORDER SIGMA DELTA MODULATOR

Figure 6 depicts the relationship between quantization noise,
OSR, and modulator order by showing the signal to noise
ratio (SNR) vs the OSR for a first, second, and third order
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modulator. The graph illustrates that as the OSR increases,
the noise decreases (SNR increases) and that as the order
of the modulator increases, the noise decreases.

FIGURE 6. SNR vs OVERSAMPLING RATIO FOR SIGMA
DELTA MODULATORS

The noise shaping attributes of the sigma delta modulator
can be shown graphically as in Figure 7. Figure 7A shows
the quantization noise spectrum of a typical Nyquist type
converter and the theoretical SNR of such a converter. Fig-
ure 7B shows the effects of oversampling. fS/2 is much
greater than 2f0 and the quantization noise is spread over a
wider spectrum. The total quantization noise is still the same
but the quantization noise in the bandwidth of interest is
greatly reduced. Figure 7C illustrates the noise shaping of
the oversampled sigma delta modulator. Again the total
quantization noise of the converter is the same as in Figure
7A, but the in-band quantization noise is greatly reduced.

FIGURE 7A. NYQUIST CONVERTER QUANTIZATION NOISE
SPECTRUM

FIGURE 7B. OVERSAMPLED CONVERTER QUANTIZATION
NOISE SPECTRUM

FIGURE 7C. OVERSAMPLED 1ST ORDER SIGMA DELTA
QUANTIZATION NOISE SPECTRUM

Another way to examine the characteristics of the sigma
delta modulator is to model it in the frequency domain.
Figure 8 shows a linearized model of a sigma delta modula-
tor. The integrator has been replaced with a filter whose
transfer function is H(s) = 1/s and the quantizer is modelled
as a noise source whose noise contribution is N(s). Letting
N(s) = 0 for the moment, and solving for Y(s)/X(s) results in
the following:

By letting the signal X(s) = 0 and solving for Y(s)/N(s) the fol-
lowing results are obtained:

Examining Equations 13 and 15 above shows that indeed
the modulator acts as a low pass filter for the input signal
and a high pass filter for noise.

FIGURE 8. LINEARIZED MODEL OF 1ST ORDER
SIGMA DELTA MODULATOR

Perhaps the best way to see the noise shaping characteris-
tics of a sigma delta modulator is to look at the output spec-
trum of an actual modulator. Figure 9 shows the block
diagram for the modulator portion of the Intersil HI7190
sigma delta ADC. This modulator is a fully differential sam-
pled data (switched capacitor) second order modulator
where only one DAC is used to feed back the modulator out-
put signal to the two summing junctions. A spectral plot of
the HI7190 output is shown in Figure 10. The figure shows
the classic noise shaping characteristics of a sigma delta
modulator that have been discussed thus far.
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FIGURE 9. HI7190 2ND ORDER SIGMA DELTA MODULATOR

FIGURE 10. HI7190 SPECTRAL PLOT

Referring back to the block diagram of Figure 1, it is seen
that after the input signal passes through the modulator it is
fed into the digital filter. The function of the digital filter is to
provide a sharp cutoff at the bandwidth of interest which
essentially removes out of band quantization noise3w and
signals. Figure 11 shows that the digital filter eliminates the
quantization noise that the modulator pushed out to the
higher frequencies.

FIGURE 11A. BEFORE FILTERING

FIGURE 11B. AFTER FILTERING

FIGURE 11. IN-BAND QUANTIZATION NOISE BEFORE AND
AFTER DIGITAL FILTERING

Sigma Delta Conversion Example

Before leaving the discussion of sigma delta modulators it
would be useful to show a quick conversion example. Refer-
ring to Table 1 the table headings X, B, C, D, and W corre-
spond to points in the signal path of the block diagram of
Figure 1. For this example the input X is a DC input of 3/8.
The resultant signal at each point in the signal path for each
signal sample is shown in Table 1. Note that a repetitive pat-
tern develops every sixteen samples and that the average of
the signal W over samples 1 to 16 is 3/8 thus showing that
the feedback loop forces the average of the feedback signal
W to be equal to the input X.
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TABLE 1. CONVERSION EXAMPLE

SAMPLE
(n)

X
(INPUT)

B
(A-Wn-1)

C
(B+Cn-1)

D
(0 or 1)

W
(-1 or +1)

0 3/8 0 0 0 0

1 3/8 3/8 3/8 1 +1

2 3/8 -5/8 -2/8 0 -1

3 3/8 11/8 9/8 1 +1

4 3/8 -5/8 4/8 1 +1

5 3/8 -5/8 -1/8 0 -1

6 3/8 11/8 10/8 1 +1

7 3/8 -5/8 5/8 1 +1

8 3/8 -5/8 0/8 0 -1

9 3/8 11/8 11/8 1 +1

10 3/8 -5/8 6/8 1 +1

11 3/8 -5/8 1/8 1 +1

12 3/8 -5/8 -4/8 0 -1

13 3/8 11/8 7/8 1 +1

14 3/8 -5/8 2/8 1 +1

15 3/8 -5/8 -3/8 0 -1

16 3/8 11/8 8/8 1 +1

17 3/8 -5/8 3/8 1 +1

18 3/8 -5/8 -2/8 0 -1
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Introduction to Z-Transforms

Z transforms are often mentioned when digital filters are dis-
cussed and they can be intimidating to those not familiar with
them. However, a few pictures and equations showing the
relationships between the Laplace and z transforms along
with a z transform example should help to reduce the intimi-
dation factor.

The following equations provide a simple (and not rigorous)
method for observing the relationships of the Laplace and z
transforms:

Equations 16A and 16B show the definitions of the two trans-
forms. For the Laplace transform s is defined to be jω while for
the z transform z is defined as ejωt. Substituting these values
into 16A and 17A respectively result in Equations 18A and 18B.
These last two equations show that the two transforms are
actually very similar with the difference being the Laplace trans-
form is a continuous summation of a continuous signal and the
z transform is a discreet summation of a sampled signal.

Figure 12 graphically defines the relationships between the s
and z planes. It is important to note the following:

1. The left half of the s plane maps within the unit circle of
the z plane.

2. The distance fS along the real frequency axis of the s
plane wraps once around the unit circle in the z plane.

3. Any pole outside of the unit circle in the z plane means the
system is unstable.

4. First order poles on the unit circle of the z plane imply
marginally stable terms but multiple order poles on the
unit circle imply an unstable system.

5. Poles inside the unit circle of the z plane represent stable
terms.

6. Zeros can appear anywhere in the z plane without affect-
ing system stability.

FIGURE 12. S PLANE AND Z PLANE MAPPING

It is also important to note that a z-1 term in the z domain
translates to a unit time delay in the time domain.[4]

Figure 13 shows an arbitrary block diagram for a z transform
example. From the figure it is seen that

Solving for Y/X, the transfer function of the example is

FIGURE 13. ARBITRARY Z-TRANSFORM EXAMPLE

This system has a second order zero at z = 0 and two poles;
one at z = 0.562, and one at z = -3.562.

The above brief introduction to the z transform leads to a
quick discussion of digital filters.

Digital Filters

There are two types of digital filters:

• Finite Impulse Response (FIR) filter, also known as a non-
recursive filter, represented by

• Infinite Impulse Response (IIR) filter, also known as a
recursive filter, whose response is given by

Note that the difference between these two types of filters is
for the FIR the output y(n) is dependent only on past and
present values of the input. However, the output y(n) for the
IIR filter is dependent on past and present values of both the
input and the output.

Figure 14 shows a block diagram example and derived
transfer functions of a FIR filter and an IIR filter. The advan-
tages and disadvantages of these filters are given in table 1.
The filter most commonly used for the back end of a sigma
delta converter is the FIR because of its stability, ease of
implementation, linear phase response, and the fact that
decimation can be incorporated into the filter itself.
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FIGURE 14A. FIR FILTER BLOCK DIAGRAM

FIGURE 14B. IIR FILTER BLOCK DIAGRAM

Decimation

The process of decimation is used in a sigma delta converter
to eliminate redundant data at the output. The sampling the-
orem tells us that the sample rate only needs to be 2 times
the input signal bandwidth in order to reliably reconstruct the
input signal without distortion. However, the input signal was
grossly oversampled by the sigma delta modulator in order
to reduce the quantization noise. Therefore, there is redun-
dant data that can be eliminated without introducing distor-
tion to the conversion result. The decimation process is
shown in both the frequency and time domains in Figure 15.
Both Figures 15A and 15B show that the decimation process
simply reduces the output sample rate while retaining the
necessary information.

As an example, the HI7190 uses a FIR comb filter with a
sinc3 transfer function. The decimation rate is programmable
from 10 to 2000 and notch frequencies range from 10Hz to
2kHz. This filter has shown >120dB of 50Hz and 60Hz
rejection.

FIGURE 15A. DECIMATION IN THE TIME DOMAIN
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TABLE 2. FIR vs IIR FILTERS

FIR FILTERS IIR FILTERS

Easy to Design More Difficult to Design

Always Stable May be Unstable

Linear Phase Response Nonlinear Phase Response

Easy to Incorporate Decimation Can not Incorporate Decimation

Less Efficient More Efficient

INPUT SIGNAL x(n)

DECIMATION RATE r(n)

OUTPUT SIGNAL (x(n)r(n)
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FIGURE 15B. DECIMATION BY 4 IN THE FREQUENCY DOMAIN

Summary

In summary this application note has been a very brief intro-
duction to the world of sigma delta conversion. The sampling
theorem and quantization noise theory were reviewed and it
was shown that a sigma delta converter grossly oversamples
the input signal and shapes the noise spectrum such that the
modulator appears to be a high pass filter for the noise and a
low pass filter for the input signal. The relationships between
the Laplace and z transforms were discussed and the two
transforms were found to be very similar. The two types of
digital filters were introduced and their properties as they
apply to sigma delta conversion were analyzed. Finally, the
concept of decimation (or data rate reduction) was intro-
duced along with the fact that decimation can easily be
incorporated into an FIR filter structure.
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