BASIC for PIC microcontrollers

g el g e arrs WD o L el

R A e B
IE B N

|""'!-|J- Srade ':'4':"4".!:'."

PACIH™

ra PIC mllrnrul-r.urhr I-EIE

The complete BASIC programming language manual for PIC microcontrollers!

Nebojsa Matic
Author

January / 2003

CHAPTERI| THE FUNDAMENTS OF PIC BASIC

CHAPTER 1l BASIC ELEMENTS OF PIC BASIC LANGUAGE

CHAPTER Il OPERATORS

CHAPTER IV INSTRUCTIONS

CHAPTERYV SAMPLE PROGRAMS FOR SUBSYSTEMS WITHIN THE MICROS
CHAPTER VI SAMPLES WITH PIC16F84 MICROCONTROLLER

CHAPTER VII SAMPLES WITH PIC16F877 MICROCONTROLLER

APPENDIX A MPLAB

APPENDIX B MicroCode studio

In this book you can find:

e Practical connection samples for:

Temperature sensors, AD and DA converters LCD and LED displays, relays. Every
example is commented in details with detailed connection scheme

Program writing

Learn how to write your own program, correct mistakes and use it to start a microcontroller.
Instruction Set

Every instruction is explained in detail with the example how to use it.

MicroCode studio

How to install it, how to use it

MPLAB program package

How to install it, how to start the first program, how to connect BASIC and MPLAB etc

Preface

In order to simplify things and crash some prejudices, | will allow myself to give you some advice
before reading this book. You should start reading it from the chapter that interests you the most,
in order you find suitable. As the time goes by, read the parts you may need at that exact
moment.If something starts functioning without you knowing exactly how, it shouldn't bother you
too much. Anyway, it is better that your program works than that it doesn't.Always stick to the
practical side of life. It is much better for the program to be finished on time, to be reliable and, of
course, to be paid for it as well as possible.

In other words, it doesn't matter if the exact manner in which the electrons move within the PN
junctions your microcontroller is composed of escapes your knowledge. You are not supposed to
know the whole history of electronics in order to assure the income for you or your family.Do not
expect that you will find everything you need in one single book. The information are dispersed
literally everywhere around you, so it is necessary to collect them diligently and sort them out
carefully. If you do so, success is inevitable.With all my hopes of having done something worthy
investing your time in.

Yours Nebojsa Matic

Chapter 1

Introduction

1.1 BASIC for PIC microcontrollers

1.2 PIC microcontrollers

1.3 First program written in PIC BASIC

1.4 Writing and compilation of a BASIC program

1.5 Loading a program into the microcontroller memory

1.6 Running your program

1.7 Problem with starting your program (what if it doesn't work)

Simplicity and ease, which the higher programming languages bring for program writing as well as broader application
of the microcontrollers, was enough to incite some companies as Microengeneering to embark on the development of
BASIC programming language. What did we thereby get? Before all, the time of writing was shortened by
employment of prepared functions that BASIC brings in (whose programming in assembler would have taken the
biggest portion of time). In this way, the programmer can concentrate on solving the essential task without losing his
time on writing the code for LCD display. To avoid any confusion in the further text, it is necessary to clarify three
terms one encounters very often.

Programming language is understood as a set of commands and rules according to which we write the program and
therefore we distinguish various programming languages such as BASIC, C, PASCAL etc. On the BASIC
programming language the existing literature is pretty extensive so that most of the attention in this book will be
dedicated to the part concretely dealing with the programming of microcontrollers.

Program consists of sequence of commands of language that our microcontroller executes one after another. The
structure of BASIC program is explained with more detailed in the second chapter.

BASIC compiler is the program run on PC and it's task is to translate the original BASIC code into the language of 0
and 1 understandable to the microcontroller. The process of translation of a BASIC program into an executive HEX
code is shown on the image below. The program written in PIC BASIC and registered as a file Program.bas is
converted into an assembler code (Program.asm). So obtained assembler code is further translated into executive
HEX code which is written to the microcontroller memory by a programmer. (programmer is a device used for
transferring HEX files from PC to the microcontroller memory)

Frogram translated into

Frograrm translated
HEX code understandable

Frograr written in FIC into assermblers : 1 S 1

BASIC language code to microcontroler [RPE R :|

Z i

l l l Rz rao[]

3 16

(R oCK asci[]

4 1=

[JMeir pic %2Q]

- rograrmming s 14

BLIMK.BAS [[Sormpiler BLIMK ASM||Assembler 4 BLIMK.HEX || Javice 0. 16F84 vl

E 11

[IrE0ANT rReT]

T 12

T T T [|re4 REE[]

FIZ BASIZ compiler Asserblar converts Frograrmming device * 1

) ; . [re2 rES [

comverts prograrm inte ASM code into HEX writes HEX code into g e

assembler's code code thernernarny of [|rEs RE4[]
microcontroler

As a programming language, BASIC is since long time ago known to the PC users to be the easiest and the most
widespread one. Nowadays this reputation is more and more being transferred onto the world of microcontrollers. PIC

3

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm

BASIC enables quicker and relatively easier program writing for PIC microcontrollers in comparison with the
Microchip's assembling language MPASM. During the program writing, the programmer encounters always the same
problems such as serial way of sending messages, writing of a variable on LCD display, generating of PWM signals
etc. All for the purpose of facilitating programming, PIC BASIC contains its built-in commands intended for solving of
the problems often encountered in praxis. As far as the speed of execution and the size of the program are concern,
MPASM is in small advantage in respect with PIC BASIC (therefore exists the possibility of combining PIC BASIC and
assembler). Usually, the part of the program in which the same commands are executed many times or time of the
execution critical, are written in assembler. Modern microcontrollers such as PIC execute the instructions in a single
cycle lasting for 4 tact of the oscillator. If the oscillator of the microcontroller is 4MHz, (one single tact lasts 250nS),
then one assembler instruction requires 250nS x 4 = 1uS for the execution. Each BASIC command is in effect the
sequence of the assembler instructions and the exact time necessary for its execution may be obtained by simply
summing up the times necessary for the execution of assembler instructions within one single BASIC command.

The creation of PIC BASIC followed the great success of Basic stamp (small plate with PIC16F84 and serial eeprom
that compose the whole microcontroller system) as its modification. PIC BASIC enables the programs written for the
original Basic stamp to be translated for the direct execution on the PIC16xxx, PIC17Cxxx and PIC18Cxxx members
of the microcontrollers family. By means of PIC BASIC it is possible to write programs for the PIC microcontrollers of
the following families PIC12C67x, PIC14C000, PIC16C55x, PIC16C6x, PIC16C7x, PIC16x84, PIC16C9xx,
PIC16F62x, PIC16C87x, PIC17Cxxx and PIC 18Cxxx. On the contrary, the programs written in PIC BASIC language
cannot be run on the microcontrollers possessing the hardware stack in two levels as is for example the case of
PIC16C5x family (that implies that by using the CALL command any subroutine can be called not more than two times
in a row).

For the controllers that are not able to work with PIC BASIC there is an adequate substitution. For example, instead of
PIC16C54 or 58, we can use pin compatible chips PIC16C554, 558, 620 and 622 also operating with PIC BASIC
without any difference in price.

Currently, the best choice for application development, using PIC BASIC are microcontrollers from the family :
PIC16F87x, PIC16F62X and of course the famous PIC16F84. With this family of PIC microcontrollers, program
memory is created using FLASH technology which provides fast erasing and reprogramming, thus allowing faster
debugging. By a single mouse click in the programming software, microcontroller program can be instantly erased
and then reloaded without removing chip from device. Also, program loaded in FLASH memory can be stored after
power supply has been turned off. The older PIC microcontroller series (12C67x, 14C000, 16C55x, 16C6xx, 16C7xx
and 16C92x) have program memory created using EPROM/ROM technology, so they can either be programmed
only once (OTP version with ROM memory) or have glass window (JW version with EPROM memory), which allows
erasing by few minutes exposure to UV light. OTP versions are usually cheaper and are used for manufacturing large
series of products. Besides FLASH memory, microcontrollers of PIC16F87x and PIC16F84 series also contain 64-256
bytes of internal EEPROM memory, which can be used for storing program data and other parameters when power is
off. PIC BASIC has built-in READ and WRITE instructions that can be used for loading and saving data to EEPROM.
In order to have complete information about specific microcontroller in the application, you should get the appropriate
Data Sheet or Microchip CD-ROM.

Irf'? 1

k

The program examples worked out throughout this book are mostly to be run on the microcontrollers
PIC16F84 or PIC6F877, but could be, with small or almost no corrections, run on any other PIC microcontroller.

In order to start program writing and application development in BASIC programming language, it is necessary to

have at least one text editor, PIC BASIC compiler and according to someone's wish - a system in development on

which the program is supposed to be checked. For writing BASIC program code, any text editor that can save the

program file as pure ASCII text (without special symbols for formatting) can be used. For this purpose editors like

Notepad or WordPad are also good. Even better solution than the use of any classical text editor is the use of some of

the editors specially devised for program code writing such as Microchip's MPLAB or Mecanique's Micro CODE
4

STUDIO.

The advantage of these program packages is that they take care of the code syntax, free memory and provide more
comfortable environment when writing a program (appendices A and B describe MPLAB and MicroCODE STUDIO
editors).

The first step is the writing of a program code in some of enumerated text editors. Every written code must be saved
on a single file with the ending .BAS exclusively as ASCII text. An example of one simple BASIC program -
BLINK.BAS is given.

.I Program: ELIHK.E&3
]

' Example of a program where the LED diode connected on

' PORT B pin 7 switches on and off ewery 0.5 seconds

Loop:
High PORTE. 7 ' dwitch on LED on pin 7 of port B
Paus=se 500 ' 0.5 sec pause
Low PORTE.? ' Switch off LED on pin 7 of port B
Pause 500 ' 0.5 zec pause
boto loop ' o back to Loop
End ' End of program

When the original BASIC program is finished and saved as a single file with .BAS ending it is necessary to start PIC
BASIC compiler. The compiling procedure takes place in two consecutive steps.

Step 1. In the first step compiler will convert BAS file in assembler s code and save it as BLINK.ASM
file.

Step 2. In the second step compiler automatically calls assembler, which converts ASM - type file into
an executable HEX code ready for reading into the programming memory of a microcontroller.

The transition between first and second step is for a user - programmer an invisible one, as everything happens
completely automatically and is thereby wrapped up as an indivisible process. In case of a syntax error of a program
code, the compilation will not be successful and HEX file will not be created at all. Errors must be then corrected in
original BAS file and repeat the whole compilation process. The best tactics is to write and test small parts of the
program, than write one gigantic of 1000 lines or more and only then embark on error finding.

As a result of a successful compilation of a PIC BASIC program the following files will be created.

- BLINK.ASM - assembler file
- BLINK.LST - program listing
- BLINK.MAC - file with macros

- BLINK.HEX - executable file which is written into the programming memory

File with the HEX ending is in effect the program that is written into the programming memory of a microcontroller.
The programming device with accessory software installed on the PC is used for this operation. Programming device
is a contrivance in charge of writing physical contents of a HEX file into the internal memory of a microcontroller. The
PC software reads HEX file and sends to the programming device the information about an exact location onto which
a certain value is to be inscribed in the programming memory. PIC BASIC creates HEX file in a standard 8-bit
Merged Intel HEX format accepted by the vast majority of the programming software. In the text bellow the contents
of a file BLINK.HEX is given.

[] Program: ELINK.HEX
[Page : 1751

:100000002828A301A200FF20AZ07031CAR0T7031C34
:1000100023280330A100DF300F200328A101E83ER0
:100020004A00081059FC30031C1828A00703181528FC
1100030004007 6400A10F152820181E28A01C2225844
:1000400000002Z2280800831302313831244000800E1
:100050000614831 60610831201 30A300F430022028
:100060000610833160610831201304A300P4 3002201
:0600700028286300352874

:0Z400E00753DFE

:00000001FF

Besides reading of a program code into the programming memory, the programming device serves to set the
configuration of a microcontroller. Here belongs the type of the oscillator, protection of the memory against reading,
switching on of a watchdog timer etc. The connection between PC, programming device and the microcontroller is
shown.

130G 1 S 12
[re= Rod []
z 1T
[(rea ron]
1 1&
@ Py [raetT oK ©5C1]
1 Bamy 4 1=
;:3 |—|5 WCLR pjc vsc2 :1|4
ﬁ wss 1GF84 vd :1|:.—

Lea OreoaT reT [——

Ed T 1z
[|red REG | |—

a 11
Programaur [[rez RES[]
=} i
[rez RE4]]

The programming software is used exclusively for the communication with the programming device and is not suitable
for any code writing. The one comprising text editor, software for programming microcontroller and possibly the
simulator as an entity bears the name IDE i.e. Integrated Development Environment. One such environment is a
Microchip's software package MPLAB.

For correct operating of a microcontroller, i.e. correct running of a program it is necessary to assure the supply of the
microcontroller, oscillator and the reset circuit. The supply of the microcontroller can be organized with the simple
rectifier with Gretz junction and LM7805 circuit as shown in the picture below.

o4
Transformer E
Bz0CZ1000 | H
L]
+_5_‘\.-'
220% LM77 205 i *
2 cal| o3
]| |:|R
1 = 22uF, 2 = 100xF, -~

03 =10pF, RE=1K

The oscillator of the microcontroller can be a 4MHz crystal and either two 22pF capacitors or the ceramic resonator of
the same frequency (ceramic resonator already contains the mentioned capacitors, but contrary to the oscillator has
three termination instead of only two). The speed at which the microcontroller operates i.e. the speed at which the
program runs depends heavily on this frequency of an oscillator. In the course of an application development the
easiest to do is to use the internal reset circuit in a manner that MCLR pin is connected to +5V through a 10K resistor.
In the sequence of text the scheme of a rectifier with circuit of LM7805 which gives the output of stable +5V, as well
as the minimal configuration relevant for the operation of a PIC microcontroller.

M
1 L= 13
5 [ree Red [
E 2 T
[Jrasz rao [e
3 16
[Jresmockl o5]_I__,__4' |
4 15 =
MCLR ozcz []
- ‘ HIR PIC M—T—'._I3 ”
. 16F84 e]—T
€ 12 1m AR
|: RECAMT RET] —1 H
T 1z
Ored FE6 [] =
= 2 1
[re= REs [] To se= the affect of
v 10 BLIMNKE program, the
[jres FE4]] resishor and the LED
diode are connected to

7t pin of the port B,

Minimal hardware configuration necessary for the operation of PIC microcontroller

After the supply is brought to the circuit structured according to the previous pictures, PIC microcontroller should look
animated, and its LED diode should be twinkling once each second. If the signal is completely missing (LED diode
doesn't twinkle), the check is to be done to ascertain if the +5V is present at all the corresponding tentacles on PIC
microcontroller.

The usual problems of bringing the PIC microcontroller into the working conditions comprise the check of few external
components and inquiry into the fact whether their values correspond to the wanted ones or whether all the
connections with the microcontroller have been done properly. There are some suggestions that may be useful in
order to help bringing to

Step 1. Check whether the MCLR pin is connected to 5V or over a certain reset circuit or simply with
10K resistor. If the pin remains disconnected, it's level will be "floating" and it may work sometimes,
but usually it won't. Chip has power-on-reset circuit, so that appropriate external "pull-up" resistor on
MCLR pin should be sufficient.

Step 2. Check whether the connection with the resonator is stable. For most PIC microcontrollers to
begin with 4MHz resonator is well enough.
7

Step 3. Check the supply. PIC microcontroller spends very little energy but the supply must be pretty
well filtrated. At the rectifier exit, the current is direct but pulsing and as such is by no means suitable
for the supply of microcontroller. To avoid this pulsing, the electrolytic capacitor of high order of
capacitance (say 470 [1F) is placed at the exit of a rectifier.

If PIC microcontroller supervises the devices that pull lot of energy from the energy source they can in their own rights
provoke enough malfunctioning on the supply lines so that the microcontroller can stop working normally and start
revealing somewhat strange behavior. Even seven-segmented LED display may well induce tension drops (the worst
scenario is when all the digits are 8, for then LED display needs most power), if the source itself is not capable to
procure enough current (for the case of 9V battery just for an example).

Some PIC microcontrollers have multi-functional entrance\exit pins, as it is the case with PIC16C62x family
(P1C16C620, 621 and 622). The microcontrollers belonging to this family are provided with analogue comparators at
port A. After putting those chips to work, port A is set onto an analogue mode, which brings about the unexpected
behavior of the pin functions on this port. Any PIC microcontroller with analogue entrances will after reset show itself
in an analogue mode (if the same pins are used as digital lines they must then be set into a digital mode).

One of the possible sources of troubles is that the fourth pin of the port A shows singular behavior when it is used as
exit (because this pin has open collectors exit instead of usual bipolar state). That implies that the inscription of the
logical zero on this pin will nevertheless set it on the low level, but the inscription of logical unit will let it float
somewhere in between instead of setting it at high level. To coerce this pin react in a proper way the pull-up resistor is
placed between RA4 and 5V. The magnitude of this resistor may be between 4.7K and 10K, depending on the
intensity of the current necessary for the convected entrance. This pin functions as any other pin used as an entrance
(all the pins are after reset procedure set as exits).

During the work with PIC microcontrollers more problems are to be expected. Sometimes what is being tried seems
like going to work, but it doesn't happen to be the case regardless of how hard had we put an effort. Normally there is
more than one way to solve something. A different angle approach may bring a solution with the same effort.

Chapter 2

BASIC ELEMENTS OF PIC BASIC LANGUAGE

Introduction

2.1 Identifiers
2.2 Labels

2.3 Constants
2.4 Variables

2.5 Sequences
2.6 Modifiers

2.7 Symbols

2.8 Direction INCLUDE

2.9 Comments

2.10 Programming line with more instructions
2.11 Transfer of a instruction into another line
2.12 Define

2.13 DISABLE

2.14 ENABLE

2.15 ON INTERRUPT

2.16 RESUME

Next chapter describes the basic elements of a PIC BASIC language and the mode to use them in the efficient
program writing. It is somewhat of an artistry to write a code that is both readable and easy to handle. Program is
supposed to be understandable, before all, to the programmer himself and then later to his colleagues in charge of
doing some corrections and adding as well. In the further text is given one example of the program written in a clear
and manifest way.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm

[] Program: PEOES . BAS
[] Page: 151

L ol o e o o el i e el e e il e el el el i
'* Ime prog.: PROBA.EBEAS *
'* Copvright: Copvright [(c) 2001 mikroElektronika *
'* Datun = 11/20/01 *
'%* WYerzija : 1.0 *
'%* Mapomena : Efekat blinkanja dioda *
L e e e el e e e e el i e e e el i e e e e el i i e e e e el i e ol e e e el e e
Program’s header — DEFINE 03C & ! Definisanje oscilatora
Define direction 1
Symbols — 11— symbol LEDDiode = PORTE ' Led diode su na portu B
Constants —F— TUgasi com 500 ' Konstanta
Upali com %FF ' Konstanta
“ariable — 1 i wvar byte ' Pomocha promenldiva
Command —+—— TEREISE = £00 ' zwi pinovi porta B su izlazni
i=0 ' inicijalizacija promenliive i
Label —{ Main: ' Pocetak programa
for i=1 to 10 ' Petlja koja ponavlia blinkanije
“ubfoutine — 1 gosub Elink ' 10 puta
next i
goto Main ' ponowi celu petlin
Comment
Elink: ' pocetak podprodrana
LEDDi ode=Upali ' PORTE=%FF
Pauze 1000 ' pauza od jedne zekunde
LEDDiode=Ugasi ' PORTE=%00
Pause 1000 ' pauza od jedne sekunde
Boturn ' povratak iz podprograma
End ' ZavisetLak programa

Extensive use of comments, symbols, labels and other elements supported by PIC BASIC, program can be rendered
considerably clearer and more understandable what is in later corrections and enlargement of the program offering
programmer a great deal of help. In order to make it even more understandable it is advisable to separate the program
into logical entities as those parts to which a jump with the goto instruction can be performed or subprograms to be
called with the gosub instruction. Labels indicating the beginning of the segments of programs should have meaning
making some obvious sense. If it, say, exists such segment of a program that switches on and off LED diodes on
some of the ports, the label indicating the beginning of that part of the program could well be for example "Blink" (LED
diodes shine or go dark - therefore they blink) or the like.

Elements determining one BASIC program are the following:

- Identifiers

- Labels

- Constants

- Variables

- Sequences
- Modifiers

- Symbols

- Comments
- Include

- DEFINE

- _ (continuation of a instruction transferred into another line)
- On interrupt
- Disable

- Enable

- Resume

Although they are many at first glance only but a few of them is fair enough for writing approximately 90% of all
programs. Nevertheless for the sake of completeness on all the elements will be treated on the following pages.

10

Identifier represents the name of some PIC BASIC element. Identifiers are used in PIC BASIC in order to sign
program lines and the names of various symbols. Identifier itself could be any string of letters, numbers or even
dashes with the limit that it is not allowed to begin with a number. Identifiers don't distinguish small and capital letters,
so that the strings TASTER and Taster are treated the same way. The maximum length for such strings is 32
characters.

PORTA.D "RAD se identifikuje kao “Taster”
PORTE.O "RBEO se identifikuje kao “LED_0O"

symbol Taster
symbol LED_D

Label represents textual sign for some programming line or respectively some of its fragments on which the program
can jump through some of the instructions used to change the program flow. It is obligatory to end the label with.
Contrary to many old BASIC versions, PIC BASIC doesn't allow numerical values as labels.

symbol Taster = PORTA.D

symbol LED_0 = PORTE.Q

BO var byte

Main: " Label Main
BO =10
button Set,0,255,0,B0,1,LED_toggle
goto Main

LED_togqgle: " Label LED_toggle
toggle LED_O
goto Main
end

Name_constants con value_constants

With this declaration is to some chosen name assigned the value that is constant. For example the constant minute
has the value of 60 seconds, bearing the recollection to the number of seconds in a minute. Written at whatever
program position, minute will be interpreted by complier as if it had been written 60. There are two very important
reasons for such habit in program writing. The first one is the programmers wish to be more manifest. Good visibility is
achieved by giving to the variables and constants those names that could be associated with the very function they
assume within the program. On the other hand, the bigger flexibility of the program is obtained as well. It is for an
example so that if it becomes necessary in some future work to use the same code but with a change value of the
constant, it is enough make a change in the part for declaration instead performing search and replace throughout the
program.

fminute con 60 *'Mo, of seconds in a minute
if seconds < minute then minute = minute + 1 ' If the number of seconds is different
‘' from 60, raise the wariable minutes

Constants can be equally written in decimal, hexadecimal and binary form. Decimal constants are written without any
prefix. Hexadecimal constants start all with a sign $ and binary with %. To make the programming easier, single letters
are converted into their ASCIl counterparts. The sign constants must be placed into the inverted comas and they

11

contain only one letter as a rule (in adverse case they are string constants).

EG "56 decimal

£0OF "15 hexadecim al

% 10001100 "140 hinary

"ot " ASCII value for decimal 65
g "ASCII value for decimal 100

Name_variable var Type_variable

Variables serve for temporary storing of data and results of various arithmetic and logical operations. Variables are
stored on the microcontrollers RAM locations, which means that the total number of the variables that can be used
depend on the size of RAM.

Accordingly for the 36-byte microcontroller, 22 bytes are reserved for variables.

Variable defining is achieved with the formal word var at the beginning of the program. PIC BASIC supports variables
like bit, byte and word. Variable type is selected with reference to the expected value that this same variable can
assume in the course of the program run. Therefore the variable of the bit type can take value of 0 or 1, the variable of
the byte values from 0 to 256 and finally, word from 0 to 65535.

Fleg war bit "Fleqg is a variable of the type hit

BO var byte B0 is a variable of the type byte

Wiy var word W0 is a variable of the type word
BO var W0, byted "BOis a first byte of the word W0
Bl var Wo.bytel "B1lis a second byte of the ward W0

Name_sequence var type_element [number of the elements]

Sequences of the variables are defined in a similar way as we have done with the variables. "Type_element"
represents the value of every element of the sequence, and can be bit, byte or word.

The number of the elements of the sequence is given through value between "[]".Each element of the sequence is
accessible by an index. Index starts with zero. When we come to define the number of the elements of the sequence
one must always have in mind that the number of locations in RAM memory on which we intend to store variables
finite. The next table shows the maximal number of the elements of various types.

The size of the sequence
Element of the Maximal number
sequence of elements
BIT 256
BYTE 96*
WORD 48*

* Depends on microcontroller

12

Sequence1 var byte[10] 'the sequence of 10 elements of the type byte

Sequence1 [0] represents the first element of the sequence and sequence1 [9] the last element of the sequence
"sequence1".

Sequence?2 var byte[8] 'the sequence of 8 elements of the type byte

Sequence?2 [0] represents the first element of the sequence and sequence2 [7] the last element of the sequence
"sequence2".

new_name var old_name

By means of modifier it is possible to introduce a new name for the variable already defined. This direction is used
relatively rarely but it ought to be mentioned for the sake of completeness. It is used in an identical way as a direction
for the definition of the variables. Introduction of a new name is effectuated through the official word var.

a0 CResult var word
HigherB yte war ADCresult.byted " The new name for the higher byte of the

“word ADCresult

symbol old_name = new_name

Symbols are granted the function exactly the same as direction for modifying variables, i.e. they serve for assigning
the new names to the variables and constants. Symbols are introduced for the compatibility of the programs written for

Basic Stamp and cannot be used for introducing variables.

symbol Taster = PORTA.D " Taster is a new name for RAD
symbol LED_0O = PORTE.O “LED_D0 is a new name for RBO

INCLUDE "the name of the file"

Direction INCLUDE serves for inserting of a segment of a BASIC file. In this manner is rendered possible to store
some general definitions of variables or subroutines that are being executed as parts of several different programs.
The effect achieved is the same as if at the location on which is placed the direction INCLUDE simultaneously copied

the contents of whole file.

13

Include "modedefs.bas"

symbol S0 = PORTA.3
symbol SI = PORTE.O
BO var byte

Loop:
serin SI,TZ400,B0
serout SO, T2400,[B0O]
goto Loop
end

* The transfer modes that use the
‘commands SERIN and SEROUT

'....Comment...."

In the course of program writing there's a space for lot of comments even if it may be self-evident what is the main
purpose of the program. Although it may well seem as a shear waste of time, it may play later a crucial role
(comments don't occupy an additional memory space in the memory of a microcontroller). Comments should give
useful instructions about all that the program is doing. Comment as Set Pin0 to 1 simply explains the syntax of the
language but fails to pinpoint the purpose of the act. Something of a sort Turn the Relay on may prove itself to be

much more useful.

At the beginning of the program it should be described what is the program used for, who were the authors and when
was it written. Stipulating the information concerning revision and the exact date may be useful too. Even every
concrete statement about connection to each pin can be crucial in an effort to memorize the very hardware for which

this program was designed to operate.

symbol LED = PORTE.O
Main:

LED =1
Pause 500
LED =0
Pause 500
gota Main

end

L

L

L

L

L

L

L

L

LED diode is connected to RBO
The beginning of the program

Turn on LED

Pause 500 mS

Turn off LED

Pause 500 mS

Jump to the beginning of program

End of the program

Compactness and better visuality of a program can be achieved by logically grouping instructions by using ":". In that
way the block of instructions can be placed all in a single line, while instruction remain mutually separated with ":".

B2 =B0
BO = B1
B1=B2

The three upper instructions can be written in a single row as:

B2=B0:B0=B1:B1=B2

14

In case that instruction has big number of parameters so that they cannot stay all into another programming line, there
is a possibility that the intake of parameters continue in the next row what is done by means of "_" at the end of line.
The typical examples are the instructions lookup, branch and sound.

|OOkUp KeyPreSS, [II1 ll,ll4ll7|l7ll’ll*ll,ll2ll,ll5ll,|l8|l’lloll’ll3ll7ll6ll’llgll,ll#ll,llNll]

DEFINE the value parameter

Instructions of the PIC BASIC language can have some parameters from which depends the exact way the
instructions are executed. Those parameters assume some predefined values that appear in the most of the cases. A
frequency of an oscillator is a good example for that. If not otherwise stated the tact of the oscillator is taken by default
as 4MHz. In case that the used oscillator is of a different frequency from 4MHz it is necessary using the DEFINE
direction to specify that frequency and communicate it to all the programs that contain within instructions depending on
the tact of the microcontroller. One such instruction is for the serial transfer. In case that the instruction DEFINE is
omitted and in gear is 8Mhz instead of 4Mhz oscillator, all the instructions that depend on the tact of microcontroller
will be executed 2 times quicker. For instance, if the parameter of the speed of transfer amounts to 9600 bauds by
using SERIN instruction, the data transfer would be effectuated at the speed 19200. In the same way the instruction
pause 1000 the delay realized would be 0.5s instead 1.0s. It is also possible similarly to upgrade the resolution of the
instructions. What is next is the review of the usage for DEFINE direction in case of adjusting of parameters explained
within each particular instruction.

The use of a direction DEFINE

parameter description instruction on which it
acts
I2C_HOLD 1 pause 12C transfer while I2COUT, I12COUT

the tact is on a low level

I2C_INTERNAL 1 internal EEPROM in series I12COUT, 12COUT
16Cexxx and 12Cxxx of the
PIC microcontroller

I2C_SCLOUT 1 serial tact is a bipolar at I2CWRITE, I2CREAD
the place of an open

. collector

I2C_SLOW 1 for the tact > BMHz OSC I2CWRITE, I2CREAD

with the devices of a
standard velocitv

LCD_DREG PORTD LCD data port LCDOUT, LCDIN
LCD_DBIT O Initial bit of a data 0 or 4 LCDOUT, LCDIN
LCD_RSREG PORTD RS (Register select) port LCDOUT, LCDIN

LCD_RSBIT 4 RS (Register 32lect) pin LCDOUT, LCDIN

LCD_INSTRUCTIONUS
2000

the time of delay of
instruction in microseconds

(us)

LCDOUT, LCDIN

LCD_DATAUS 50

the time of delay of data in
microseconds

LCDOUT, LCDIN

tact of the oscillator in

all instructions of the serial

transfer

OSC 4 MHz: 3(3.58) 48 101216 | & "~ 1= L oo
20 25 32 33 40 P
setting of OSCCAL for

OSCCAL_1K 1 PIC12C671/CE673
microcontrollers

OSCCAL_2K 1 the number of data bits

SER2_BITS 8 the slowing of the tact of | g\ 1ero T, SHIFTIN

SHIFT_PAUSEUS 50

instruction LFSR in 18Cxxx
microcontrollers

LFSR

BUTTON_PAUSE 10

BUTTON

CHAR_PACING 1000

SEROUT, SERIN

HSER_BAUD 2400

HSEROUT, HSERIN

HSER_SPBRG 25

HSEROUT, HSERIN

HSER_RCSTA 90h

HSEROUT, HSERIN

HSRE_TXSTA 20h

HSEROUT, HSERIN

HSER_EVEN 1

HSEROUT, HSERIN

HSER_ODD 1

HSEROUT, HSERIN

Example:

DISABLE

Before entering the interrupt routine, it is necessary to switch off the interrupts in order to avoid any new interruption in
the course of data processing. The interruptions are forbidden in a manner that the instruction "DISABLE" reset the bit

GIE in the register INTCON.

Disable " Forbid the interruptions
ISE: " Start of an interruption routine
" The end of the interruption routine
Fesume
Enable

16

ENABLE

In the course of execution of the interruption routine, the interrupts must be forbidden by resetting the bit GIE in the
INTCON register. When the interruption processing is finished, the interruptions must be allowed once again with the

instruction "ENABLE".

Disable
ISR " Start of the interruption routine
" The end of the interruption routine
Fesume
Enable " Allow interruptions

On interrupt LABEL

With instruction "On interrupt” is indicated the label on which the program will "jump" when the interruption happened,
i.e. from which label the interruption routine starts.

On interuupt ISR ' The interruption routine starts from the label ISR

Main: " Main program
goto Main

Disable
[SE: " Start of the interruption routine

" The end af the interruption routine

Eesume
Enable

RESUME

Return from the interruption routine to the main program.

Disable
ISR " Start of the interruption routine
I
I
I
" End of the interruption routine
Resume " Exit from the interruption routine
Enable

17

Chapter 3

Introduction

3.1 Expressions
3.2 Instructions

3.3 Arithmetical operators

3.3.1 Multiplication
3.3.2 Division
3.3.3 Shift

3.3.4 ABS
3.3.5C0OS
3.3.7DIG

3.3.8 MAX and MIN
3.3.9 NCD

3.3.10 REV

3.3.11 SIN

3.3.12 SQR

3.4 Bit operators
3.5 The operators of comparison
3.6 Logical operators

The PIC BASIC language possesses the operator set used to assign the values, compare objects and perform
multitude of other operations. The objects manipulated for that purposes are called operands (which themselves can
be variables or constants). The operators of PIC BASIC language must have at least two operands. They serve to
create instructions and expressions that together with variables, constants and comments in effect compose the
program.

Combinations of operators and operands are called expressions. The expression does the computation and furnishes
the result or starts some other activity.

' The expression that sums up the values of the variables B and C and
' stores the result into the variable A

0Owm>
+ 1

In application of any expression the attention must be paid that the result of the computation must be within the range
of variable A in order to avoid the overflow and therefore the evident computational error. If the result of expression
amounts to 428, and the variable A is of BYTE type having range between 0 and 255, the result accordingly obtained
will be 172 - obviously the wrong one.

Each instruction determines an action to be performed. As a rule, the instructions are being executed in an exact
order in which they are written in the program. However, the order of their execution can be changed as well
employing the instructions for the change of the flow of a program to another segment of the program such as the
instructions of the ramification, jump or interrupt.

18

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm

IF Time = 60 THEN

GOTO Minute

Instruction IF...THEN contains the conducting expression Time=60 composed in its own rights of two operands, the
variable Time, constant 60 and the operator of comparison (=). The instructions of PIC BASIC language can be
distinguished as the instructions of choice (decision making) repeating (loops), jump and specific instruction for an
access to the peripheries of the microcontrollers. Each of these instructions is explained in detail in Chapter 4.

"if A = 23 jump to label Minute

Operators are numerous, but for almost 90% of all the programs it is necessary to know only few of them. It

suffices to look how many operators are used in the examples in Chapter 5, 6 and 7.

After the activities they perform, the operators can be classified into the following categories:

- Arithmetic operators

- Bit operators?
- The operators

of comparison

- Logical operators

All arithmetic operators work in 16-bit precision with the unsigned values what means that the range of the operand is

from 0 to 65535. In order to group operations, one may use brackets.

A=(B+C)*(D-E)

In the following table all the supported arithmetic operators are listed.

Operator Description
Operator Description Operator Description

+ summation ABS absolute value of a humber
- subtraction COS cosine of an angle

* multiplication DCD bit decoding

xok the result is in higher 16 bits DIG ‘éz'c‘f;gr rt]ﬂ‘fn‘gfrit for a
*/ the result is in middle 16 bits MAX maximum of a number
/ division MIN minimum of a number
// remainder NCD priority coding
<< left shift REV bit reversing
>> right shift SIN sine of an angle

= assignment of value SQR square root of a number

19

Syntax:

LO = W1 * 100
L1 = W1 ** W2
L2 = W1 */ W2

Description:

PIC BASIC pro does not support directly the work with the 32-bit numbers. It is usual
to present a 32-bit variable as a two 16-bit variables. Operator '*' reverts lower 16
bits of a 32-bit result. Operator '"**' reverts higher 16 bits of a 32-bit result. These
two operators can be used in a combined way for computing 16x16 multiplications in
order to produce 32-bit results.

Example: LO war lang
Wil var word
W2 war word
Main:
LO = W1 * 100 " Multiplies wvalue W1 with 100 and
' stores the result in lower 16 bits of LD
LO = W1 #* 100 " Multiplies wvalue W1 with 100 and
" stores resultin 16 higher bits of LO
LO = W1 #F w2 ' Reverts the 16 middle hits of the result
Loop: goto Loop
EMD
Syntax: W0 = W1/100

W2 = W1 // 100

Description:

As it is the case with multiplication, the operation of division is done over the 16 bit
operands. Operator '/' reverts 16-bit integer result while the operator '//' reverts the

remainder.

Example:

WO war word
Wl war word
W2 yar word

Main:
Wi = 'wi1 /100

W2 = Wi /7 100

Loop: goto Loop
EMD

" Divide the value ‘W0 with 100 and
" stare the integer resultin W1
' Bemainder stare in Wa

20

Syntax:

W0 = W0 << 3
WO =W0>>1

Description:

Operators of the shift perform the shift towards left or right from 0 to 15 times. All

the new bits that enter from the side have value 0. These two operators belong to the
operators over the bits.

Example: rain:
WO = W0 =< 3 " Shift Wi three places to the left
"{same as multiplication with 83
WO = W0 >> 1 * Shift W0 one place to the right
"{same as division with 20
Loop: goto Loop
EMD
Syntax: BO = ABS B1

Description:

ABS gives the absolute value of a number. If ABS gets applied to the variable of the
BYTE type greater then 127 (set MSB) the result is 256. If the ABS gets applied to the

variable of WORD type greater then 32767 (the bit set is of the biggest weight - MSB)
result is 65536.

Example:

BO war byte
Bl var byte

Main:
BO = ABSE1l ' Abhsolute value of B1 store in BO

Loop: goto Loop
EMD

21

Syntax:

BO = COS B1

Description:

COS reverts the 8-bit value of the cosine. The result is in the second complement (i.e.
within the range -127 to 127). For that reason it is necessary to use the lookup table
in order to determine the result (cosine of an angle goes in the binary range between
0 and 255 in contrast with usual 0 to 359 degrees).

Example: BO war byte
Bl var byte
B2 wvar byte
Main:
B0 =C0OS8BR1 ' 8-hit value of cosing B1 store in BO
" {index of Lookup table)
Lookup BO, [constant to determine_cosine], B2
" After this instruction the true value of
' cosine is stored in B2
Loop: goto Loop
EMD
Syntax: BO = DCD N
Description: | DCD gives the decoded bit value of the operand whose value is in the range within 0-
15. If the operand is 0 then the zeroth bit of the result 1, and if the operand reads as
7, the seventh bit of the result is 1.
Example: BO war byte
Main;
BO =DCD 2 ' Contents BO s 200000100
Loop: goto Loop
EMD

22

Syntax:

W = W1 DIG N

Description:

DIG furnishes the value of the digit of a decimal nhumber. The number whose digits
are looked for is 0-3 where 0 is a last right digit i.e. digit of the smallest weight (it is
most often used for the work with seven-segment digits for extraction of the digits to
be displayed).

Example: BO war byte
B1 war byte
Main:
Bl = 5343
BO=PB1DIGO ‘'Contents BO is 3
BO=RB1DIG 1 ' Contents BO is 4
BO=B81DIG 2 ‘'Contents BO is 8
BO=PB1DIG 2 ‘Contents BO is &
Loop: goto Loop
EMD
Syntax: BO = B1 MAX 100

BO = B1 MIN 100

Description:

The operator's maximum and minimum are used whenever it is necessary to revert
one out of two values that are being compared. If those numbers are for example 100
and 200 operator Max will revert the value 200 and operator Min, value 100. To the
difference from the operators "bigger then" and "less then" they revert the entire
value and not only the quantification whether some value is smaller or bigger then
the other.

Example:

BO war byte
Bl wvar byte

Main:
BO =B1MAX 100 ' BOis either 100 or Bl unless B1
' contains the value bigger then 100

Bl MIMN 100 ‘' BOis either 100 or B1 unless B1

L

BO

contains the value smaller then 100

Loop: goto Loop
EMD

23

Syntax:

BO = NCD %01001000
BO = NCD %00001111

Description:

NCD furnishes the value that is coded with the priority code. That gives the position of
the first unit, which it encounters from the left side. If the operand is 0 the result is 0
as well.

Example: BO war byte
Main:
BO = NCD 201001000 " Contents BO is 7
BO = NCD 2600001111 " Contents BO is 4
Loop: goto Loop
END
Syntax: BO = %10101100 REV 4

Description:

REV reverts the order of the lowest bits of the operand. The number of the bits that
can be reverted goes from 1 to 16.

Example: BO war byte
rain:
BO = 9510101100 REY 4 ' Contents BO is % 10100011
Loop: goto Loop
END
Syntax: BO = SIN B1

Description:

SIN reverts the 8-bit value of the sine. The result is in the second Complement (i.e.
within the range -127 to 127). For that reason it is necessary to use the lookup table
in order to determine the result (sine of an angle goes in the binary range between 0
and 255 in contrast with usual 0 to 359 degrees).

Example:

BO war byte
Bl var byte
B2 war byte

Main:

BO = SINB1 "8-hit walue of sine B1 stare in BO
" {index of Lookup table)

Lookup BO, [constant to determine_sine], B2
" After this instruction the true value of sine is
" stored in B2
Loop: goto Loop
EMD

24

Syntax: BO = SQR W1

Description: | SQR reverts a value of a square root. Result is stored into the variable of BYTE type.

Example: BO war byte
Wl war word

Main:

BO = SQR W1 " SQquare root of W1 store inta BO
Loop: goto Loop

EMD

One of the more important properties of higher programming languages is their capacity to go down to the lower level
i.e. the level of the assembler. Bit operators furnish the access to the registers and memory of a microcontrollers at
the level of a single bit. Operators supported by the language PIC BASIC are given in the table below:

Bit operators

Operator Description
& Logical AND over the bits

| Logical OR over the bits

A Logical XOR over the bits
~ Logical NOT over the bits
&/ Logical NAND over the bits
|/ Logical NOR over the bits
N/ Logical NXOR over the bits

The value result of the expression depends on the fact which of the listed logical operations is executed over the bits
of the operand. In that way, it is possible to extract, delete, set or invert the certain bit of the operand.

Example1:
B0 = BO & %00000001

The upper instruction extracts the value of the lowest bit of the variable BO. When the logical "AND" is performed with
the zero, there will be 0 at the position of a corresponding bit (so that all the bits 1-7 will be zeroes). The value will
depend on bit 0 in the variable BO and if it is "0", the value of variable BO will be "0" and if it is "1" the value of BO will
accordingly be "1".

Example2:
B0 = BO & %00000100

The upper instruction sets bit2 in the variable BO. When the logical "or" is performed with the unity the result is always
equal to "1" regardless of the state of the corresponding bit from BO.

25

Example 3:
BO = BO & %00000010

The upper instruction inverts the bit 1 in variable BO. If the bit was "1" then it turns into "0" and vice versa. The other
logical operators are used only rarely so there's no need for their detailed explanation.

The expressions that contain the operators of comparison give after having compared the two operands the result
true or false. If the expression of comparison is true then the instruction to be executed is the one on the left side,
otherwise the execution of the program continues with the next instruction. The operators of comparison are shown in
the table below:

Operators of comparison
Operator Description
=or == equal

<> or!=| not equal

< less then

> bigger then

<= less then or equal

>= bigger then or equal

These operators are most often used in examination of the conditions by the instructions such as IF...THEN.
Example:

If Seconds = 60 then minutes = minutes + 1
Seconds = Seconds + 1

If the variable " Seconds" equals 60 the condition of the comparison is true and the instruction "Minutes=Minutes+1"
will be executed then. Unless the expression is not true the instruction "Seconds=Seconds+1" will be executed
instead.

26

Logical operators serve for the operations over the variables, which take two possible values 0 or 1. These values
may well be interpreted as "condition is fulfilled" what corresponds to state "1" and "condition is not fulfilled" which
corresponds to the state "0". They are used in the very same way as the operators of comparison within the frame of
the instruction IF...THEN. The list of the logical operators is shown in the table below.

Logical operators
Operator Description
AND or && Logical AND
OR or || Logical OR
XOR or "N Logical XOR
NOT Logical NOT

NOT AND Logical NAND

NOT OR Logical NOR

NOT XOR Logical NXOR

Example1:
If AOr B THEN GOTO Lab

If the condition is fulfilled, i.e. if at least one of the operands A or B equal to one, then the program jumps to the label
Lab.

Example2:
IF (Seconds>59) And (Minutes>59) THEN Hours=Hours+1

The conditions may be complex as well. Separating into the brackets is obligatory otherwise the result can be very
unpredictable.

27

Chapter 4

Introduction

41 @ 4.17 GOSUB 4.33 LOOKUP2 4.49 RETURN

4.2 ASM..ENDASM 4.18 GOTO 4.34 LOW 4.50 REVERSE
4.3 ADCIN 4.19 HIGH 4.35 NAP 4.51 SELECT-CASE
4.4 BRANCH 4.20 HSERIN 4.36 OUTPUT 4.52 SERIN

4.5 BRANCHL 4.21 HPWM 4.37 OWIN 4.53 SERIN2

4.6 BUTTON 4.22 HSEROUT 4.38 OWOUT 4.54 SEROUT

4.7 CALL 4.23 12CREAD 4.39 PAUSE 4.55 SEROUT?2
4.8 CLEAR 4.24 12CWRITE 4.40 PAUSEUS 4.56 SHIFTIN

4.9 CLEARWDT 4.25 INPUT 4.41 POT 4.57 SHIFTOUT
4.10 COUNT 4.26 IF-THEN-ELSE 4.42 PULSIN 4.58 SLEEP

4.11 DATA 4.27 LCDOUT 4.43 PULSOUT 4.59 SOUND

4.12 DTMFOUT 4.28 LCDIN 4.44 PWM 4.60 STOP

4.13 EEPROM 429 {LET} 4.45 RANDOM 4.61 SWAP

4.14 END 4.30 LOOKDOWN 4.46 RCTIME 4.62 TOGGLE
4.15 FREQOUT 4.31 LOOKDOWNZ2 4.47 READ 4.63 WRITE

4.16 FOR-NEXT 4.32 LOOKUP 4.48 READCODE 4.64 WRITECODE

4.65 WHILE-WEND

All the programs regardless of the fact how complicated or simple they may be are nothing else but a strict flow of the
executions of instructions.

Instructions of branching are used in program for the decision-making (in which one of two or more program paths
is being chosen). The basic instruction of branching in PIC BASIC language is instruction if. This instruction has
several variations that furnish necessary flexibility required for the realization of the logic of the decision-making
(these variations comprise the use of term else and insertion of the instructions).

Instructions of repeating give the possibility of repeating one or more single instructions. The conducting
expression determines how many times the repetition will be performed. The set of those instructions is composed of
WHILE ... WEND and FOR ... NEXT.

Instructions of jump serve to change the flow of the program execution. The basic instruction of jump, GOTO,
transfers the execution of the program to a signed instruction in a main program or inside subroutines. Other
instructions of jump are BRANCH, BRANCHL, CALL, GOSUB, RETURN (these instructions are unavoidable in
programs but their use is subject to certain restrictions).

Instructions of access to the peripheral devices facilitate the programmer's job. Now programmer can concentrate
on the essence of the program he set out to solve, avoiding unnecessary waste of time in writing routine for LCD
display or some other peripheral device he uses in his set. The set of instructions is such to satisfy the large part of
needs in the design of even the most complicated microcontrollers systems.

28

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_01.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_02.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_03.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04_04.htm

Inserts one programming line of assembler code

Syntax: @ assembler's instruction
Description: | If used at the beginning of the line @ enables free-style combining of the assemblers code and PIC
BASIC code. Instruction @ can be used for insertion of the libraries written in assembler as well.
It should be taken notice that the further access from assembler towards variables works through
the lower dash added to the variables name. In an example below, the variable BO is used as_BO
in assembler programming line.
Example:
@include "some_asm_program.asm" ' inserts an assembler code library
BO var byte
Main :
@ bsf_BO,7 ' sets the seventh bit of variable BO
Loop : goto Loop
end
Inserts the block of assembler instructions
Syntax: ASM
/
assembler instructions
/
ENDASM
Description: | ASM and ENDASM instructions give the information that the code between ASM and ENDASM
assembler type. Maximal size of the assembler code depends on the size of the programming
memory of a microcontroller. In case of a PIC16F877 microcontroller the maximal value of an
assembler code is 8K.
Example:

Main :
asm ' Beginning of asm part of the program
bsf PORTA, 0 ' set RAO to "1"
bcf PORTB, 3 ' set RB3 to "0"
endasm ' End of asm part of the program

Loop : goto Loop

end

29

Write the values from the input of the internal AD
converter

Syntax: ADCIN channel, variable

Description: | ADCIN performs A/D conversion of an input analogue signal in microcontrollers that have A/D
converter built in chip (i.e. PIC16F877). The value read in is stored into a designated variable.
Before use of ADCIN instruction the appropriate TRIS register must be initiated so that the given is
designated input one. Beside that in ADCON1 register one has to set the input pins for analogue
working regime, format of the results and tact of A/D converter.

Example:
DEFINE ADC_BITS 8 ' Converted result will have 8, 10 or 12 bits
DEFINE ADC_CLOCK 3 " Clock for A/D converter
DEFINE ADC_SAMPLEUS 10 ' Sampling time expressed in us
BO var byte
Main :
TRISA = $FF " All pins of port A are input
ADCON1 =0 ' PORTA is analog

30
adein 0 RN ' Read the channeal 0 and stare the resiilt intn variahle RN

Example:

BO var byte
Main :
branch BO, [lab1, lab2, lab3]

Loop : goto Main

lab1 : ' Labels where the program execution resumes after
lab2 : ' the jump initiated by instruction BRANCH
lab3 :

end

Jump to the label in second code segment

Syntax: BRANCHL index, [label1 {label...}]

Description: | BRANCHL (BRANCH long) is a instruction quite similar to BRANCH. The only difference is that
BRANCHL can realize jump onto the location situated on the second code segment. BRANCHL
instruction creates the code approximately two times greater than one created by BRANCH, so that
in case that the whole code of a program is in one single code segment or occupies less then 2K of
memory - use of BRANCH is recommended.

Example:

WO var word
Main :
branchl WO, [lab1, lab2, lab3]

Loop : goto Loop

lab1 : ' Labels where the program execution resumes after
lab2 : ' the jump initiated by instruction BRANCHL
lab3 :

end

31

Reads the state of button on input pin

Syntax: BUTTON Pin, State, Delay, Speed, Variable, Action, Label
Description: | The Button instruction eliminates the influence of contact flickering due to the pressing on the
button (debouncing), what could be interpreted by the program as the pressing of the button more
then one time instead of only once. Beside this function, instruction Button secures the function of
auto-repeat which enables execution of determinate instruction as long as we keep pressing the
button. The time between consecutive execution of two instructions is specified with the argument
Speed.
Pin - Pin on which we have button.
State - State of the pin when the button is pressed (0...1).
Delay - Countdown time before we initiate auto-repeat (0...255). At value 0, there will be no auto-
repeat. At value 255, the debouncing will be effectuated but without auto-repeat.
Speed - Time of auto-repeat (0..255).
Varviahla _ Anwvilians viariahla Af hhvita hina (awihicrh miiet ha Aafinad at tha vianr haninninAa Af nraAram
Example: The example below will at each pressing of the button, which is connected to RAO, change the

state of pin. If the diode is tied to the same pin the effect of the twinkling of the diode will be
manifested.

32

DEFIME BUTTOM_PALISE 50

TRISA = 0
TRISE = 255
BO wvar byte " Auxiliary wariable
Main:
BO =10 "Initialization of B0
button PCORTE.O,0,100,10,B0,1,led
goto Main " Repeat the loop
led:
toggle PORTA.D " Change the pin state
goto Main
end
It calls assemblers subroutine
Syntax: CALL /abel
Description: | It executes the subprogram under the name Label in the language of assembler.
Example: @include “init.asm”
Fain
call init_sys
Loop: goto Loop
end
Sets the value of every variable to 0
Syntax: CLEAR
Description: | CLEAR sets the entire RAM registers in all databanks to zero. It also means that all the variables
will simultaneously be set to zero.
Example: clear ' Clear all the variables in RAM

Main:
goto Main
end

33

Resets the watchdog timer

Syntax: CLEARWDT

Description: | Resets the watchdog timer

Example: clearwdt " Clear WDT
Main:
goto Main
end

Counts the impulses on input pin

Syntax: COUNT Pin, Period, No_Impulses

Description: | Counts the impulses that appear on a specified pin during the time interval defined with the Period
variable. The number of the impulses is stored into the No_Inpulse variable. Pin is automatically

Adacinnatad ac inniit Parind ie enarifiad in millicarnnde If thea necrillatar ie a AMh7 nnea crhark nf a

Example: WO var byte " The suppasition is to have not mare
*then 255 impulses

Effectuates writing into the EEPROM at the first
programming

34

Example: data @5,1,2,3

Writes in the values 1, 2, 3 on the locations 5, 6 and 7 in EEPROM memory.
data word £1234
Writes in the values 12 AND £34 on the locations 0 and 1 in EEPROM memaory,
Generates the tone-dialing signal on the
output pin

Syntax: DTMFOUT Pin, {Onms, Offms,} {Ton{, Ton...}}

Description: | Instruction DTMFOUT produces the tone encountered for example in the phones with tone dialing.
Such characteristic tone is composed of two signals of different frequencies which serves for the
detection of the pressed button. Pin is thereby designated output. The parameter "Onms"
represents the duration time of each dial in milliseconds, while "Offms" is the duration of the brake
between two consecutive tones. If no value of duration of either tone or brake is set, it goes without
saying that "Onms" lasts 200ms and "Offms" 50ms. Tones are numerated 0-15. Those 0-9 are
identical to those on a phone dial. Tone 10 represents button *, tone 11 button #, while to the tones
12-15 correspond the additional buttons A-D.

1K) 1EQ
[0 pin 1 + 1 % To amplifier
— 1uF — 1uF
In order to obtain the desired sinusoidal signal at the output, the installation of a sort of filter is
required.

Example: TRISE = %FF " all the pins of port & are exit ones

Main:
dtmfout PORTE.1,[2,1,2] ' Generate DTMF on RB1
loop: goto loop
end
Sets the initial contents for programming
EEPROM
Syntax: EEPROM {@/ocation, } constant {, constant}
Description: | In sets constants into the consecutive bytes of the EEPROM memory. If the optional value of the

location is omitted, the first EEPROM instruction starts to store the constants beginning with an
address 0, and the next instructions place the values on the following locations. If the value of
location is stipulated, the values are written starting from that very location.

Parameter "Constant" may be number or the sequence of constants. If "word" is not quoted before
constant that is being written in, only the bytes of lowest weights are saved. The sequences of are
stored as consecutive bytes of ASCII values.

The instruction "EEPROM" is operative on only those PIC Microcontrollers, which possess

35

EEPROM or FLASH programming memory built in the chip. The date are saved in the EEPROM
space when the programming of microcontroller is definitely finished.

For inwriting and reading of EEPROM memory in the course of the operation of the microcontroller,
the instructions WRITE and READ are being used.

Example: EEPROM @5,1,2,3
Writes in the values 1, 2, 3 on the locations 5, 6 and 7 in EEPROM memory,
EEPROM word $1234
Writes in the values £12 AND £34 on the locations 0 and 1 in EEPROM memory.
Marks the logical end of the program
Syntax: END
Description: | Stops the further execution of the program and enters into the low energy consumption mode
executing continuous SLEEP instructions in a loop. Instruction END should be put at the end of
every program.
Example: Mair
gqoto Main
end " The end of the program
Generates signal of a specified frequency on
output pin
Syntax: FREQOUT Pin, Onms, Freq1, Freq2
Description: | FREQOUT generates the signals in the PWM form (Pulse Width Modulation) within the frequency

range from 0 to 32767Hz on the pin defined in parameter "Pin" and with the duration specified in
parameter "Onms".

FREQOUT works best with a 20 MHz oscillator (while it is more difficult to filter the signal for the
lower frequencies). "Onms" represents the duration of the signal in milliseconds.

1EL 1ED
I/ pin 1 * 1 % To amplifier
—— IUF —— 1uF

In Ardar tn nhtain tha dacirad ciniienidal cinnal at nnitniit tha inetallatinn Af a enrt Af filtar ic raniiirad

36

Example: freqout PORTE.1,2000,1000
Generates the signal of the frequency 1000Hz in duration of 25 at the first pin of the p
freqout PORTE.1,3000,1000,500
Generates the signal of frequency 1000Hz and 500Hz in duration of 35 at the first pin
Repeating of the program segment

Syntax: FOR Index = Start TO End {Step {-} Inc }
{ instructions,
instructions }
NEXT {Index}

Description: | The instructions of repeating one or more instructions. The conducting expression will determine
how many times will repeating take place. "Index" is usually the variable employed for the control of
how many times is for...next loop executed. If the parameter "Step" is not specified, it is understood
that the variable "Index" is increased by one. (Index = Index + 1).

Example: auxiliary variable

the program turns on and off
the diodes at port B with 1s

pause 200 times.

auxiliary variable
the program turns on and off
the diodes at port B with 1s

pause 100 times

auxiliary variable
the program turns on and off
the diodes at port B with 1s

pause 900 times

37

Calls BASIC subroutines

Syntax: GOSUB /abel
Description: | Executes the PBP instructions of the program which are situated between label "label" and
instruction RETURN. When program encounters the RETURN, the execution of the program goes
on with the instruction line that follows GOSUB instruction. Part of the program code between the
label and the RETURN instruction is commonly called subroutine.
Subroutine can be "nested". In other words, it is possible that the subroutine calls some other
program. Such programming shouldn‘t go beyond four levels depth because of the finite size of the
PIC microcontroller stack.
Example: Main
gosub Blink " Call subroutine Blink
Loop: goto Loop
Blink: " Subroutine Blink
PORETB=%FF ' Turn on the diode on port B
Pause 1000 "Brake 1s
PORTEB=%00 " Turn off the diode on port B
Pause 1000 'Brake 1s
Feturn
End
Continues the execution of the program on a
certain label
Syntax: GOTO /abel
Description: | The execution of the program continues with the instruction line following the label "label". It is not
recommended to use this command too often, because over-labeled programs are generally less
intelligible.
Example: Main:
goto Blink "Jump on label Blink
Blink: " Subroutine Blink
PORTB=%FF " Turn on the diode an port B
Pause 1000 "Brake 1s
PORTB=%00 " Turn off the diode on port B
Pause 1000 "Brake 1s
goto Main
End

The program above does exactly the same thing as the previous one, but without GOSUB
instruction.

38

Sets a logical "1" on the output pin

Syntax: HIGH Pin
Description: | Sets the appropriate pin on the high level. Pin is thereby automatically designated output.
Example: Main:

high PORTA.Q "Pin RAOD set on the high level

Loop: goto Loop
End
Hardware asynchronous serial input

Syntax: HSERIN {Error,}{Timeout, Label,}[Modifier(,...)]
Description: | HSERIN receives one or more serial data. It can be used with PIC microcontrollers which have
Example: BO var hyte

39

Example: BO war byte
Wl var word
Main .
hserin [B0O, dec 1] ‘Take dec, digit from serial line
goto Main
end
Generates PWM signal on the microcontroller pin
Syntax: HPWM Channel,Relation_on_off, Frequency
Description: | Command uses the hardware PWM on the microcontrollers who possess it for the generation of
the PWM signal.
The parameter "channel" defines the exact PWM channel that is to be used. In the two channel
microcontrollers, the parameter "frequency" must be identical on both of them.
The parameter "Relation_on_off" defines the relation between on and off signals on the pin. Value
0 sets the pin to always off, while 255 sets it to always on. All other values in the interval 0~255
define the appropriate ODNOS of on and off signals on the pin (for example, value 127 sets 50%
on and 50% off signal).
Parameter "Frequency" defines the frequency of the PWM signal (highest possible frequency for
any oscillator is 32767 Hz) which depends on oscillator used. Lowest frequency depends on
oscillator used.
If not specified otherwise, PWM generates 0 timer by default.
Example: DEFINE HPWM2_TIMER 1 * second channel uses timer 1
hpwm 2, 64, 1000 * 25% PWM on 1kHz
Hardware asynchronous serial output
Syntax: HSEROUT [item{,ltem...}]
Description: | HSEROUT sends one or more serial data and is used in the PIC microcontrollers that have

hardware supported serial communication (hardware USART). Parameters of serial transfer are
determined by with the following DEFINE directives:

DEFINE HSER_RCSTA 90h “ Setting the receiving register
DEFINE HSER_TXSTA 20h ‘ Setting the emitting register
DEFINE HSER_BAUD 2400 °‘ Baud rate

DEFINE HSER_SPBRG 25 * Direct setting of SPBRG

When calculating transfer rate, HSERIN assumes that microcontroller works with the 4MHz
oscillator. If different oscillator is used, new frequency must be specified with the following directive:

DEFINE OSC * Specific oscillator frequency

40

Format of serial data is 8N1 - 8 data bits, with no parity bit and with 1 stop bit. Some other formats,
such as 7E1 (7 data bits, parity bit, 1 stop bit) or 701 (7 data bits, non-parity bit, 1 stop bit) may be
used with the following DEFINE directives at the beginning of the program:

DEFINE HSER_EVEN 1 * Only when we want to verify the parity

DEFINE HSER_ODD 1 ‘ Only when we want to verify the non-parity

Serial transfer is hardware based, so you might need an additional driver for adjusting to RS-232
(MAX232).

Modifier Sends
{I}{S} BIN{1..16} binary number
{I{S} DEC{1..5} decimal number
{I4S} HEX{1..4} hexadecimal number
REP c/n character c repeated n times
STR ArrayVar {\n} n character string
Example: BO var byte
BO=4
Main :
hserout [dec BO, 10] * send decimal number from variable BO and constant 10
Loop: goto Loop
end
Reading data from 12C peripheral device
Syntax: I2CREAD Data, Frequency, Control_byte, {Address,} [Variable {, Variable...}]{,Label}
Description: | Sends control and address data via 12C lines and receieved bytes are stored into "Variable".

[2CREAD and I2CWRITE can be used for reading and writing data to peripheral units. These
instructions work with 12C master byte in read and write modes and can be also used for
communication with other devices with 12C interface, such as temperature sensors, A/D converters,
etc.

Higher 7 bits of control byte contain control code for chip selection or extra information on
addresses, depending on device. The lowest bit is flag indicating the current mode - read or write.

For example, for communicating with 24LC01B, requested address is 8-bit, control code is %1010
and chip select is unused, so that control byte would be %10100000 or $AO0.

Formats of control bytes for several other serial EEPROMSs are given in the table below:

41

EEPROM Capacity Control word Address size
24L.C01B 128 bytes %1010xxx0 1 byte
241.C02B 256 bytes %1010xxx0 1 byte
241.C04B 512 bytes %1010xxb0 1 byte
241.C08B 1K bytes %1010xbb0 1 byte
24L.C16B 2K bytes %1010bbb0 1 byte
241.C32B 4K bytes %1010ddd0 2 bytes
241.C65 8K bytes %1010ddd0 2 bytes

bbb = block selection
ddd = device selection bits
xxx = has no effect

If 2-byte data (WORD) is received, higher byte is received first, and lower thereafter. For string
transfer, STR goes before the name of the string, and number of clocks after \ .

a var byte[8]
I2CREAD PORTC.4, PORTC.3, $a0, 0, [STR a\§]

If optional label is used, program will jump to the label if there is no response signal over the 12C
interface. Standard transfer rate (100kHz) is achieved with 8MHz oscillator. For higher transfer rate
(400kHz) 20MHz oscillator is used. If slower oscillator is used for the transfer, following directive
should be used :

DEFINE 12C_SLOW 1

In order to have bipolar 12C clock interface and not an open collector, following DEFINE directive
should be used:

DEFINE 12C_SCLOUT

Operating any peripheral units with 12C communication demands that you read supplier manuals
and specifications.

Example:

BO var byte
addr var byte
cont con %10100000 ‘ Control address of EEPROM
addr = 17 ‘* Data address is 17
Main:
I2CREAD PORTA.0, PORTA.1, cont, addr, [BO] ‘ Get data to variable BO
Loop: goto Loop

end

42

Writing data to 12C peripheral device

Syntax: I2CWRITE Data, Frequency, Control_byte, {Address,} [Vari {, Vari...}]{,Label}

Description: | I2WRITE sends control and address data via 12C interface. We define 8-bit or 16-bit address while
defining variable put to address parameter (in order to correctly define address size, we must have
accurate information on device we are communicating with).

Example: BO var byte

addr var hvte

43

end

Designates 1/O pin as input

Syntax: INPUT Pin
Description: | INPUT designates the specific pin as input.
Example: Main:
input PORTA.O * Pin PORTA.O is input. Instruction can be substituted with TRISB.0=1
TRISB.0=1
Loop: goto Loop
end
Conditional program branching
Syntax: IF Expression1 { AND / OR Expression2} THEN Label
{instructions}
ELSE
{instructions}
ENDIF
Description: | Instruction selects one of two possible program paths. Instruction IF is the fundamental instruction

of program branching in PIC BASIC and it can be used in several ways to allow flexibility necessary
for realization of decision making logic.

if expression then instruction
endif

SN T

cenpression > instruction —‘

I
N

-

1r
i exit _\

The simplest form of instruction is shown on the picture above. Sample program below tests the
button connected to RBO - when the button is pressed program jumps onto the label “Add” where
value of variable “w” is increased. If the button is not pressed, program jumps back onto the label

“Main”.

44

Example:

w var byte

Main :
IF PORTB.0=0 THEN Add
goto Main

Add : W=W+1

End

More complex form of instruction is program branching with the ELSE part of
instruction.

in if expression then

instruction 1

else
instruction 2

endif

T A N
h(exprﬁsinn)ﬁ
instruction 1 instruction 2

w var byte

Main :
IF PORTB.0=0 THEN Add
ELSE Subtract
ENDIF

goto Main

45

Add : W=W+1

End

w var byte

Main :

ENDIF

End

Subtract : W=W-1

ELSE W=W-1

goto Main

Same effect can be achieved directly :

IF PORTB.0=0 THEN W=W+1

Prints data on LCD display

Syntax:

LCDOUT Data {, Data...}

Description:

LCDOUT sends the data to the LCD (Liquid Crystal Display). PIC BASIC supports various LCD
models which have Hitachi 44780 controller or compatible one. LCD usually has either 14 or 16
pins for connection to a microcontroller. If there is character # before data, ASCII value of every
data is sent to LCD. LCDOUT has the same modifiers as the instruction SEROUT2.

Modifier

Sends

{1}{S} BIN{1..16}

binary number

{1}{S} DEC{1..5}

decimal number

(I{S} HEX{1..4}

hexadecimal number

REP c/n

character c repeated n times

STR ArrayVar {\n}

n character string

Before the first instruction is sent to LCD, program should wait for at least half a
second for LCD to initialize.

LCD display can be connected to PIC microcontrollers by either 4-bit or 8-bit bus.
If 8-bit _bqs is rused,”alrl Qf 8 bits must be cornnected to the same port, whiIe_in the

46

case of 4-bit bus all 4 bits must be either in the upper or the lower part of byte.
R/W line should be connected to ground if LCD is used only for data display. PIC
BASIC assumes that LCD is connected to specific pins if DEFINE directives do not
say otherwise. Default is 4-bit bus with lines DB4-DB7 connected to RA0-RA3, RS
pin connected to RA4 and E pin connected to RB 3. Also, it is assumed that LCD
is 2x16. For changing any of the default settings, appropriate DEFINE directives
can be used.

If LCD is connected to some other microcontroller lines it has to be defined with
DEFINE directives, as shown in the following example.

DEFINE LCD_DREG PORTB ‘ port selection

DEFINE LCD_DBIT 4 “initial bit (O or 4) selection in case of 4-bit bus

DEFINE LCD_RSREG PORTB ° port Register select
DEFINE LCD_RSBIT 1 ‘ Register Select bit

DEFINE LCD_EREG PORTB °‘ Enable port

DEFINELCD_EBIT 0 ‘ Enable bit

DEFINE LCD_BITS 4 ‘ bus size — 4 or 8 bits

DEFINE LCD_LINES 2 “ number of LCD lines

DEFINE LCD_COMMANDS 2000 ‘ command delay in microseconds

DEFINE LCD_DATAUS 50 ‘ data delay in microseconds

Definitions above define 2-line LCD on 4-bit bus on the upper 4 bits of
microcontroller port D. Register Select (RS pin) is on PORTD.2 and Enable is on
PORTD.3.

Every LCD controller is in charge of certain commands. Commands are sent by
instruction: LCDOUT $FE, $Kod. List of commands is shown in table below.

47

}Command Operation

}ﬁSFE, 1 clear display

}ﬁFE, 2 Return home (beginning of the first line)
}ﬁFE, $0C Turn off cursor

}ﬁFE, $0E Underline cursor on

}ﬁFE, $OF Blinking cursor on

}BFE, $10 Shifting cursor left

SFE, $14 Shifting cursor right

}ﬁFE, $CO set cursor to the beginning of the second line
}ﬁFE, $94 set cursor to the beginning of the third line
V$FE, $D4 set cursor to the beginning of the fourth line

Example: BO var byte
B1 var byte
Main:

Icdout $FE, 1, “Hello” * Clear display and print “Hello”
Icdout $FE, $CO * switch to second line
Icdout BO ‘ Display the value of BO
lcdout #B1 ‘ Display the value of B1 in ASCII code
Loop: goto Loop
end
Reads data from LCD RAM

Syntax: LCDIN {Address,} [Var{, Var...}]

Description: |LCDIN reads the given address of LCD RAM and stores data into a variable. When using this
instruction, LCD Read/Write line must be connected to microcontroller. In case when LCD is used
for data printing exclusively, this line can be connected to a logical zero. DEFINE directives inform
the program about port and pin which Read/Write line is connected to:

DEFINE LCD_RWREG PORTE ‘ LCD read/write port
DEFINE LCD_RWBIT 2 * LCD read/write bit on port

Example: BO var byte
Main:

Lcdin $40, BO ‘ Read data from LCD location $40 and store it into BO

Loop: goto Loop

End

48

Puts the value of the expression into a variable

Syntax:

{LET} {Var=Expression}

Description:

LET instruction stores value of the expression into a variable. Expression can be a constant,
variable or value of some other expression. Commonly, the optional command word LET is
excluded.

Example:

let BO=B1*B2 + B3
BO=B1*B2+B3

The two expressions are identical. The latter expression is missing command word
“let".

Searches the table of constants

Syntax:

LOOKDOWN Value, [Const {, Const...}], Var

Description:

Instruction LOOKDOWN searches the list of constants and determines the presence of given
value. If a given value matches some of the constants, index of the appropriate constant is stored
into variable. If the first constant matches our given value, variable is set to zero. If the second
constant from the list matches our given value, variable is set to one, etc. If our value isn’t present
in the list, variable remains unchanged. Constants list can consist of both numerical and character
(string) values. Each character of a string is treated as a separate ASCII value of a constant.

Example:

BO var byte
B1 var byte

BO=%f

Main:

lookdown BO, (“01234567890ABCDEF”), B1 ‘ convert hexadecimal
character from BO to a decimal value and store it into variable B1

PORTB=B1 ‘ PRIKAZI number on port B diodes

loop: goto loop

End

49

Searches the table of constants/variables

Syntax:

LOOKDOWN2 Search, {Test} [Value {, Value...}], Var

Description:

LOOKDOWN?2 searches the list of values and determines the presence of given value. If “Search”
value matches some of the “Value” values, index of the appropriate constant is stored into “Var”.

If “Search” matches the first value of the list, “Var” set to zero. If it matches the
second value of the list, “Var’ is set to one, etc. If “Search” value isn’t present in
the list, “Var” remains unchanged.

Optional parameter “Test” is used for testing if “Search” value is greater or lesser
than a certain value. If “>” is used, index of the first matching constant is stored to
“Var”. List of values can consist of 16-bit numbers, characters or variables. Every
character of a string is treated as a separate ASCII value of that character (arrays
of variables cannot be used with LOOKDOWN?2 instruction). LOOKDOWN2
generates the code about 3 times greater than LOOKDOWN instruction does.
Thus, when searching the list consisting of 8-bit constants and strings, use of
LOOKDOWN is prefferrable.

Example:

lookdown2 WO, [512, 76801024], BO

‘

Digit var byte value of digit to be displayed
Mask var byte ‘ mask of digit to be displayed
Main:

fori=0to 9

Digit=i

Lookup Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Mask

PORTB=Mask ‘ Send the mask of a digit to port B
pause 500 ‘ delay allowing to see digits changing
next i ‘ Increase i by one

goto Main “ Repeat the whole program

end

Gets value from the table of
constants/variables

Syntax:

LOOKUP2 Index, [Value {, Value...}], Var

Description:

Instruction LOOKUP2 can be used for reading values from the table of values by
index. If “Index” equals zero, “Var” attains the value of the first element in the list. If
“Index” equals one, “Var” attains value of the second element in the list, etc. If
“Index” is equal or greater than number of elements in the Look-up table “Var”
remains unchanged.

List of values can consist of 16-bit numbers, characters or variables. Every
character of a string is treated as a separate ASCII value of that character. Arrays
of variables cannot be used with LOOKUP2 instruction. LOOKUP2 generates the
code about 3 times greater than LOOKUP instruction does. Thus, when searching
the list consisting of 8-bit constants and strings, use of LOOKUP is prefferrable.

Example:

lookup2 BO, [256, 1024], WO
For BO=0, WO will have value of 256

For BO=1, WO will have value of 1024

For B0=2,3,... WO will remain unchanged

51

Puts logical zero to output pin

Syntax: LOW Pin
Description: | Sets specific pin to zero. Pins is automatically designated output. Same effect can be achieved with
PORTB=0.
Example: Main:
low PORTB.7 ‘ Set RB7 to a low level
Loop: goto Loop
End
Turns off the processor for a short period of time
Syntax: NAP period
Description: | Instruction sets PIC microcontroller to low power mode (state of low energy consumption) for a
short period of time. During this "nap", energy consumption is minimized. Stated periods are just
approximations because these values were taken from watch dog timer and depend on chip and
temperature:
Period Delay [ms]
0 18
1 36
2 72
3 144
4 288
5 576
6 1152
7 2304
Example:

Main:
nap 7‘ take a nap for 2.304 seconds
Loop: goto Loop

End

52

Designates 1/O pin as output

Syntax: OUTPUT pin
Description: | Designates specified pin as output.
Example: Main:
output PORTB.7 ‘ Pin RB7 is output
TRISB.0=0 ‘ Same effect as above
Loop : goto Loop
End
Receives data via one-wire communication

Syntax: OWIN Pin, Mode, [Var1, Var2...]
Description: | Parameter “Pin” is a variable containing the microcontroller pin connected to the

element which has one-wire communication.

Parameter “Mode” is value defined by parameters of communication.

"Mode" bit How it works

0 1 = sending the reset signal ahead of data

1 1 = sending the reset signal after data

0 = 8-bit data
2
1= 1-bit data

Parameters “Var1” and “Var2” are variables for containing the read data.

Example: Temperature var byte

Main:
OWIN PORTC.O0, 0, [Temperature] ‘read the temp.
PORTB=Temperature ‘ display temperature on port B
diodes
goto Main
End

53

Transmits data via one-wire communication

Syntax: OWOUT Pin, Mode, [Var1, Var2...]

Description: | Parameter “Pin” is variable containing the microcontroller pin connected to the
element which has one-wire communication.

Parameter “Mode” is value defined by parameters of communication.
"Mode" bit How it works
0 1 = sending the reset signal ahead of data
1 1 = sending the reset signal after data
0 = 8-bit data
2
1= 1-bit data
Parameters “Var1” and “Var2” are variables for containing the read data.
Example: Main :
OWOUT PORTC.0, 1, [$CC, $BE] ‘ sends reset signal and 2 values
afterwards
goto Main
End
Pause (in miliseconds)

Syntax: PAUSE Period (in miliseconds)

Description: | Instruction pauses the program for “Period” miliseconds. Period is 16-bit, allowing delay to be as
long as 65 535ms (a bit over a minute). Unlike other delay instructions (NAP and SLEEP), PAUSE
does not put the microcontroller to low power mode. Thus, PAUSE consumes more energy, but
gets more accurate timing (it has precision of a system clock).

Example: TRISB=0

Main:
PORTB = 255

pause 1000 ‘ Delay execution of next instruction line for 1 sec.
PORTB =0

pause 2000 ‘ Delay execution of next instruction line for 2 sec.

goto Main

End

54

Pause (in microseconds)

Syntax: PAUSEUS Period (in miliseconds)

Description: | PAUSEUS stops the program for “Period” miliseconds. Period is 16-bit (WORD), allowing delay to
be as long as 65 535ms (a bit over a minute). Unlike other delay instructions (NAP and SLEEP),
PAUSE does not put the microcontroller to low power mode. PAUSEUS consumes more energy
than PAUSE, but gets much more accurate timing. Minimal delay of PAUSEUS depends on the
crystal frequency.

oscC Minimal delay
3 (3.58) 20 us

4 24 us

8 12 us

10 8 us

12 7 us

16 5us

20 3us

PAUSEUS works with default 4MHz crystal frequency. If frequency differs from default it is

Example: TRISB=0

Main:

PORTB = 255

. pauseus 100 ‘ Delay execution of next instruction line for 100

microsec

PORTB =0

pauseus 3450 ‘ Delay execution of next instruction line for 3.450 ms
goto Main

End

55

Example:

BO var byte
skala var byte
Main :
FOR skala=1 TO 255
pot PORTA.O, scale, BO ‘ read value of potentiometer on RAO
IF B0>253 Then Over
NEXT skala
Over : PORTB=scale ‘ display value of the scale on port B diodes
goto Main

End

Measures impulse duration on input pin

Syntax: PULSIN Pin, Level, Var
Description: | Instruction measures impulse duration with 10us resolution (when 4MHz oscillator is used) on a
given pin. If level is zero it measures duration of low impulse and if level is one it measures
duration of high impulse. Measured value of duration is put to variable "Var". Measuring can last
from 10 to 65 535 microseconds for 16-bit variables. If impulse doesn‘t appear at all or it's duration
is too long to be measured variable is set to zero.
In case of 8-bit variable only lower 8 bits of a 16-bit word are used. Resolution depends on
oscillator frequency. 4MHz oscillator has 10us resolution, while 20MHz oscillator has 2us
resolution.
Example: WO var word
Main :
pulsin PORTB.0, 1, WO ‘ Measures high impulse on RBO pin with 10us resolution and puts
‘ it to variable W0
goto Main
End
Generates impulse on output pin
Syntax: PULSOUT Pin, Period
Description: | Instruction generates impulse of specific duration in tens of microseconds (when 4MHz oscillator is

used) on a pin. Impulse is generated by double change of level on a pin, so that former state of pin
defines polarity of an impulse. Chosen pin is automatically designated output.

Resolution depends on oscillator frequency. 4MHz oscillator has 10us resolution, while 20MHz

nerillatar hae 211e raenhiitinn

56

Example: Main :
pulsout PORTB.7, 100 ‘ Generate 1ms impulse to RB7 pin
goto Main
End
Generates PWM signal on pin
Syntax: PWM Pin, Ratio, Cycle
Description: | Instruction sends PWM (Pulse-Width Modulation) impulses Ratio to pin defined with parameter
"Pin" (for each PWM signal, cycle goes from 0 (0%) to 255 (100%)). This PWM cycle repeats itself
for number of times defined with "Cycle" parameter. Pin direction is set to output just before
generating PWM impulse and is set back to input afterwards.
Cycle duration depends on the oscillator used. In case of 4MHz oscillator cycle duration is 5ms,
while in case of 8MHz oscillator cycle duration is 1ms. Instruction PWM allows simple R/C circuit to
be used for generating DC voltage like a simple D/A converter.
A
tan toff
PWM duty cycle
-
0 3 timS)
Example: Main :
pwm PORTB.7, 127, 100 * Send pwm cycle with 50% of signal (ON) to RB7
goto Main
End
Generates pseudo-random number
Syntax: RANDOM Variable
Description: | Instruction RANDOM stores pseudo-random number to variable. Variable should be 16-bit.
Example: WO var word
Main :
random W0 * Put random number to variable WO

Icdoout #W0 * Display random number on LCD
goto Main

End

57

Measures impulse duration on pin (similar to

PULSIN)
Syntax: RCTIME Pin, State, Variable
Description: | RCTIME measures time period during which "pin" remains in a certain state. If ihe state remains
unchanged variable is set to zero. RCTIME can be used for reading potentiometer or some other
resistive element based on the time necessary for filling RC constant. Typical resistance measured
is within SK~50K range.
Resolution depends n oscillator frequency. 4MHz oscillator has 10us resolution, while 20MHz
oscillator has 2us resolution.
Example: WO var word
Main :
low PORTA.O ‘ Discharge the condenser
pause 10 ‘ Discharging lasts for 10ms
rctime PORTA.O, 0, WO ‘ Measure duration of charging
Icdout #WO0 ‘ Display value of W0 on LCD
goto Main
End
Reads one byte of data from data EEPROM
Syntax: READ Address, Variable
Description: | Instruction READ reads data from internal EEPROM memory from the specified address and
stores the result to "Variable". This instruction can only be used with PIC microcontrollers which
have EEPROM built in the chip. If microcontroller is supplied with external EEPROM, instruction
[2CREAD should be used instead.
Example: BO var byte
W var word
Main :
READ 5, BO ‘ read data from EEPROM, address 5 and put it to variable BO

READ 6, W.BYTEO * load 16-bit data
READ 7, W.BYTE1 ‘ from addresses 6 and 7 to variable W
Loop: goto Loop

End

58

Reads 2 bytes (word) of program code from
the address

Syntax: READCODE Address, Variable
Description: | READCODE reads program code from a given address and puts the result to 16-bit variable.
PIC16F87X microcontroller family allows reading and writing program code while microcontroller is
in operation.
Example: Wo var word
Main :
readcode 100, WO * load data from program FLASH memory, address 100 to var. WO
Loop : goto Loop
End
Return from the subroutine
Syntax: RETURN
Description: | Instruction RETURN executes return from the program routine which program jumped onto via
GOSUB instruction.
Example: Main :
gosub portb_on ‘ call a subroutine init_ram
Loop : goto Loop
portb_on:
PORTB=$FF * Light all port B diodes
return ‘ return from subroutine
End
Changes pin orientation
Syntax: REVERSE Pin
Description: | Instruction REVERSE inverts orientation of a specified pin. If pin is input, REVERSE changes it to
output and vice versa.
Example: Main :
reverse PORTA.O ‘ Change orientation of RAO pin

Loop : goto Loop

End

59

Conditional multiple program branching

Syntax:

SELECT CASE Var

CASE Expression1 {, Expression}
Instructions...

CASE Expression2 {, Expression}
Instructions...

CASE Expression3 {, Expression}
Instructions...

CASE ELSE

Instructions...

END SELECT

Description:

Although conditional SELECT-CASE branching can be made with multiple IF-THEN instructions, it
is easier and more sensible to use this instruction in certain situations. Instruction allows
"Expression" to be a constant, one of the constants or a comparison to a certain constant.

Example:

W var byte 60

B var byte

PORTB=B

Pause 3000
CASE ELSE

B=FF

PORTB=B

Pause 3000
END SELECT

NEXT W

END

The example above cycles numbers from 0 to 9 in the SELECT CASE branching. If W equals zero
port B diodes will take value of 1. If W equals 1, 2 or 3 port B diodes will take value of 2.

If W equals 4 or 5 port B diodes will take value of 255 because 4 and 5 haven't been defined -
therefore, value from CASE ELSE part of the instruction is taken.

If W is greater than 5, port B diodes will take value of 3.

Asynchronous serial input (like with BS1)

Syntax:

SERIN Pin, Mode, {Timeout, Label}, {[Qual...], }{Item...}

Description:

SERIN receives one or more values on a specified pin "Pin" using the standard asynchronous
format 8N1 (8 data bits, no parity check and one ‘stop‘ bit).

Instead of numerical value ranging from 0 to 15, Mode can be a name if
"modedefs.inc" library is included ahead.

Mode \Mode number ‘Baud rate \State
T2400 0 12400
71200 " 1200

True
T9600 2 19600
T300 3 1300
N2400 4 2400
N1200 5 11200

Inverted
N9600 6 19600
N300 7 1300

SERIN instruction can include label (parameter "Label") which the program will
jump onto if there is no data received during the specified time period (parameter
"Timeout" - default value is 1ms).

61

There can be qualifier within brackets [] ahead of every data. SERIN must receive
these bytes in correct order before receiving data words. If any received byte
doesn‘t match next byte's qualifier, marking process begins anew - next received
byte is compared to the first on the qualifying list. Qualifying content can be a
constant, variable or character string. Every character in a string is treated as a
separate qualifier.

When qualifiers are set, SERIN tries to save data to variables. If there is character
ahead of variable SERIN converts decimal value to ASCII and stores the result
in that variable.

SERIN works with 4MHz oscillator by default. In order to achieve certain transfer
rate with other oscillators, it is neccessary to use appropriate "DEFINE Osc"
directive.

Example: BO var byte
Main :
* Wait for character "A" to be received on serial line on pin RBO and store
next
‘ received character to variable
serin PORTB.0, N2400, ["A"], BO
variable BO
Icdout BO “ Display content of BO on LCD
Loop : goto Loop
End
Asynchronous serial input (like with BS2)
Syntax: SERIN2 Pin{\FlowPin}, Mode, {ParityLabel}, {Timeout, Label}, [Item...]

Description:

(74

Mode \Mode number ‘Baud rate \State

T2400 0 12400
71200 " 1200
True
T9600 2 19600
T300 3 1300
N2400 4 2400
N1200 5 1200
Inverted
N9600 6 19600
N300 7 1300

Optional "FlowPin" can be used to prevent eventual data loss in high speed
transfers. If used, "FlowPin" is automatically set to regular state (depends on
polarity from Mode parameter - table above) in order to allow transfer of every
character.

Mode can be used for defining baud rate and serial transfer parameters. Lower 13
bits determine baud rate. Bit 13 selects (non)parity check. Bit 14 selects inverted
or true level, while bit 15 is unused. Transfer rate determines bit duration in
microseconds. To determine bit duration for a given transfer rate, following
equation is used :

(1000000 / baud rate) - 20

Table below shows several standard transfer rates:

Baud Rate bit 0-12
300 13313
Iﬁoo I1646
1200 813
2400 1396
4800 1188
19600 84
119200 32

Bit 13 enables parity check if bit 13 equals 1 and disables it for 0. For bit13 = 0
transfer format is 8N1. In case that parity check is needed, following directive
should be used :

DEFINE SER2_ODD 1

Bit 14 selects data level of flow control pins. If bit 14 equals 0 data is received true,
while bit14 = 1 receives inverted data.

63

Some of standard settings include :

Mode = 84 (9600 baud, no parity check, true)
Mode = 16780 (2400 baud, no parity check, inverted)
Mode = 27889 (300 baud, parity check, inverted)

Optional label "ParityLabel" specifies label which program jumps onto if transfer
error occurs (this label makes sense only if parity bit is on).

"Timeout" and "Label" allow program to proceed from designated label if there is
no data in specified time period. Waiting time is expressed in miliseconds.

DEFINE directive allows transfer of data with size greater than 8, that is 7 with
parity check. SER2_BITS allows transfer of data ranging from 4 to 8 bits.

SERINZ2 supports many different data modifiers that can be combined to allow
various input data formats.

Modifier |How it works

BIN{1..16} Takes binary digits

DEC{1..5} Takes decimal digits

HEX{1..4} Takes hexadecimal digits

SKIP n |Skips next n characters

STR ArrayVarn{\c} Iﬁ:?ascté?i (i%?igir;%e of n characters that ends with the
WAIT () |waits for character sequence

WAITSTR ArrayVar{\n} |waits for a string

If prefix BIN is used ahead of variable, ASCII character in binary value of variable
will be received. For example, if we write BIN BO and received value is "1000" BO
will take value of 8.

If prefix DEC is used ahead of variable, ASCIlI character in decimal value of
variable will be received. For example, if we write DEC B0 and received value is
"123" BO will take value of 123.

If prefix HEX is used ahead of variable, ASCIl character in hexadecimal value of

variable will be received. For example, if we write HEX B0 and received value is
"FE" BO will take value of 254.

Key word SKIP followed by a number enables that many characters from input row

64

to be skipped. For example, SKIP 4 would skip 4 characters.

If key word STR is followed by variable of string type, number "n" and optional
ending char, character string will be received. String length is defined with "n" or
with appearing of final element of a string.

Data bytes received usually go after one or more identification bytes. Identification
bytes come within small brackets after WAIT. It means that the sequence of
received bytes must match the sequence of identification bytes. Otherwise, if one
of received bytes doesn‘t match following byte in identifier sequence, identification
process starts anew - next received byte is compared to the first identification byte.

Identification byte can be a constant, variable or array of constants. In the last
case, every constant is treated as a separate identifier.

WAITSTR is used in a similar way as WAIT, except for the fact that the key is
character string instead of byte sequence.

Instruction SERIN2 assumes that microcontroller clock works at 4MHz. In case of
different oscillator it is necessary to make adjustment with following directive :

DEFINE OSC.

Example:

serin2 PORTB.0, 16780, [wait("A"), BO]

wait for character "A" to be received to RBO pin and store next received character
to variable BO.

serin2 PORTB.0, 84, [skip 2, dec 4, BO]

Skip 2 characters and receive next 4 decimal numbers.

Asynchronous serial output (like with BS1)

Syntax:

SEROUT Pin, Mode, [ltemf{, Item...}]

Description:

SERIN sends one or more values to a specified pin "Pin" using the standard
asynchronous format 8N1 (8 data bits, no parity check and one ‘stop’ bit). Transfer
modes ("Mode") include :

65

Mode Mode number Baud Rate State
T2400 0 2400
T1200 1 1200
Driven True
T9600 2 9600
T300 3 300
N2400 4 2400
N1200 5 1200 .
Driven Inverted
N9600 6 9600
N300 7 300
0T2400 8 2400
0OT1200 9 1200
Open True
0OT9600 10 9600
OT300 11 300
ON2400 12 2400
ON1200 13 1200
Open Inverted
ON9600 14 9600
ON300 15 300

Instead of numerical value from 0 to 15, Mode can be a name if "modedefs.inc"
library is included ahead.

If there is character # ahead of variable SEROUT converts decimal value to
ASCII and sends it. For example, if B equals 34 then #B sends ‘3‘ and ‘4"

SEROUT works with 4MHz oscillator by default. In case of different oscillator it is
necessary to make adjustment with following directive : DEFINE OSC.

In cases of slower receiving device, it is necessary to wait for a certain amount of
time when sending next data. DEFINE directive enables delay ranging from 1 to
65 535 microseconds (0.001 to 65.535 miliseconds) between sending 2
characters.

DEFINE CHAR_PACING 1000 ‘ 1ms delay between 2 chars

Example:

BO var byte
Main:
BO =25

serout PORTA.3, N2400, [#B0, 13] * Send ASCII value of BO and constant
13 to RAZ3 via serial line

66

Loop : goto Loop

End

Asynchronous serial output (like with BS2)

Syntax:

SEROUT2 Pin{\FlowPin}, Mode, {Pace, }, {Timeout, Label}, [ltem...]

Description:

SEROUT2 sends one or more values to pin determined with parameter "Pin". "Pin"
is automatically designated output, while optional "FlowPin" is designated input.
Optional "FlowPin" is used for indicating data loss at receiver. Level of permission
depends on data transfer mode determined by "Mode".

Optional parameters "Timeout" and "Label" allow program to proceed and in case
that "FlowPin" doesn‘t change to state of transfer allowed in a given time period.
Wait time "Timeout" is entered in miliseconds.

In some cases transfer rate of SEROUT2 can be too high for receiving device.
Then, it is more efficient to set delay between 2 characters using the "pace"
parameter instead of using extra pin as "FlowPin". In this way, it is possible to
provide sufficient delay when sending data.

Mode is used to determine baud rate and important parameters of serial transfer.
Lower 13 bits determine baud rate. Bit 13 selects (non)parity check. Bit 14 selects
inverted or true level, while bit 15 is used to determine if connection is currently in
transfer or not. Transfer rate determines bit duration in microseconds. To
determine bit duration for a given transfer rate, following equation is used :

(1000000 / baud rate) - 20

Table below shows several standard transfer rates:

Baud Rate bits 0-12
300 3313
600 1646
1200 813
2400 396
4800 188
19600 84
19200 32

If set, bit 13 enables parity check. Transfer format is standard 8N1 (8 data bits, no
parity check, one ‘stop‘ bit) and for bit13 = 1 format is 7E1 (7 data bits, parity bit
and one ‘stop’ bit).

Bit 14 selects data level of "flow control" pins. If bit 14 equals 0 data is received
true, while bit14 = 1 receives inverted data (this can used to avoid installation of

67

RS232 communication driver - MAX232).

Bit 15 determines if data pin is still connected (bit15 = 0) or disconnected from
data transfer line. This option is useful in case of connecting multiple devices to
common serial line.

Some of standard settings include :

Mode = 84 (9600 baud, no parity check, true)
Mode = 16780 (2400 baud, no parity check, inverted)
Mode = 27889 (300 baud, parity check, inverted)

DEFINE directive SER2_BITS allows transfer of data with size different than 8 (7
with parity check). SER2_BITS allows transfer of data ranging from 4 to 8 bits.
Default value is 8 bits.

SEROUT2 supports many different data modifiers that can be combined in order
to allow various input data formats.

Modifier How it works

{I}{S} BIN{1..16} Sends binary digits

{I}{S} DEC{1.16} Sends decimal digits

{I}{S} HEX{1..16} Sends hexadecimal digits

REP c\n Sends character "c", "n" times

STR ArrayVann{c} (S:r?;gsc N rolfcu"?O"pticohnaarla)\cters sequence that ends with the

If prefix BIN is used ahead of variable, ASCII character in binary value of variable
will be sent. For example, if we write BIN BO and BO = 8, bits 1000 will be sent
serial.

If prefix DEC is used ahead of variable, ASCIlI character in decimal value of
variable will be sent. For example, if we write DEC B0 and BO = 123, data "123"
will be sent.

If prefix HEX is used ahead of variable, ASCII character in hexadecimal value of
variable will be sent. For example, if we write HEX BO and BO = 254, SEROUT2
will send "FE".

REP followed by a character and a number of repeating provides more compact
form of writing long strings of same characters. For example, REP "0"\4 stands for
IIOOOOII

STR followed by variable of string type and an optional numerical
parameter "count” executes sending of character string. String length is
determined by "count" or by appearance of character "0" in a string.

Optional parameters can be used ahead or behind BIN, DEC and HEX. In case

68

that "I" is used ahead of any of these, output data will begin with %@, #@ or $@
in order to mark current value as binary, decimal or hexadecimal.

In case that "S" (signed) is used ahead of BIN, DEC or HEX , output data will
begin with "-" if highest data bit is set to 1. This allows transfer of negative values.
You should bear in mind, though, that all mathematical and comparison operations
work with unsigned numbers. Still, unsigned numbers arithmetic allows signed
values as results. For example, in case of BO = 9 - 10, DEC BO gets value of
"255", whereas SDEC BO sends "1" after the transfer of the highest bit.

BIN, DEC and HEX can be followed by a number. It is common practice to write
numerical data in exact number of digits needed, so that leading zeros are erased
and not sent. In case that BIN, DEC and HEX are followed by a number,
SEROUT2 will always send that exact number of data, adding leading zeros if
needed. For example, BING6 8 sends BIN "001000", while BIN2 8 sends "00". All
these modifies can be used simultaneously (i.e. ISDEC4 BO).

Instruction SEROUT2 assumes that microcontroller clock works at 4MHz. In case
of different oscillator it is necessary to make adjustment with following directive :

DEFINE OSC

Example:

B0 =25

SEROUT2 PORTA.3, 16780, [DEC B0, 10]

Send decimal value of variable BO and "LineFeed" via serial line (2400 bauds) to pin RA3.
B0 =25

SEROUT2 PORTA.1, 84, ['B0=", IHEX4 BO]

Send string "B=" and 4-character hexadecimal value of variable BO to RA1 at 9600 bauds.

Synchronous serial input

Syntax:

SHIFTIN DataPin, ClockPin, Mode, [Var{\Bits}...]

Description:

Instruction SHIFTIN shifts receiving bits on a given pin in synchrony with "ClockPin" frequency
signal and stores them to variable. "Var\Bits" optionally specifies the number of bits to be shifted. If
nothing is specified, default number of bits is 8.

Depending on shifting direction (from MSB to LSB or vice versa) various transfer modes can be
defined.

Transfer modes Mode are defined within MODEDEFS.BAS library. To use them, it is necessary to

include mentioned library at the beginning of the program with : Include "modedefs.bas"

"Mode" nA--t- Oneration
MSBRPRE a Eirst, the highast hit is shifled. Rata is read ahead of sanding cleck.
HHHHHH) Clockis inactive on aTogical one.
LODE IR I
First,” the lowest bit is shifted. Data is read aneaa or sendmg CIOCK
MSBPOST 5 F'I"‘“I{ﬂe |nar\h\la nn QT ‘r‘\l?r\;afﬁ\ng\""‘ ic rand Aftnr eandina Alanll Clanl
LSBPOST g First, the h\g’ﬁééf‘ﬁlt“ls"éﬁm’édnﬂé‘ta“|§"fé’éd‘5ﬁé‘r"§éh'dh@"tfr5cf CIbCR
is inactive on a logical one.
7 First, the lowest bit is shifted. Data is read after sending clock. Clock is

inactive on a logical one.

69

inactive on a logical zero.

4 First, the highest bit is shifted. Data is read ahead of sending clock.
Clock is inactive on a logical one.

5 First, the lowest bit is shifted. Data is read ahead of sending clock.
Clock is inactive on a logical one.

6 First, the highest bit is shifted. Data is read after sending clock. Clock
is inactive on a logical one.

7 First, the lowest bit is shifted. Data is read after sending clock. Clock is
inactive on a logical one.

Shifting frequency is about 50KHz, depending on oscillator used. Active state lasts for at least 2
microseconds. Using the directive DEFINE enables additional delay (up to 65.535 miliseconds) for
slowing down the clock.

DEFINE SHIFT_PAUSEUS 100 * Slowing down the clock for additional 100ms

Example:

shiftin Data, Clock, MSBPRE, [RxData]

Sends the contents of input SHIFT register to variable RxData so that the first bit is MSB.

Synchronous serial output

Syntax:

SHIFTOUT DataPin, ClockPin, Mode, [Var{\Bits}...]

Description:

Instruction SHIFTOUT shifts bits of variable "Var" on a given pin in synchrony with "ClockPin"
frequency signal. "Var\Bits" optionally specifies the number of bits to be shifted. If nothing is
specified, default number of bits is 8.

Transfer modes Mode are defined within MODEDEFS.BAS library. To use them, it is necessary to
include mentioned library at the beginning of the program with : include modedefs.bas

Shifting frequency is about 50KHz, depending on oscillator used. Active state lasts for at least 2
microseconds. Using the directive DEFINE enables additional delay (up to 65.535 miliseconds) for
slowing down the clock.

DEFINE SHIFT_PAUSEUS 100 ‘ Slowing the clock for additional 100ms

"Mode" Mode number Operation

LSBFIRST |0 First, the lowest bit is shifted.. Clock is inactive on a logical zero.

MSBFIRST First, the highest bit is shifted.. Clock is inactive on a logical zero.

1
4 First, the lowest bit is shifted.. Clock is inactive on a logical one.
5 First, the highest bit is shifted.. Clock is inactive on a logical one.

Example:

BO var byte
B1 var byte
WO var byte
Main :

shiftout PORTA.0, PORTA.1, MSBFIRST, [BO, B1]

70

‘ Sends the contents of variables BO and B1 to output SHIFT register so that the first
‘ transferred bit is MSB
shiftout PORTA.0, PORTA.1, MSBFIRST, [W0\4]
‘ Sends 4 bits of variable WO so that the first transferred bit is MSB
Loop : goto Loop

End

Turns off the processor for a given time period

Syntax: SLEEP Period
Description: | Instruction puts the microcontroller to a state of low energy consumption for "Period" of seconds.
"Period" is a 16-bit value allowing maximal delay of 65 535 seconds (about 18h). SLEEP uses the
watchdog timer (WDT) with granularity about 2.3 seconds. RC oscillator is less temperature stable
than system clock, making WDT somewhat less accurate.
Example: Main :
sleep 60 ‘ Go to low power mode for next 60 sec
Loop : goto Loop
End
Generates sound or white noise on a given pin
Syntax: SOUND Pin, (Note, Duration{, Note, Duration})
Description: | Instruction generates tone and/or noise on a given pin. For Note=0 there is no sound generated. If
Note falls within range of 1-127 tones are generated, while range of 128-255 generates noise.
Tones and noises are sorted in an ascending fashion (1 and 128 are the lowest frequencies, 127
and 255 are the highest). Duration ranges from 0 to 255 and defines sound duration in 12ms
increments ("Note" and "Duration" don‘t have to be constants).
Sound is being sent to output in form of sequence of TTL rectangle impulses. Thanks to the
outstanding I/O features of PIC microcontrollers, a speaker can be driven directly trough
electrolitical capacitor. Piezo speakers can be driven directly.
Example: Main :
sound PORTB.7, (100, 10, 50, 10) ‘ Sends 2 sounds in sequence to pin RB7
Loop : goto Loop
End
Stops the program execution
Quintav: eTND

71

Description:

Instruction stops the program execution by commencing the infinite loop. This instruction does not
put the microcontroller to low power mode.

Example: Main :
STOP ‘ Stop the program execution in this line
Loop : goto Loop
End
Exchanges values of two variables
Syntax: SWAP Variable1, Variable1
Description: | Instruction SWAP exchanges values of two variables. It can be used with variables of bit, byte and
word types. SWAP can be used with strings, but only with those that have constant indexes.
Example: BO var byte
B1 var byte
temp var byte
Main :
temp = BO
BO = B1
B1 =temp ‘ classical way to do it
swap B0,B1 ‘ ...and easier way to do it
Loop : goto Loop
End
Inverts pin states
Syntax: TOGGLE Pin
Description: | Instruction inverts state of a specified pin. "Pin" is automatically designated output.
Example: Main :

low PORTB.0 ‘ Set the state of pin RBO to low level as starting condition
toggle PORTB.0 ‘ Change state of pin RBO to high level
Loop : goto Loop

End

72

Writes byte of data to data EEPROM

Syntax: WRITE Address, Value

Description: | Instruction writes "Value" to a specified address of EEPROM. WRITE can only be used with PIC
microcontrollers that have EEPROM built in chip.

If 2-byte variable is being stored, two bytes are written in sequence :
WRITE Address, Variable.BYTEO

WRITE Address, Variable.BYTE1

Example: BO var byte
Main :
BO = $EA
write 5, BO ‘ Writes value $EA to location 5 of EEPROM

Loop : goto Loop

End
Writes two bytes (word) of data to program
memory
Syntax: WRITECODE Address, Value

73

] while expression
n, in i
instruction

wend

¥
N

< expression ——mel jnstruction

i

i exit h,

Example: i Var byte
Main :
i=1
WHILE i< 10 * when i reaches 10 program stops and port B has value of 9
i=i+1
PORTB =i
Pause 1000
WEND
goto Main

End

74

Chapter 5

SAMPLE PROGRAMS FOR SUBSYSTEMS WITHIN THE MICROCONTROLLER

Introduction

5.1 Using the interrupt mechanism

5.2 Using the internal AD converter

5.3 Using the TMRO timer

5.4 Using the TMR1 timer

5.5 Using the PWM subsystem

5.6 Using the hardware UART subsystem (RS-232 communication)

Every microcontroller is supplied with at least a few integrated subsystems - commonly, these include timers, interrupt
mechanisms and AD converters. More powerful microcontrollers can command greater number of built-in
subsystems. Some of frequently encountered systems are detailed in this chapter.

75

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm

Interrupts are mechanisms which enable instant microcontroller response to events such as : TMRO counter overflow,
state changes on RBO/INT pin, data is received over serial communication, etc. With bigger microcontrollers, number
of interrupt sources is even greater. In normal mode, microcontroller executes the main program as long as there are
no occurrences that would cause interrupt. When interrupt does take place microcontroller stops the execution of the
main program and starts executing part of the program (interrupt routine) that will analyze and handle the interrupt.
Analysis in necessary because PIC microcontrollers call the same interrupt routine in response to any of the
mentioned events. Therefore, the first task is to determine which event caused the interrupt. After the analysis comes
the interrupt handling, which is executing the appropriate part of program code tied to a certain event.

+5
Example of using the
external interrupt INT
3 i3
2l Bl e
[] ra2 Rat [
2 17
[]Rad RAIL] AhiHz
3 16
[reamockl 08CT H'nj |
T Feset 4 15 =
o o——{|WCTR 0502 [F— i+
‘ ‘ 1 PIC e
o O——|vss 16FB4 wad [
g 13 20 A
—{| REOANT REF[———p— 4«— LEC_mn
7 12 2un AN
1 (| RE1 RBE[—T—F—p—— «—— LED_int
=] 1
. [|rE2 RES[]
Fressing the button T causes 9 i —
the interrupt IN T [Res RE4[]

Button T is connected to the external interrupt input INT (pin RBO/INT) so that pressing the button is considered an
interrupt occurrence. In order to see the change caused by interrupt LED diodes are connected to the pins RB6 and
RB7. LED_run diode signalizes that the main program is being executed, while LED _ini diode signalizes the interrupt
caused by pressing the button T. Following instructions are used in PIC BASIC programs which contain interrupt
routine :

On Interrupt goto Address Defines the interrupt vector (address of interrupt routine)

Disable Disables the interrupts
Enable Enables the interrupts
Resume Return to the main program after handling the event

Following example demonstrates usage of external interrupt INT located on pin RBO. At the same time, program gives
an example how to handle multiple interrupt sources.

76

— &

Program: INT.BAG

symbol LED run = PORTE. Y
symhol LED int = PORTE.&
TRISE = %00111111
OPTION_FEG = %l0000000
On Interrupt Goto ISR
INTCON = %10010000
FORTE = 0O
Main:
LED _run=1
LED_int=0
goto Main
Di=able
I3R:
if INTCON.O = 1 then REIF
if INTCON.l = 1 then INTF
if INTCON.Z = 1 then TOIF
if EECON1.4 = 1 then EEIF
REIF:
INTCON.O = O
'l Deo programa koji wrsi
" ochradu prekida
goto Exit ISE
INTF:
LED int=1
LED run=0
Pause 500
INTCON.1 = 0O
goto Exit ISE
TOIF:
INTCOM.Z = 0O
"
"
goto Exit I3E
EEIF:
EECON1.4 = 00
"
"
goto Exit ISR
Exit_ I3ER:
Resume
Enable
End

LED _run iz comnected to pin BBEY
LED _int is connected to pin REa
Pins BE7 and EE6 are output
Turn off Pull-up resistors and
Fet the the

interrupt on

descending edge of the simmal

Interrupt wector

Enable external interrupts

Initial walue on port B

Begimming of the main progran
While there iz no interrupt
diode on FE7 iz on while diode
on RE& is off

Junp back to the beginning

Interrupt routine

Change has occured on RE4-FE7Y
Change has occoured on BEOSINT
Owerflow has occured on THMRO

Writing to EEPEOM is finished

Clear RETF flag

Exit from interrupt routine

Then interrupt occurs diode RE7
iz off while diode on RE6 is on
pause for making change wisible

Clear INTF flag

Clear TOIF flag

Clear EEIF flag

Exit from interrupt routine
Enahle interrupts
End of the program

Program which handles interrupt must have the main loop (program) and an interrupt routine. Program in the main loop keeps

Certain microcontrollers have built in analog-digital converter (abbrev. ADC). Usually, these AD converters do not
exceed 8 to 10 bits resolution allowing them voltage sensitivity of 19.5mV with 8-bit resolution and 4.8mV with 10-bit
resolution (assuming that default 5V voltage is used).

The simplest AD conversion program would use 8-bit resolution and 5V of microcontroller power as referent voltage
(value which the value "read" from the microcontroller pin is compared to). In the following example we measure
voltage on RAO pin which is connected to the potentiometer (picture below).

] -

+5Y W
[| MCLRApRTHY REFAGD|] L
L[| raosrn REEPGC] |
G .
i [Retean RES [] Use the potentiometer to
- [| razarizniret. RE4[] change voltage on RAD
[| rasanzaets RE3PGM] |
[reamock rE2 |]
Reset [] rasiara RE]
[REO/FD NS - REOANT|]
[| RE1 ARG 5 indd |]
+8Y =
- [| RE2/TS N7 ; W5z ;|| 2900 AR LED
\—Q Wil RDTRSPT - p—
[E RDEPSPE :: 300 2* LED
L]"=e | | -
OSC1ACLKIN ﬁ RosPSPS |] 3I_'3m !;- [
— | osc2acikout ROPSP| | | — Hﬂ.
N ol [|roomiosomick ReTRNDT] | 3300 An
- LED
O [[romios ROBTHCH] | 1 p—t
m o [[roarcce ros |
[]rcs RG] 33002 A3 ED
[| roomseo RD3PSP3]] 7 H—..
= RIMPSP rozPsPz| | 3300 A2 LED
’{ 3300 AN LED
3300 AR LED
(. H_ *

Potentiometer gives 0V in one terminal position and 5V in the other, so that digitalized voltage can take values
ranging from 0 to 256 due to the fact that 8-bit conversion is used. The following program reads voltage on RAQ pin
and displays it on port B diodes. If not one diode is on, result is zero and if all of diodes are on, result is 255.

78

Program: IMT_ANC1.EAS

5]

TRISA = %11111111 ' Port A iz input
ADCONY1 = 10000010 ' Port A iz in analog mode, 0 and 5V are
' referent wvoltage walues and the result
' iz right formatted (higher & bits of
' ADBESH are =zerosz).
ADCONO = 11000001 ' ADC clock is generated by internal ERC
' gircuit, woltage iz measured on RAD
' and allows the use of AD converter
Pau=e LS00 ' Half a second pause
Main: ADCOND.Z = 1 ' Beginnihg of conwversion
Cekaj: Pau=e &
If ADCONO.2 = 1 Them Cekaj ' Wait for AD conwversion
' to be finished
FOERTD = ADRESH ' Jet the lower § bits on FORTD
Pau=e LS00 ' Half a second pause
Goto Main ' Repeat all
End ' End of the program

At the very beginning, it is necessary to properly initialize 2 bit registers ADCON1 and ADCONO. Afterwards, only
thing required is to set ADCONO.2 bit which initializes the conversion and checks ADCONO0.2 to determine if
conversion is over. After the conversion is over, result is stored into ADRESH and ADRESL where from it can be
copied. Former example can also be carried out via ADCIN instruction. Following example uses 10-bit resolution

and ADCIN instruction.

Frogram: INT_ADCE EA3

&

Define ADC EITS
Define ADC CLOCK

ADC Fez war word
TRISA = %11111111
TRISD = 00000000

ADCONL = %10000010

Main: ADCIN 0, ADC Rez

Pau=e LS00
Goto Main
End

FORTE=ADC Rez.BYTE.O

Humber of bits
Clock (0O=0s3cillator £2)

10 '
|:| 1

' Besult of AD conwversion iz 16 bits.
' Port A& iz input

' Port D iz output

' Port &4 is in analog mode, 0 and 5V are
' referent wvoltage waluez and the result

' iz right aligned.

' Execute conversion and store resulting
' 16 bits into wariable ADC _Re=.
' dizplay the resulting lower § bits
' on port E
' Half a second pause
' Repeat all
' End of the program

79

As one port is insufficient, LCD can be used for displaying all of the 10 bits of result. Connection scheme is on the
picture below and appropriate program follows.

IIse potentiometer for

4530

/thangingthevultagenn
RAD

| | 3¢

3 — +§f
{ | WELRIVpITHY FETIFE :|
—{| Fenirn FERFAC |
o [Qrenamn res] E
= [Feapmmurer. - |
[JreuTack rez [] f— ” _)
Py O rasers el] BiCaa7
‘ O REI:IRIJME - rEO M []
o o fEEN D MR P S e
I—[v ﬂ ROMFERT [—— &
[]vss % FOEFSFE]% = o
(! el By FPLRFE BRI T | |
IEDEIE EEE“ ﬁf’gﬁ L O e et o
i 1)
[nﬂuF-sFﬂ FOAFEF] = et ot e e s i e
= RDPSe reFeez T 0eee000080090¢ 1 o
| 5
7
. ‘P[D LCO contrast
backlight
L

80

Program: INT_ADC2 E&3

=

DEFIHE LCI'_DREG FPORTD

DEFIHNE LCD_DEIT 4
DEFIHE LCD_EIT: 4

DEFIHE LCD_R3FEG PORTD
DEFTHE LCD_R3BEIT =
DEFIHE LCI'_EREG: FORTD

DEFIHE LCI'_EBIT

3

DEFIHE LCD_LINE: 2
DEFIHE LCD_COMMANDITI Z000

DEFIHE LCD_DATATS 40

Define ADC_BIT3I
Define ADC CLOCKE

AT Eeg war word

TRI3A = %11111111
ADCONL = %10000010

Main: ADCIH 0, AD Re=

Locdout fe, 1
Lcdout 3fe, 2

Lecdout "AD rez: ™,

Pause 500
Goto Main
End

10

' Mumber of bhits
' Clock ([(O=0scillator /&)

BEesult of AD conwersion is la bits.
Port &4 iz input

Port & iz in analog mode, 0 and 5V are
referent woltage walues and the result

iz formatted.

Execute conversion and store resulting
l1a bits into wariable ADC _Re=z.

Clear the LCD

et cursor to first line first

character

DEC 4l reg ' Print “AD rez:* and

' result of AD conwversion

Half a second pause
FEepeat all
End of the progranm

81

TMRO timer is 8-bit and has working range of 255. Assuming that 4MHz oscillator is used, time period TMRO can
measure falls into 0-256 microseconds range (with 4MHz frequency TMRO increments by one microsecond). If
prescaler is used that period can be prolonged, because prescaler divides the clock in a certain ratio (prescaler
settings are made in OPTION_REG register).

Following program illustrates use of TMRO timer for generating 1 second time period. Prescaler is set to 32, so that
internal clock is divided by 32 and TMRO increments every 31 microseconds. If TMRO is initialized on 96, overflow
occurs in (256-96)*31 us = 5 ms. If variable "Brojac" is increased every time interrupt takes place, we can measure
time according to the value of variable "Brojac". If "Brojac" is set to 200, time will total 200*5 ms = 1 second.

Before the main program, TMRO should have interrupt enabled (bit 2) and GIE bit (bit 7) in INTCON register should
be set.

H Program: TMR .EA3
0
symbol LED = PORTE.1 ' LED diode is connected to REO
brojac war bhyte ' Temporary counter
TRISE = 0O ' Pins of port B are output
PORTE = 0O
INTCON = %00100000 ' Enable interrupt TMRO
OFTION _REG = %l0000100 ' Jet prescaler to 32
brojac = 0 ' Tnitializing temporary counter
THRO = 9a ' Initialization of THMRO
On Interrupt Goto ISR ' Interrupt wector
INTCON = 310100000 ' Enable interrupts
Main: ' Beginning of the program
if brojac = 200 then ' Change the state of LED diode
toggle LED ' on ewvery 200 % Ltm3 = ls
brojac = 0 ' Discard the counter
endif
goto Main ' Jump to the beginning
Di=sahle
I:R:
brojac = brojac + 1 ' Increase counter by 1
THRO = 9 ' Initialize the counter
INTCON.2 = 0 ' Clear TOIF flag
Resume ' Return to the main program
Enahle
End

Unlike TMRO, TMR1 is 16-bit and has working range of 65536. Assuming that 4MHz oscillator is used, time period
TMR1 can measure falls into 0-65536 microseconds range (with 4MHz frequency TMRO1 increments by one
microsecond). If prescaler is used that period can be prolonged, because prescaler divides the clock in a certain
ratio (prescaler settings are made in T1CON register).

82

Before the main program, TMR1 should be enabled by setting the zero bit in T1ICON register. Besides that, first bit
of the register should be set to zero, thus defining the internal clock for TMR1.

Besides T1CON, other important registers for working with TMR1 include PIR1 and PIE1. The first contains
overflow flag (zero bit) and the other is used to enable TMR1 interrupt (zero bit).

When TMR1 interrupt is enabled and its flag reset only thing left to do is to enable global interrupts (bit 7) and
peripheral interrupts (bit 6) in the INTCON register.

The following program illustrates use of TMR1 register for generating 10 seconds time period. Prescaler is set to 00
so there is no dividing the internal clock and overflow occurs every 65.536 ms. If variable "Brojac" is increased
every time interrupt takes place, we can measure one minute period according to the variable "Brojac". If "Brojac" is
set to 152, time will total 152*65.536 ms = 9.960 second.

H Program: TMREL.EAS

[
symbol LED = PORTE.1l ' LED diode is connected to REL
BErojac war hyte ' Temporary counter
TEIZE=%00000000 ' Pins of port B are output
T1CON=3%00000001 ' Prescaler iz l:1 and enables

' interrupt THE1

PIR1.0=0 ' clear the owverflow f£lag of

' THE1l timer to prewvent

' generating interrupt at instant

FIE1= %00000001 ' Enable interrupt THEL
Brojac = 0 ' Imitiali=zing tewmporary counter
THR1 = 0O ' Initialization of THMRL
PORTE = 0O ' 411 diodes on port I are off
On Interrupt Goto IZR ' Interrupt wector
INTCON = (11000000 ' Enable interrupts
HMain: ' Beginning of the program
if Brojac = 152 then ' Change the state of LED diode
toggle LED '"on every 152 ¥ 65,5m3 = l0s
Brojac = 0 ' Discard the counter
Endif
goto Main ' Jump to the beginning
Di=able
I5R:
Erojac = Brojac + 1 ' Incraese the counter by 1
FIR1.0 = 0O ' Clear TOIF flag
Resume ' Return to the main program
Enable
End

83

Microcontrollers of PIC16F87X series have one or two PWM outputs built-in (those in 40-pin casing have 2, while
those in 28-pin casing have 1). PWM outputs are located on RC1 and RC2 pins in case of 40-pin microcontrollers
and on RC2 pin in case of 28-pin microcontrollers. HPWM instruction greatly simplifies using the PWM. There are
only 3 parameters to be set :

PWM Channel : defines which PWM channel is used; "1" defines channel on RC1 pin, while "2"
defines channel on RC2 pin.
Ratio S P: defines the ratio of on and off signals on pin. "0" defines continual
off state, whereas "255" defines continual on state. All values within these
limits define appropriate ratio of on and off signals on pin. (i.e. "127" gives
50% of OV on output and 50% of 5V on output).
Frequency : defines PWM signal frequency. Top frequency for any oscillator is 32767Hz.

The following example demonstrates use of PWM for getting various light intensities on LED diode connected to
RC1 pin (PWM channel 0). Parameter defining ratio of on and off signals is continually increased in the for-next loop
and takes value from 0 to 255, resulting in continual intensifying of light on LED diode. After value of 255 has been
reached, process begins anew.

|I PFrogram: HPI®M . E&3
[]

i wvar bhyte ' Temporary wariahle

Odnos_3 F war hyte ' WVariable containing value of signal
' and pause ratio. If 0 then the
' z2ignal is 0V all the time and if 255
' signal is 5V all the time

Odnos_3 P=0 ' Initialization

Main:
For i=0 to 255
HPMM 1,0dnos 5 F,2000 ' Operating with PWM channel
' that is RCl pin
Odnos_5 FP=0dnos_3 P+1
pause 100
Hext 1
i=0
Odnos_3 P=0
Pause 4000
goto Main
End

84

Easiest way to transfer data between microcontroller and some other device (i.e. PC or other microcontroller) is the
RS-232 communication. It is serial asynchronous 2-line (Tx for transmitting and Rx for receiving) data transfer for
within 10m range.

This example shows data transfer between the microcontroller and PC connected by RS-232 line interface (MAX232)
which has role of adjusting signal levels on the microcontroller side (it converts RS-232 voltage levels +/- 10V to TTL
levels 0-5V and vice versa). Microcontroller can achieve communication with serial RS-232 line via hardware UART
(Universal Asynchronous Receiver Transmitter) which is the integral part of PIC16F87X microcontrollers.

4TLF +50 L
+ 71) T —— | MELRRippTHY RETRGD | |
Ll [Fsatanin REEPEE |
3 [o rean FEs | |
=
i — o+ hadi - 1 rEd [
2 L] SHD [s tapesanes RESPGM | |
. - L|:| i
SUB-D connector S-pin ot Tea [T | [| reamrocr: Az [
E‘-+; [o Rlin :| - Reset [H.“S.'P.Nd RiE1 :l
of '—|—| - Riaw]] [reomuans - REONT |]
—0Q Thin 1 i [re1aiFiene == wad |]
; {] T20u i [f—— 10 oY [rezisian a uss [
; ff e T— i
oo L:L’“l_l_| ! e witd ﬁ.n-l FoTeset | |
Vo M2
P S +T] El ROSPSPS | |
pemete] oscictkin ==l Roseses [
L — | oscerikour Foarsed | |
b — [Jreomosomick rermset [——
Pl 0 |2 [re1mios REETCK | —
! . T TIF [rcecem R |]
P []res Fcd []
P i [roorses ROsPsPs [|
b P = [riot ez RoePsee |

UART contains special registers for receiving and transmitting data as well as BAUD RATE generator for determining
data transfer rate.

The program below illustrates use of hardware serial communication subsystem (serial communication can also be
software based on any of 2 microcontroller pins). Data received from PC is stored into variable BO and sent back to
PC as confirmation of successful transfer. Thus, it is easy to check if communications works properly. Transfer format
is 8N1 and transfer rate is 2400 baud.

In order to achieve communication, PC must have the communication software. One such program is part of the
MicroCode studio. It can be accessed by clicking View and then Serial Communication Window. New window will
appear on screen and can be used for adjusting transfer settings. First it is necessary to set transfer rate by clicking
Baudrate on the left of the window (set it to 2400, because microcontroller is set to that rate). Communication port is
selected by clicking one of the 4 available depending on port connected to a serial cable.

After making adjustments, clicking Connect starts the communication. Type your message and click Send Message -
message is sent to the microcontroller and back, where it is displayed on the screen.

85

Program: TTART.ELS

— &

B0 war byte Var. for storing received data
TRIZC = %10111111 P26 output TX pin, rest is input
BPEREZ = Z35 det Baud rate to Z400
RC@TA = $10010000 Enakle serial port and reception
TESTA = %00100000 Enable asynchronous data sending
Main:
Gosub charin Receiving data wia =serial line
If B0 = 0 Then Main " Data is not received
Gosub charout If received send it back
Goto Main Repeat the loop
charin: Feceiving data from UART
EOD = 0 E=0 if data is not receiwved
If PTR1.5 = 1 Then If PIR1.5 = 1 data
i= in ROREG
B0 = ROREG Load the data from the receiwving
register RCREG to EO
Endif
Eeturn
charout:
If FIR1.4 = 0 Then charout * Wait for sending
" register to be ready
TEREZz = EO " Zend the data to
" sending register
Feturn
End " Bnd of the program

86

Chapter 6

Introduction

6.1 LED diode

6.2 Button

6.3 Generating sound

6.4 Potentiometer

6.5 Seven-segment displays

6.6 Step motor

6.7 Input shift register

6.8 Output shift reqgister

6.9 Software serial communication
6.10 Building light control

This chapter gives detailed examples of connecting PIC16F84 microcontroller to peripheral components and
appropriate programs written in BASIC. All of the examples contain electrical connection scheme and program with
comments and clarifications. You have the permission to directly copy these examples from the book or download
them from the web site http://www.mikroelektronika.co.yu/ .

One of the most frequently used components in electronics is surely the LED diode (LED stands for Light Emitting
Diode). Some of common LED diode features include : size, shape, color, working voltage (Diode voltage) Ud and
electric current Id. LED diode can have round, rectangular or triangular shape, although manufacturers of these
components can produce any needed shape by order. Size i.e. diameter of round LED diodes ranges from 3 to 12
mm, with 3 or 5 mm sizes most commonly used. Color of emitting light can be red, yellow, green, orange, blue, etc.
Working voltage i.e. necessary for LED diode to emit light is 1.7V for red, 2.1V for green and 2.3 for orange color.
This voltage can be higher depending on the manufacturer. Normal current Id through diode is 10 mA, while
maximal current reaches 25 mA. High current consumption can present problem to devices with battery power
supply, so in that case low current LED diode (Id ~ 1-2 mA) should be used. For LED diode to emit light with
maximum capacity, it is necessary to connect it properly or it might get damaged.

18y
LIr +5

iy Y . 5-Ud

Ur R T Cath{ R[] |

4'Y

A M—_ &,
Lid

K) K
-—--—- _L

The positive pole is connected to anode, while ground is connected to cathode. For matter of differentiating the two,
cathode is marked by mark on casing and shorter pin. Diode will emit light only if current flows from anode to
cathode; in the other case there will be no current. Resistor is added serial to LED diode, limiting the maximal

87

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm
http://www.mikroelektronika.co.yu/

current through diode and protecting it from damage. Resistor value can be calculated from the equation on the
picture above, where Ur represents voltage on resistor. For +5V power supply and 10 mA current resistor used
should have value of 330Q.

LED diode can be connected to microcontroller in two ways. One way is to have microcontroller "turning on" LED
diode with logical one and the other way is with logical zero. The first way is not so frequent (which doesn't mean it
doesn't have applications) because it requires the microcontroller to be diode current source. The second way
works with higher current LED diodes.

3
1 L= 1
R R
2]] b
(e Rl e
| 15
rearock o8]—I_,_—|' I
i 13 —
Rasal ‘u—s[m:l:n' pIC ©5¢2 :.lt—T_Jl gy
[+] —ws: 16F84 v []
J_] 11 mn Ax D
= [rE0AHT R [—C————+
7 2
L [{red rEs [—rld =4
=] 1
RE2 RES
sE :.lu LED dinde isturned
[Jrez RE4l] on by a logical one
+5u
1 i '}
Rz RAd
L i
[Jree ol
H| 16
RAHTHCK] o5]—_1_—|' I
l.I: 13 I —

Mazat ‘u—[ﬂtm' p|C “s5C2]—T—|| | ey
ws THFB4 wad[]]

=]
|—|l:|‘1"“
]
m
L=

= REDANT RET
7 12 'l
RE REG -
= EE :||| Icd
REZ RES .)
9[:.lu LED diode isturned
(resz Re4l] on by a logical zero

88

The following example uses instructions High, Low and Pause to turn on and off LED diode connected to seventh
bit of port B every half second.

5 _
T 1 J ” LED diodes are conected to
E[] [raz ral[] port B and are turned on by a

= 2 17 logical one
[{rA3 RAOT] AiHz
3 16
[Jredmockl oscl];I_,_—M |
q 15 = H
Reset ‘u—ﬁ[MCLE PIC Qe :1|44-_—|| | +§|_v
O—{Iv== 16F84 id[] . .)
6 iE 3300 A LED LED diode is connected to pin
—— | RBOANT RET b - RET in the sample
7 12 3300 AR LEQ
L | —]re REE [——C1 Pt
= g 11 3300 AR LED
—{|RBZ REI[l—T—1——1
4 10 2300 A LED
RE3 RE4]—:l—inl—p
33000 AR En
T H—'
3300 ﬁﬂ
3300 ﬁﬂ
3500 ﬁﬂ

.I Program: LED E&3
]

Loop:
High PORTE.7 ' Turn on LED
Pause 500 ' Half a second pause
Low PORTE.7 ' Turn off LED
Pause 500 ' Half a second pause
Goto loop ' Go back to Loop
End ' End of program

89

Button is a mechanical component which connects or disconnects two points A and B over its contacts. By function,
button contacts can be normally open or normally closed.

A, A

| |
Y 7

Button with narmally Eutton with narmally
open contact closed contact

Pressing the button with normally open contact connects the points A and B, while pressing the button with normally
closed contact disconnects A and B.

Buttons can be connected to the microcontroller in one of two ways:

In the first case, button is connected in a way that logical one (+5V) remains on microcontroller input pin while
button is not pressed. Resistor between a button and power voltage has role of holding the input pin in defined state
when the button is not pressed (in this case a logical one). This is necessary as a protection from glitch on input pin
that might cause misinterpretation of program, i.e. as if button is pressed when it is not.

+51 +§}.r
'1[s]‘18
3 3 Faz Fal
: 1 - 7
RAs RAQ :l dhiH=
3 16
[|ratTOCK] Q51]4|_t|l |
Button with 7 ‘l Reset a 15 =
o—|MCLR ogee e |
“pull-up” 1 5 PIC :1|4 +%v
resistor 0—6[vss 1B6F84 wdd]13
[IREOANT rRE7[]
7 12
L [|ret RES[] L
- = 5 11
[rez RES[]
g 10
[{rez RE4[]

When the button is pressed, input pin is short circuited to the ground (0V) which indicates change on input pin.
Voltage has dropped from 5V to OV. This change is interpreted by program as if button was pressed and part of
program code tied to a button (for example turn on LED diode) is then executed. This way of defining pin states is
called defining with "pull-up" resistors, associating that the line is held up on the logical one level.

In the other case, button is connected in a way that logical zero remains on input pin. Now, resistor is between input
pin and a logical zero, meaning that pressing the button brings logical one to input pin. Voltage goes up from 0V to
+5V. Microcontroller program should recognize change on input pin and execute the specific part of program code.
This way of defining pin states is called defining with "pull-down" resistors, associating that the line is held down on
the logical zero level.

90

5y +5Y
T i 1 b 15
3 RAz FA1
I &) & .,
RAS RAOT] hiHz
i 1]
. RAHTOCKI 0OSCT
Button with Reset hn - | +
“pull-down” - ‘c—g MCLR plc 0502]144‘L| | -
. B
resistor = o— T|ws 16F84 wvidl]
5] 13
[reoANT RE?[]
7 12
1 [ret RES[] L
= = g 14
[rez RES[]
=] 10
[res RE4[]

Common way to connect the button is with pull-up resistors, meaning that pressing the button changes pin state
from logical one to logical zero. Following picture displays four button connected to the microcontroller using the

pull-up resistors.

10ED
I 1

/

Buttons are connected to ping
RAD and FAT in the sarmple

ill

Buttons are connected to port A

1 ot 18 and the LED diodes are
2|: RAZ Rl I connected to port B
l: RAJ RAY :l dhiHz
3 16
L: RALTOCK) 035C1 %lﬁl_—ll |
]
IR PIC 05Cy :1|4 Y
Vas 16F84 idd[]
13 2ag AR | ED
RENINT RET[]
12 200 AA | En
RE1 REE[]
g 11 szq A" Ep
—| REZ RES[]
4 10 3200 A LED
|—[RE3 RE4[]
3200 AR ED
P A
LED
— il—‘ LED dinde is connected to the
kil "'I" LED | pin REDin the sample
3300 i;- LED H/"

91

Problem that occurs when working with buttons is contact debounce in the moment when button is pressed.
Debounce is consequence of the contact and heavily depends on the very button.

One of the ways to solve the contact debounce problem is given in the following part of program code :

if Buttont=0 then Wait0D * If Button0=0, jump to Waitl
if Buttonl=0 then Waitl * If Buttonl=0, Jjump to Waitl
WaitO: if Buttonl0=0 then Waitd * If ButtonlO=0, wait until 1t i=
w=rr+1 * released and increase w
Waitl: if Buttonl=0 then Wait0 * Tf Buttonl=0, wait until 1t i=

wr=mr—1 * released and decrease w

Pressing the Button0 causes the program to jump to address Wait0 where it remains in the loop until the button is
released (this achieves that single button push is just once handled in program). When ButtonO is released
program continues executing instructions (in this case variable W is increased by one). Pressing Button1 causes
the same effect, except that variable W is decreased by one.

Problem might arise if an interrupt or some other source slows down the program execution, so that program finds
itself on Wait0 or Wait1 lines after the button is released. This might cause program blocking until button is pressed
again.

In the following program for reading the button states, BASIC instruction Button is used which eliminates the contact
debounce.

The program reads buttons TO and T1 which are connected to the pins RAO and RA1, respectively. Pressing the
button 0 executes part of program code which turns on LED diode on pin RBO. Pressing the button 1 executes part
of program code which turns off LED diode on the same pin. The mentioned instruction is among the most complex
instructions of BASIC program language. Besides few arguments that should be defined, instruction has an
argument for setting the delay time between recognition of two different button pressures (the third argument). lts
setting depends on the purpose of the button as well as mechanical properties of the button. Still, it came clear over
time that maximal value of last argument represents the best solution for most applications, because of great
disproportion in human reaction and microcontroller speed.

92

Program: Taster.BAS

&

Main:

Ledon:

EOD war bhyte " Wariable used by instruction EBUTTON

symbhol EBEuttond PORTA. O " Button 0 is connected to pin RAD

gsymbol EButtonl = PORTA.1 7 Button 1 is connected to pin RAl

symbol LED = FPORTE.O " LED diode is connected to REO
TRIZA = SFF " A11 pins of port A are input

TRIZE = 500 ' All pins of port B are output

FORTE = %00 " Turn off all LED diodes at start

EO = 0O * Initialize the wvariable EO

T

If Button 0 is pressed jump onto LedOn

button Buttonl,0,255,0,B0,1,LedCn

EO = 0O
* If Button 1 is pressed Jjump onto Ledoff
button Buttonl,0,Z£55,0,EB0,1, Ledoff

T

goto Main Jump back to the beginning of the program

LED = 1 ' Turn on LED diode

goto Main

Ledoff:

LED = 0O " Turn off LED diocde

goto Main

T

end End of program

93

Sometimes it is necessary to provide sound signalization on device, besides the visual one (LED diodes). The
following example shows one way to generate sound signal using the mini speaker and BASIC instruction Sound.

+§[‘l.,f
3 3 i3 i3
2] g & | > e
—| Rz RAT
Z 17
—{ | raz rReol— e
-t ; ey
-1 - RATOCK 0SC1
TO T T2 Reset L) 15 —
; ! O—T|MCIR 0862 [J———
O B o
o} T T Ti—[vis TBF84 wid [
-, T 6 13
[REOINT RE7[] =
'K i 7 12
i [rE1 RE&[]
= g 11
[{re2 rRes[] .r -r
Buttons are connected to the = 10
pins RAD, RA1 and RAZ in the []rez RE4[]
sample = 4
Buttons and a mini speaker
are connected to port A
plIl4]
LT

Buttons are connected to pins RAO, RA1 and RA2. Pressing any of these executes part of the code for generating
impulse sequence on RA3 pin, which can be heard as one monotonous sound or a melody on mini speaker.
Consecutive execution of instruction Sound with different parameters allows composing various melodies.

In the following program, pressing the button TO generates one monotonous sound on a mini speaker, while
pressing the buttons T1 and T2 executes sequences of Sound instructions which can be heard as two different
melodies on a mini speaker.

94

—=

Main:

Plavy0O:
Playl:

BlavyZ:

Program: 50UNL.EBAS

BEO war byte T
Buttonl
Buttonl
EButtonZ

symbhol
symbhol
symbol
symbhol
symbhol

TRISA = 51f
EBeepTris=s = 0O
BeepFPort = 0

' If hutton TO
EO =0

BeepFort =
BeepTris =

Variable used by instruction BUTTON

= PORTA.QO * Button TO iz connected to RAD
= PORTA.1 " Button Tl 1is connected to RAIL
= PORTA.Z " Button TZ is connected to RAZ
PORTA.3 " Mini speaker connected to RAZ
TRIZA. 3
" Initialization of port &
" Inititalizing the mini speaker

iz pressed Jump onto Flayl

button Taster0,0,2Z55,0,B0,1,FPlavy0

' If bhutton T1
EO =0

iz pressed Jump onto Playl

button Tasterl,0,2Z55,0,B0,1,Flavyl

' If hutton T2
EO =0

iz pressed Jump onto FPlayl

button TasterZ,0,Z55,0,B0,1,FPlavyZ

goto Main

sound BeepPort,

goto Main

gsound EBeepFort,

goto Main

sound EBeepFPort,

goto Main

End

T

Fepeat the loop

[110,255] T

T

Monotonous sound

Jump to heginning

[105,50,110,50,120,50] * First melody

[1z0,50,110,50,105,50] " Becond melody

T

End of program

95

In order to measure and display analog values, besides the microcontroller, it is necessary to have an AD converter.
This can be an expensive solution if some less precise measuring is required, for example potentiometer voltage.
For this reason PIC BASIC features the POT instruction for using the microcontroller without AD converter.

Potentiometer is connected to pin RAD

ey and the LED diode is connected to port B
10K 52
3
2] s 18
L

1
[raz R[]
z 17 100nF
5';% RAD 6 dhiHz
reamockl 05c1]ﬁl_—H |
Feseat 4 15 —
O [IMCLR o5z []———
1 L PIC . il ﬁ”
Q [|vss 16F84 wod|]
G 13 2200 A LED
———— | RBOANT RE? [}—T— i%
7 12 3300 A LED
A —| RET REE[]—T— i.li.
= 2 11 3300 AR ED
—|rEZ REE[}—T——= p—
=] 10 3300 AR ED
[rE: R4 }—T—= p—r
100 ﬁ LED

|
I

Exiily] AM L ED

I

33060 AR | ED

1

RC pair which consists of potentiometer (typical resistance in 5-50k range) and a 100nF capacitor is connected to
RAO pin. Reading the potentiometer is based upon measuring the time period between capacitor discharging and
charging. Measuring scale ranges from 0 to 255 as if 8-bit AD converter was used.

The following program reads potentiometer value in 0-255 range and displays it on LED diodes connected to the
port B.

96

|I Frogram: FOT .E&3
[]

E0 wvar hyte ' ¥Wariable used by instruction POT
' Potentiometer is connected to BAQD

symbhol Potentiometer = PORTA.O

TRISA §££ ' Port & is designated input
TRISE = 0 ' Port B iz designated output

Main:
' Read the walue of potentiometer

pot Potentiometer, Z55, EO

PORTE = EO ' Dizplay walue on LED diodes
pause 10 ' 10 ms pause

goto Main ' Repeat the loop

end ' End of program

Most common form of communication between the microcontroller system and a man is, of course, the visual
communication. The simplest form is the LED diode, while seven-segment digits represent more advanced form of
visual communication. The name comes from the seven diodes (there is an eighth diode for a dot) arranged to form
decimal digits from 0 to 9. Appearance of a seven-segment digit is given on a picture below.

Towards the microcantraller pin
controlling this segment

F30E

1fl "]

ll
ll

e |d |K|c|

As seven-segment digits have better temperature features as well as visibility than LCD displays, they are very
common in industrial applications. Their use satisfies all criteria including the financial one. Simple application would
be displaying value read from a certain sensor.

97

Digits can have a shared cathode (K] or anode [A). In the first cass
the segment isturned on by & logical one and in the second case, by
logical zero.

Tens
digit
Example of cannecting %T‘E’nﬁ
seven-segment displays '

in muttiplex mode with T1
the micracontroller WER
glrivla p]
+5 1 WS
Rz i A
2
res FL.on ' '
2] 3 -
[raTock 08 ' '
[§
| WCLE 4
N —|5 WCIR ppc osc2 o
& s 16F84 w1 h [d[< [[
- i W ma
1:\ ——{|REOANT RET[——— g
T 12 ma
—|rRE1 REG [—T—
g 1 10 f
—IrREZ RES | ——2
= q " 110 e
REZ RE4| —T—
1 CI
11 ':
11 b
1 a

One of the ways to connect seven-segment display to the microcontroller is given on a picture above. System is
connected to use seven-segment digits with common cathode. This means that segments emit light when logical
one is brought to them, and that output of all segments must be a transistor connected to common cathode, as
shown on the picture. If transistor is in conducting mode any segment with logical one will emit light, and if not no
segment will emit light, regardless of its pin state.

If we use the scheme from the picture above, one of the ways to realize the display in BASIC could be the following
program code :

98

|I Program: Displays. B&3
[]

Digit war hyte
Maska war hyte

i war hyte

LEDDi=sl war PORTA.1
LEDDisZ war PORTA.QO
TRISA=%00000000
TRISE=%00000000
LEDDisZ=0

LEDDi=s1=1

Value of number to be displayed
Mask of mumber to be displaved
Cemporary variable

Transistor for ones digit
Transistor for tens digit

all pins of port 4 are output
all pins of port B are output
Digit on P4al [(ones) is off
Digit on PA0 (tens) is on

HMain:
for i=0 to 9
Cifra=3
Lookup Digit,[§3F,506,556,84F, 566,560 ,5870,507,587F, 56£] ,Maska
PORTE=HMazk ' Gend mask of a number to port B
pause LS00 ' Pause allowing to see the change
next i ' Increase 1 by one
goto Main ' Repeat the loop
end ' End of program

Variables LEDDisp1 and LEDDisp2 are actually pins 1 and 0 of port A, which bases of transistors T1 and T2 are
connected to. Setting logical one on those pins turns on the transistor, allowing every segment from "a" to "h", with
logical one on it, to emit light. If there is logical zero on transistor base, none of the segments will emit light,
regardless of the pin state. Tens digit is disabled at the very beginning of program, ahead of label Main
(LEDDisp2=0).

Purpose of the program is to display figures from 0 to 9 on the ones digit, with 0.5 seconds pause in between. In
order to display any number, it's mask must be sent to port B. For example, if we need to display "1", segments "b"
and "c" must be set to 1 and the rest must be zero. If (according to the scheme above) segments b and c are
connected to the first and the second pin of port B, values 0000 and 0110 should be set to port B. These values
which are set to port are commonly called "masks". Mask for number "1" is value 0000 0110 or $06 (hexadecimal).
The following table contains corresponding mask values for numbers 0-9 :

Digit Seg. h Seg. g Seg. f Seg. e Seg. d Seg. ¢ Seg. b Seg. a HEX
0 0 0 1 1 1 1 1 1 $3F
1 0 0 0 0 0 1 1 0 $06
2 0 1 0 | 1 0 1 1 $5B
3 0 1 0 0 1 1 1 1 $4F
4 0 1 1 0 0 | 1 0 $66
5 0 1 1 0 1 1 0 1 $6D
6 0 1 1 1 1 | 0 1 $7D
7 0 0 0 0 0 1 1 1 $07
8 0 1 1 1 1 | 1 1 $7F
9 0 1 1 0 1 1 1 1 $6F

Program uses the instruction Lookup to apply an appropriate mask to numerical value. Instruction Lookup works
very simply - it puts a character from a sequence, its position defined by numerical value Digit, to variable Mask. For
example, Mask will take value $5B if Digit has value 2. In that manner, we can easily get mask for any decimal digit.

Continual display of Mask (PORTB=Mask) for appropriate value of variable Digit, with 0.5sec pause, will produce an
effect of digits rotating from 0 to 9.

99

Problem with multiplexing occurs when displaying more than one digit is needed on two or more displays. It is
necessary to put one mask on one digit quickly enough and activate it's transistor, then put the second mask and
activate the second transistor (of course, if one of the transistors is in conducting mode, the other should not work
because both digits will display the same value).

New program differs from the one above in converting 2-digits value to 2 masks, which are displayed in a way that
human eye gets impression of simultaneous existence of both figures (this is the reason for calling it "multiplexing" -
only one display actually emits in any given moment).

Let's say we need to display number 35. First, the number should be separated into tens and ones (in this case,
digits 3 and 5) and their masks sent to port B. This separation can be done with instruction Dig. For example,
Digit1= W dig 0 will extract ones digit from variable W and store it into variable Digit1. If O is substituted with 1, tens
digit will be extracted. Following the same logic, 2 extracts number of hundreds, 3 number of thousands, etc.

H Program: Displayi B&3 L
]
Digit wvar byte ' Walue of rnumbher to be displayed
Mask war byte ' Mask of number to be displaved
T wvar hyte ' temporary wariable
LEDDiz]l war PORTA.]1 ' Transistor for ones digitc
LEDDiz:2 war PORTA.O0 ' Transistor for tens digitc
TRISA=%00000000 ' all pins of port A are output
TREIZE=3%00000000 ' all pins of port B are output
LEDDiz1=0 ' ones digit is off in the start
LEDDizZ2=0 ' tens digit iz off in the start
Main:
=35
Digit=W dig 1 ' Put tens to wvariable Digit
Gosubh bindseqg ' Call the coversion of binary number
' Lo a code of appropriate 7seqg digit
PORTE=Mazk ' Get the mask of a digit to port E
LEDDizzZ=1 ' Print the tens digit
pause 1 ' Hold it printed for 1 ms
LEDDizZ2=0 " Turh off the tens digit
Digit=W dig 0O ' Put ones to wvariahle Digit
GFosub binZseqg ' Call the coversion of binary number
' to a code of appropriate Ysedqg digit
PORTE=Digit
LELDi=1=1 ' Print the ones digit
pause 1 ' Hold it printed for 1 ms
LEDDiz1=0 ' Turn off the ones digit
Goto Main ' Again, for achiewving the effect that
' both digits are on simultaneously
binzZ=zeq:
Lookup Digit,[§3F,506,55E,584F,566,56D,87D,507,57F,56£],Hask
Return
End

This part of program code prints value 35 on two seven-segment displays. The rest of the program is very similar to
the last example, except for having one transition caused by displaying one digit after another. This transition can
be spotted when LEDDisp1 is being turned off and LEDDisp2 turned on with a new mask. Lookup table is still the
same and may be called as a subroutine when needed.

The multiplexing problem is solved for now, but the program doesn't have a sole purpose to print values on
displays. It is commonly just a subroutine for displaying certain information. However, this kind of solution for
printing data on display will make essence of the program much more complicated. This newly encountered
problem may be solved by moving part of the program for refreshing the digits (part of the program code for
handling the masks and controlling the transistors) to interrupt routine. The following program shows how to use
interrupt for refreshing the display. Main program increases the value of variable W from 0 to 99 and that value is
printed on displays. After reaching the value of 99, counter begins anew.

100

Program: Display? Ea3

5

Digit war hyte

HMask war byte

W wvar hyte

i war bhyte

LEDDi=zl war POERTA.1
LEDDi=Zz war POETA.QN

TRISA=%00000000
TRISE=%00000000
LEDDi=l=0
LEDDisz=0

INTCON = %00100000

Value of number to be displaved
HMask of number to be displayed
temporary wvariable

temporary wariahle

Tranzistor for ones digit
Tranzistor for tens digit

all pins of port A are output
all pins of port B are output
ones digit is off at the start
tens digit is off at the start

' Enable interrupt THEO

OFTION_REG = %10000000 ' Initialization of prescaler

On Interrupt Goto IR

INTCON = %10100000
=0

Main:
for i=1 to 99
W=+1
Gosub Prepare
pausze 500
next i
goto Main

Prepare:
Digitc=0 dig 1
Gosub bhiniZseqg
Maskl=Digit

Digit=0 dig O
Gosub binZseg
MaskZ=Digit
Return

bindseqg:

' Interrupt wector
' Enable interrupts
' Initijalization of wariable W

Eeginning of the program

Print walues from 0 to 99

Increase wariahbhle W

Prepare walue from W to be displayed
Pause to zee the digits

Print walues from 0 to 99 again

Value of ones iz put to wvar. Digit
Converting digit to mask
Mask 1 contains the mask of ones

Converting digit to mask
Mask 1 containz the mask of tens
Feturn from subroutine

Lookup Digit,[$3F,$06,55E,54F,566,46D,470,507,$7F,466],Cifra

Return
Di=ahle

IZR:
PORTE=Maszkl
LEDDizz=1
pause 1
LEDDi=Z=10

PORTE=Maszkz
LEDDizl=1
pause 1
LEDDi=1l=0

INTCON.2 = 0
Resume
Enahle

End

Disable interrupts while ISR is
executing

Put a mask of tens digit to port B
Print the ones digit

Hold it printed for 1 ms

turn off the tens digit

Put a mask of ones digit to port B
Print the ones digit

Hold it printed for 1 ms

turn off the ones digit

Clear TOIF flag

Feturn to program
Interrupts are enabled again

End of program

101

Interrupt initialized in this way will generate interrupt every time TMRO timer changes state from 255 to 0. Every time
interrupt takes place, interrupt routine will be executed so that human eye gets impression that both displays print
values simultaneously. As can be seen from the program code, everything tied to displaying digits is moved to
interrupt routine. However, part of the code for forming the masks to be displayed is in the special subroutine
(Gosub Prepare) in order to make interrupt routine code as short as possible. Another reason for this kind of
organization is also the need to create masks only when variable W is changed and not every time interrupt takes
place.

In the course of main program, programmer doesn't have to take care of refreshing the display nor anything about
displays whatsoever. It is only necessary to call subroutine "Preparation" every time value that will be displayed
changes.

As 2-digit values don't satisfy most needs, the following step is adding two additional digits. Program for realization
of 4 seven-segment displays is just an expansion of the program above. The main difference is in the part for
separating values to ones, tens, hundreds and thousands.

Of all motors, step motor is the easiest to control. It's handling simplicity is really hard to deny - all there is to do is to
bring the sequence of rectangle impulses to one input of step controller and direction information to another input.
Direction information is very simple and comes down to "left" for logical one on that pin and "right" for logical zero.
Motor control is also very simple - every impulse makes the motor operating for one step and if there is no impulse
the motor won't start. Pause between impulses can be shorter or longer and it defines revolution rate. This rate
cannot be infinite because the motor won't be able to "catch up" with all the impulses (documentation on specific
motor should contain such information). The picture below represents the scheme for connecting the step motor to
microcontroller and appropriate program code follows.

Example of connecting step motor via step

:l m otor driver UCN5804
+5
N 0w n| e
1 " :1|E— ’_E RA2 Re1 [
OUTE Wl
14 2] is r'a: RA3 RAD R 4hiHz
1 L °F [RAATOCK 05C1[]
L p—{]oum bR [T T L e ‘ 5| =
L H, ‘ﬂ ‘ﬂ iﬂ—ﬁ[ﬁﬁ'ﬂ_‘k pic ©5C2 1.1—T_| | Y
e s | B Yo vss 16F84 v [—
[5] 13
_a[GND GND ;'1— [] REOANT RET [] =
—_— ¥ iz
H——?[OUTG Step input Iy i_ l; RE1 REE]"
;.: K, Half step ;I;— [rez rEs
P[] ouTh One Phase [1— 9[RE3 -]"’
= LCMa804 4

102

Program: 5tep.BAals

—

TxData war word
E0 war byte

El war hyte

TRI3A = $11111100
TRIZE = 0
FORTE = 0

low Dir _in

low 3tep_in

Main:
EO = 0
EO = 0
goto Main
Left:
low Dir_in
gosub Make circle
goto Main
Bight:

high Dir_in
gosub Make circle

goto Main

Make circle:
for E1 = 0 to 199
toggle Step in
pau=e 50
next E1

return

End

Include "modedefs. bhas™

T

symbol Dir in = PORTA.D '
symbol Step in = PORTA.1 7
symbol ButtonZ = PORTA.Z T

gsymbol EButton3d = PORTA. 3 T

Motor
makes

a0 ma

Mode=s of data transfer used
by instruction SHIFTOUT
Variable where from data is
sent to shift register
Variables used by

instruction BUTTON

lk line is <onnected to RAD

Iin line i1s <onnected to RAL

Button T2 is connected to RAZ

Button T3 is connected to RAZ

Configuring IS0 ports

button ButtonZ,0,£55,0,E0,1,Left

button Button3,0,255,0,EB0,1, Right

Jump to the beginning

et direction left
Make a full <irele to left

Jump to the beginning

get direction left
Make a full circle to right

Jump to the beginning

uzed in the =sample
full zirele in 200 steps

pause between two steps

End of program

Insufficient number of microcontroller input lines might represent a problem. Instead of switching to another, more
expensive microcontroller model, input shift register 74HC597 could be an answer. For connecting input shift
register it is necessary to take 4 of microcontroller I/O lines and one Latch line for every next register. This provides
you 8 input lines per shift register. Input shift register transfers states of input pins to one mid-register using the
Latch signal. After that, Load signal transfers data from mid-register to shift register, where from it is sent to the
microcontroller via SerialOut and CIk lines.

+3
— JULruuns
o
1 L 16 E []
H——-I]® I
E a _||5 1 Tt 1]
= -:v—:||: C] :.l_ —2[RAz Rad b
Z o |lo—]e Setialin [Rz R iz
w ' Serial Shitt | 1 L
o [o—]E] 1 GEEA e o5C | F——7—
= 5 Farallel load [T el L] | =
.§ D—L: F Lateh]“ ‘u—s[WCR po 98c2 :||1—T—|| I 4_5,[6
o |o—]a ik [B——(|vss 16F84 wad|]
T 11] [F] 110 AR ED
! m— rat [J— —— | REOANT RET [—r—
—] E] T 12 1100 LED
Wss SerialOut 1 —|REd REG | —T— ﬁ
= 4 1 i; LED
L —|rE2 RES —3
T4HCEST] E:I] 1m0 AR en
Serial input M—I_ JUUL [Jres= R4 [— o
oy A .:i 110 AR ED
= E 1| 1 H—.
; c 2 | =) 1o AM ED
£ o213 5 M —
T E 2 T I, mn AR Ep
o & T m 1 A ED
[=4 5 — = - —1 H L
"oy L 2 sermlow
(T I N F =
P | Example of connecting the input
, shift register and a
Zeralzhiy _H .
Parllzl k=d microcontroller
Pl

Data transfer between shift registers and a microcontroller is serial. The following program reads states of input shift
registers, transfers them to variable RxData and then displays the contents of RxData on diodes connected to port
B. For data transfer between shift register and a microcontroller, BASIC instruction SHIFTIN is used.

104

_ |I Program: HCS47 E&3
¥

' Modes of data transfer used by instruction SHIFTIN
Include "modedefs.hbas"™

' ¥Wariable for taking data from shift register
BxData war byte

' JeriallN line is connected to Ba0
symbol HC Data = PORTA.O

' Clk line iz connected to Ril
symhol HC _Clk = PORTA.L

' Latch line iz connected to BAZ
symbol HC Latch = FORTA.Z

' Load line is connected to R43
symbol HC Load = PORTA.3

TRISA = %00010001 ' Initialization of port 4
FORTA = 0
TRISE = 0 ' Initialization of port b
FORTE = 0
Main:
gosub Get Data ' Read the inputszs of shift register
PORTE=FxDATH ' Display input states on LED diodes
goto Main ' Repeat the loop
End ' End of program
et _Data:
HC_Latch=1 ' Transfer states of input linez to

' mid-register.

pauseus 5

HC_Latch=0

HC_Load=0 ' Transfer data from mid-register to
' shift register

pauseus 5

HC_Load=1

' Transfer data from shift register Lo wvariable BxData
SHIFTIH HC Data,HC Clk,M3BPRE,[RxData]
return

Insufficient number of output lines might represent a problem with microcontrollers commanding small number of
I/0 lines, such as PIC16F84. If this is the case, output shift register 74HC595 could be used as an expansion. For
connecting it, it is necessary to take 3 of microcontroller 1/O lines, thus getting 8 additional output lines. Data
transfer between shift register and a microcontroller is serial and commences via the Clk and A lines.

105

+ 3
ma { }5.‘5:{,
LED h‘ll:i’ 1 :_ o _I|E E[[]
I b Wi
LED mn é_ _llﬁ ! b]
= e aa [—Raz RAT
L4 16 1 i J 1 [
o I h o A :.|:|_ a[e R :llﬁ_ M
110
+——M————] ae oE [[rasTaock w51]—_L—il |
LD ww g g i2 Ratal N T ||:|
ﬂ—:—g af Lateh [‘u 5[MR pjc oscz :.!—T_' oy
110 n
FH_':'_[Gy i [n—-:[vss T6FB4 vdd]m T
e’ 101 i Il
FH—:I—[ah Rst [— ?[RECANT RET :I|2 1
(13] 4 =
] v sah [4 u[RE1 REG :.l.
-4 REZ RES
74HCE95 !)
[res re4]
un}
n 1d 13 o= g
1o 2
w 2o 2
Z Ll
P] d [y i) .
S E c 3 gf o Example of connecting the output
7 i 5 shift register and a
T o T microcontroller
oy

Rasa,

La=h
OE

When data is transferred to shift register, Latch signal sends it to output pins. The following program alternately
turns on upper and lower LED diodes. For data transfer between shift register and a microcontroller, BASIC
instruction SHIFTOUT is used.

106

_ || Program:HI535 .B&d
]

' Modezs of data transfer used by instruction JHIFTOUT
Include "modedefs. bas™

' Wariable for supplving data to zhift register
TxData war hyte

' 4 line is copmnected to pin RAQD
symbol HC D'ata = PORTA.O

' Clk line iz copnnected to pin Ril
symhol HC Clk = FORTA.1

' Latch is copnnected to pin BAZ
symbol HC Latch = PORTA.Z

TRIZA = 0 ' Pins of port 4 are output
PORTA = 0O
Main:
TxData=$F0 ' Turn on the upper 4 LED dicdes
gosuh 3Jend data ' Send the data to shift register
pause 500 ' 500 msec pause
TxData=50F ' Turn on the lower 4 LED dicdes
gosuh 3Jend data
pause 500
goto Main ' repeat the loop
End ' End of program
Fend_data:

' Send the contents of TxData to shift register
shiftout HC Darta HC Clk M3EFIRST,[TxData]

' Transfer data from shift register Lo output register
'i.e. turn on LED diodes

HC_Latch=1
pauseus 5
HC_Latch=0

return

The easiest way to transfer data between the microcontroller and some other device (for example, PC or another
microcontroller) is via RS-232 communication port. This type of communication provides serial asynchronous data
transfer over 2 lines (Tx for transmitting and Rx for receiving) within 10m range. In this sample, instructions Serin
and Serout are used for creating the software serial communication. Besides voltage level of the signal (RS-232 line
interface MAX232 has a role to adjust signal levels on the microcontroller side, i.e. to convert RS-232 voltage levels
+/- 10V to TTL levels 0-5V and vice versa) RS-232 features format and transfer rate. Transfer format is 8 data bits,
no parity bit and one stop bit, while transfer rate is 2400 bauds.

107

4TLF

+51 W

MCLFRPppTHY

I

(g &)
'+ GHD
1 Tiaw
fape Riin
c
- Tlin

oo

3
Ll

ATHF ATWF

i

SUB-D conneclor 8-pin

Riaw

N g N _—

]

Rzin Rlauw,

MaEs2

4TWF

Reset

Fihahn
it b

10EE

Fif2 2 -
FiStah S funefs
FiBddTOCK]
Fi5 20N
[H

FE1 ANFiAHE
REXCSINT
Widd

—
D

+
h
<z

[ararAarararir4

-
0}
—
(o)}
@

ira

"'hl

OSCACLEING =]

OSCACLKOUT

FCOMT1050M1CK]

Ik

[rarir

RC1TI0351
RC2ACH
RCs
RDOPSPO
RO PSP

RETPGD
REGPGC
RES

FRiEd
RESPGM
RE2

FiEi
REOANT
widd

Was
ROTRIPT
ROBFSPE
iR]
ROLFSPd
RCTRXDT
FCET XK
RCE

FiCd
ROsPIPS
[R o]

Frogram: VART swm E&3

— &

Main:

Include

symbhol 350
symbol 5T

"modedefs.baz"™ !

B0 war bhyte

Serin 5I,T2400,E0 '
Serout 350,T2400,[B0]

boto Main
end

Modeszs of transfer used by

' instructions 3ERIN and 3EROUT
PORTA. 3
PORTE. O

Pin used for sending data

Pin used for receiwing data

' Variable used by instructions 3ERIN and
' JETOUT for storing the data

Feceiwved data is in EBO
Send the data from BO
' repeat loop

' End of program

The program above uses Serin and Serout instructions for sending and receiving data. Data received via Serin
instruction is stored into variable BO and sent back to PC via Serout as a confirmation of successful transfer. Any

microcontroller 1/0 pin can be used for described data transfer.

108

Building light control is a very simple device that is realized using the microcontroller technology lately. The principle
is simple - pressing the button turns on the light in the building for a time period T. Upon that time, all lights turn off.
Variable T is defined with potentiometer. It is possible to determine for how long will the light be on by reading the

potentiometer.

 —

Additional button for each
floor

Building light control

3300

Setting the time period an
tirmer

+

5'-"/‘/)

~ 220

—ao A0Hz

1

ot El
LK_t*
H11B1]

q L 12
[] rnz mi [} » [10KR
2z T
—1] Fn R [00nF
1 1E
[Faamocx) e]—l't|l | -—-
4 1= =
W pyc w [y al T
-] i= 16F84 w —— |
g 1: 1um n LED
[rearwt RE1
T 1z
[] red REE [] -
a 11
[re e [
=3 1 1
[rex red]
] F ¥
1

Yoy
_O

ATTENTION !
This sample warks with public power supply s0 all the neccesary
measures of precaution must be taken.

109

— &

Main:

Lite:

Program: Stepenice E&3

symhol Button = PORTA.O ' Buttons su ha pinu R4l
symbol Time in = PORTA.1 ' Potentiometer for setting the
' timer

symbol Light = PORTA.3 ' Output for light
symhol LED = PORTE.7 ' utput for control LED diode
BO war byte ' Temporary wariahle used by instr. POT
El war byte ' Temporary wariable used by instr. EBEUTTON
i war byte ' Variable in FOR....NEXT instruction
TRIZA = %00000111 ' Pins RA0,1,Z are input
TRISE = %01111111 ' Pin EB7 is output
low Light ' Turn off the light
low LED ' Turn off the control LED diode

' Beginning of the program
EO = 0

pot Time in,255,BE0 !

2] 41
El =0
button Button,0,255,0,E1,1,Lite ' If Button=0
' turn on the light
pause 50 ' 50 ms pause
goto Main ' Jump to beginning
high Zijalica ' Turn on the light
high LED ' Turn on the control LED
for i=0 to 60 + B0 ' If EO = 0 Light iz on for 1 min
pause 1000 ' If BO = 255 Light iz on for 5 min
next i
low Light ' Turn off the light
low LED ' Turn off the control LED diode
goto Main ' Jump to beginnming
End ' End of program

Time period for which the light i=

110

Chapter 7

SAMPLES WITH PIC16F877 MICROCONTROLLER

Introduction

7.1 Keyboard

7.2 Driver for seven-segment displays - MAX7912
7.3 LCD display

7.4 Serial EEPROM

7.5 RS-485

7.6 12-bit A/D converter LTC1290

7.7 12-bit D/A converter LTC1257

7.8 16-bit electrical current D/A converter AD421
7.9 Real time clock PCF8583

7.10 Digital thermometer DS1820

This chapter gives detailed examples of connecting PIC16F877 microcontroller to peripheral components and
appropriate programs written in BASIC. All of the examples contain electrical connection scheme and program with
comments and clarifications. You have the permission to directly copy these examples from the book or download them
from the web site http://www.mikroelektronika.co.yu/ .

In more demanding applications that require greater number of buttons, it is possible to use buttons connected in matrix
to keep microcontroller I/O lines free. The following sample includes scheme of connecting the keyboard and
accompanying program which reads keyboard keys and prints the read value on LED diodes of port D.

111

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm
http://www.mikroelektronika.co.yu/

Keyhoard is connected to 1
port B while LED diode is
connected to port D

State of these pins is i

examined in the
. g

subrouting "Row"
s v, lred /%

Pereerepre?®?

—F

]

[J5[]

— | TR T RETIFED]Wn_-_
[Jreoen G o S LLLL S R
5 [ranam ras [] Il red _]'_
& [reergme ras [] I red - L
[restace Fez [] —
Pl [ragem rei [: .:
[reor@inms - rea kT [I". \
1 [renifiare — v [] "
a 2 [Jrea=zianr E via [- »
{J o L — W One is set on these
—[_[i % ek ' — o lines inthe
7 | 1100 A LD subroutine
— | ascackan FOWFEFe — il .)
[Jreariasaricer remrcr] | — » LD Scankeys
Hik E [rcuize FEETHCE [] —1 iﬁl
[, T [Jracce Fis [
[Jr=a R |] ma A D
[Jrearsra roaFsFa [— i-l
= ROMIFEF rOAFEFT | I Eﬂ. ﬁ LED
i =
ﬁ" LED

The keys are connected into shared rows and columns. 10K resistors between input pins and the ground determine the
state of input pins when the key is not pressed. It means that the logical zero is on input pins when the keys are not
pressed. In order to avoid short-circuits between two pressed keys, 1K resistor is added to each row.

Reading the keyboard is done by subroutine "ScanKeys". The keyboard is connected to port B, it's pins being
designated as input for rows (RB7, RB6, RB5 and RB4) and output for columns (RB3, RB2 and RB1).

112

FPressed

4 I;’ key
o

State of the keyboard after
the key is pressed

na

5 G

y l

b - ﬂ—u—
7 g t 9 1

"1" on the one of the g ? | o

inputs connected to the A ! _
rows represents the § * r_' 0 r_' # r_'

pressed key. : ? ? : ?

2

1FQ
T
—

1FQ
T
WEQ
WEL
T
WEQ
| |
T
n
1
LT

[uﬁwrmu FETFED
[muml RBS :I. t I J_
[} rear@vrer- Fes '] =
[reaarmvrers REAF | | L :
[rearack ez }---- - oot A :
fo @ wenf “
[}remverars E vt []
E Emw % One is set on columns to
" | assure that pressing the
key in that colurmn brings
"1" to input of the

appropriate row;

The program sets value of the last read key on port D. If none of the keys is pressed all diodes of port D are on. "*" and
"#" are represented with values 10 and 11.

The greatest task is on the subroutine ScanKey. It sets logical one on keyboard columns and then calls the subroutine
Row which checks if any of the 4 keys in that columns is pressed (which is signalized by variable Flag).

In case that one of the keys from the column is pressed, variable KeyPress takes value from 0 to 3 (zero for the first row
of that column, one for the second row of that column, etc.). By calling the appropriate Lookup table, real value of the
key is stored into variable Result and then to variable OldResult where from it is displayed on port D. In case that no key
is pressed value of variable is 12.

113

— &

0ldRezult Var Byte
Flag Yar Bit
EevyPress Var Byte
Fesult Var Byte

TRISE=%11110000

PORTD=%11111111
Fesult=3FF
O0ldResult=5FF

Main:
PORTD=01dRe=zult

gosubh Scankeys
if Result 0ldRezult then
if Result 12 then Main

goto Main

AGcanKevs:
KEeyPress=0
PORTE=%1000
gosuh Row
if Flag=1 then FirztColumn

PORTE=%0100
gosubh ERow

PORTE=%0010
gosubh Row
if Flag=1 then ThirdColumn

Result=12

return

FirstColumti:
lookup EevyPress,[l,4,7,10],Result
O0ldRezult

Fesult

return

GecondColumn:

Rowr:

Flag=1

lookup EeyPress, [2,5,8,0],

0ldRezult = Result
return
ThirdColunmn:
lookup EKEevyPress, [3,6,9,11],
0ldResult = Result
return

Program: Tastatura. B&3 }_

' Previously read character

' temporary war.

' Prezsed key

' The read character

' Pins from REO to BE3 are output
' Pins from FE4d to EBEY are input

" A1l diodes are on at start

' Beginning of the program

' Dizplay the last pressed key

' an port D

' Read the kevs of the kevboard
Main ' Fame character 2

' None is pressed

' Repeat loop

' clear keypress

' Chooze the lst column BE3

1

' check the rows

' If the kev iz pressed asszign it
'"a wvalue from look up table

' Choose the 2nd column REZ 1

if Flag=1 then SecondColunn

' Choose the 3rd column REEL 1

' None of the keys is pressed

'" If key is in the lst column

' If key iz in the Znd column

Re=zult

' If key is in the 3rd column

Fezult

' get flag to 1 in case that the

If a PIC16F84 or some similar microcontroller is programmed only to work with seven-segment displays (in multiplex
mode) then it could be called "driver". If we supply it with option to communicate, we have a complete driver. If all that
is realized directly in silicon while creating the "driver", we get full-fledge drivers that can be sold as independent
electronic components.

Question "why use drivers and not multiplexing the digits" is easy to answer with another question "what in case that
we need 6 groups of 4 digits display ?". It would require programmer to take care of multiplexing 4x6=24 digits. If the
program in question is complicated, time necessary to write and adjust such a program might be more expensive
solution than buying a separate driver.

There is a great variety of drivers and we will use MAX7912 in this sample. It can refresh 8 displays with option of
configuring light intensity, while data transfer is serial, requiring small number of microcontroller pins. Anyhow, using
the driver minimizes the work with seven-segment displays.

Working with driver is simple. There are certain registers which get necessary values via SPI communication. Address
value is stored into variable TxAddr and data is stored into TxData. Subroutine Send_Data transfers address and data
to driver. Before the first transfer, driver should be initialized by subroutine Init MAX which is called only at the
beginning of the program. The picture below shows the connection scheme and the sample program for printing the
numbers 12345678 on displays follows.

115

] 2| A P| @]

ﬁ__n_) O =y Laau]] =
O seas - |l 4
. l_ O +ou 0y
. a Pat] b] H
[wovnrnoy e TRET] AT_”__%
] rovewioy revrmomoeiacoy || —_—
e’ [r&=aw0 Lnoonreso [—
q o] m PEAIH LRy] ..L
MEAN e =i |]
4 [teares £ P _|._
= [=n m INwEvay | et o
[] wen = tvaayl] T
ERERERIRE Quwas & swarensf] o
[vau wininy [1azad
mEE =T |
[ey AR Y ”_|_
[+ay dun] 4 Lo
6l £LXVIW 1AL] s (BEAEE] | _H_ = —] wo 8o
&
Aejdsip eia Aejdsip yuawba sy O cowsy — —] = e
Bunpauuod jo apdwex] O wwia LM TN —1] #= 1
™ —] o= N
5w —| o= g
+—1] 1FE i
T8 _ {1 +n L
] == *iq
1)
] o= i
] »ox= =i
I — | ﬁ l ﬁ O 1ron o~ M8

o

1
1
0

—

pr

I__II_|_II__II.|_II__II__II__II__ITI__II_|_II__I

116

Program: ?driwer . .BA3

&

Include "modedefs

Txiddr wvar hyte

TxData war hyte
word
Max Data =

Wl war

symhol

symhol
symbol

Mix Clk
MaX Load

TRIGZ&A
TRISC

0
(11010011

Ma¥ Load = 1

Main:
gosub Init M3
wo = 1234
gosubh Displ
WO = 5678
gosubh DispZ

Loop: goto Loop

Init Mi:
Txaddr = 509
TxData = §£f
gosub Fend Data
T=addr = §0a
TxData = £0£
gosub Gend Data
Txaddr = 50b
T=xData = 507
gosub Send Data
Txhddr = z0c
T=Data = 501
gosub Gend Data
Txaddr = 500
TxData = §£f
gosub Gend Data
return

Displ:
Txaddr = 501
TxData = WO dig 3

gosub Gend Data

.bas"

FORTC. 5

PORTC. 3
PORTA. 3

Modes of data transfer used by
instruction SHIFTOUT

Wariahle for storing the
address of reg. in MAX7T219
WVar. for sending data
Temp. war. of word type

Line for data input iz conhected
to pin BCE

Clk line is connected to pin RBC3

Load line iz connected to pin BA3

411 pins of port 4 are output
0,1,4,6,7 input: 2,3,5 output

Dizgable accesszs to MAXTZLS

Initialize MAX7TZ19

Number displayed on the first
4 digits

Frint the data on the first 4
digits

Number displayed on the second
4 digits

Print the data on the =zecond

4 digits

remain in the loop

Initialization MAx7219
ECD mode for decoding the digits

Intensity of display light

Refreshing the dizplay

Turn on the dizsplay

No test

' Print data on the first 4 digits

' Print data on the first digit

' *"thouzands”

digit

One of the best solutions for devices that require visualizing the data is the "smart" LCD display. Printing the data on
this type of display is performed on the dot segments arranged to form a row. Segment dimensions are 7x5 dots and
one row can consist of 8, 16, 20 or 40 segments. LCD display can have 1, 2 or 4 rows. LCD can be connected to a
microcontroller via 8-bit or 4-bit bus (4 or 8 lines).

+HY
' s i
——{|MCRRppmy RERivGD [
: E::“::“ ”““’;% Example of connecting LCD display ;
- I: I] -
[::::;:ra nmr:::] uEn /:;)
[|rermock) e [—) _
Rrasat [Jrasiana re [BCAAT
‘ [l nmmEr.ms - REINT |]
o w FEva ol o S 1
L[i ﬂ ROTIEET]L .
— |= D roasw :{% >
I ~l p—
O Ll AFREEERTROHIER | |
FA . [|Foomosomckl permsor [.
Lf Ml g e]
[Jrea rcd])
[RO0rFSH ROAIPSFT EE OT O OF O OJ OF O Of B RAWRS b bid
= RONEPGH RO3iPSP) 90900006900000 1]

LCD contrast

hacklight

| I—-—&—-—&

Besides these, there are control lines E (enable), R/W (read/write) and RS (register select) for a total of 7 lines. R/'W
signal is on the ground, because there is one-way communication toward the LCD display. Some displays feature
built-in back-light that can be turned on with RD1 pin via PNP transistor BC557.

The following program uses the BASIC instruction Lcdout for printing the data on LCD display. At the beginning of the
program DEFINE directives are used to configure the LCD display.

118

|I Program: LD .BAS
]

DEFIHE LCD_DEREG: PORTD * If0 port where LCD is connected
DEFIHE LCD_DEIT 4
DEFIHE LCD_RSREG FORTD

DEFTHE LCD_R3EIT 2 * Register szelect pin
DEFTHE LCI'_EREG PORTD
DEFIHE LCD_EEIT 3 * Enable pin
DEFIHE LCD» BITS 4 * 4-hit data bus
DEFTHE LCD_LINES 2 * LCD has twa character lines
high PORTD. 1 turtn on backlight
Main: * Beginning of the program
lowr PORTD. 1 * turh on backlight
lcdout s5fe,l * Clear the LCD screen

* Print "mikroElektronika™ in the firast line
lcdout "mikroElektronika™

pause 2000 Y2 szec pause

lcdout 5fe,l * Clear the LCD screen
* Print "LCD example™ in the first line
locdout "LCD example™

lcdout sfe,5c0 * Move to gecond line
* Print " Second line " in the second line
lcdout Zecond line ™

pause 2000 2 3ec pause

high PORTD. 1 * turh off backlight

pause 2000

goto Main * repeat the loop
end * End of program

Data (variables) used by microcontroller are stored in the RAM memory as long as there is microcontroller power
supply. When the power is off, contents of RAM memory is gone. If it is necessary to keep the data for later use, it
must be stored in permanent memory. One of the memories that can be used for this purpose is serial EEPROM.
EEPROM stands for Electrically Erasable and Programmable Read Only Memory. Serial means that EEPROM uses
one of the serial protocols (I12C, SPI, microwire) for communication with a microcontroller. This sample will deal with
EEPROM from 24Cxx family which uses two lines and 12C protocol for communication with a microcontroller.

119

+5W

1 S
————{ | McLRRpp T RETPGD |]
[reneann REsPGE | |
E E E [Fiea res | |
12C address of EEPROM %[| 2 3
is $A2 e = [ez aer- Rd | |
IS [Fissstapes purepe RESPGM |]
[Faamock Rz | |
Reset [rnsiana rEt [
+a [reosTeens o e]
‘ﬂ [re1aiFians o g |]
+4W =
REZESINT wss
|1: A0 it e]8 T—E wid E"'l?l ROTRSRT %
_i 21 P jb [uss 3 roseses [
J NG zcLfi [|oscicweon =4 roseses]
E B | — oscerLrour roapsea | |
] [GND SDA E— [l rcomosomck Rrevmaot [
0y |& [rermios Resmack |]
=
= 24¢04 = T.TI|F [|rcacce Res | ——
R Rca |]
- 1 [| roowsro RosPsPs |]
Example of connecting = [rorese RD2PsP2 [
serial EEPROM

EEPROM is connected to microcontroller via SCL and SDA lines. SCL line is clock for synchronizing the data sent via
SDA line. Frequency for transferring the data via SCL and SDA lines goes up to 1MHz.

BASIC instructions I2CWRITE and I2CREAD make reading and writing data to EEPROM pretty simple. To write or
read data from EEPROM it is required to write an address of EEPROM (in this case $A2) and address of data in
memory as parameters of instruction. EEPROM address is formed in the following way :

1o [1]|0]0]A,

MSE LSE
EEFPROM address

Ay R

I2C communication allows connecting multiple devices on one line. Therefore, bits A1 and A0 have an option of
assigning addresses to certain 12C devices by connecting the pins A1 and A0 to the ground and +5V (one I12C line
could be EEPROM on address $A2 and, say, real time clock PCF8583 on address $A0). R/W bit of address byte
selects the operation of reading or writing data to memory. More detailed data on 12C communication can be found in
the technical documentation of any 12C device.

The following program uses the instruction I2CWRITE to write data from variable EE_byteOut to EEPROM, and then
uses the instruction I2CREAD to transfer the same data from EEPROM to variable EE_byteln and display it on port D
diodes.

120

_ |I Program: EEFEOM. A3
]

DEFIHE LCD _DREG: FOETD * I40 which LCD is connected to
DEFTHE LCD _DEIT 4
DEFIHE LCD_ESFEG FOETD

DEFTHE LCD_RSEIT 2 * Register select pin

DEFIHE LCD'_EREG PORTD

DEFIHE LCD_EEIT 3 * Enable pin

DEFIME LCD_EIT3 4 * 4-bit data bus

DEFIHE LCD_LINE3 2 * LCD has two character lines

' Modes of data transfer used by instructions IZCWEITE i IZCREAD

symhol 5D4 = PORTC.S ' IZC data pin

' 8-bit address of memory location in EEPROM
4ddr Yar byte
' ¥ar. containing data for writing in EEPROM
EE_Bytelut Yar Byte
' War. for containing data read from EEPROM
EE_ByteIn Var Byte

TRIZD = 0 ' Port I iz output
Main:
lcdout "Write in EEPEOM ™
Addr = 2 ' Write data §55 to
EE BytedUT = 5§55 ' addressz 2Z
Gosuh Ellrite ' Write data to EEPROM
Pause 1000 ' Brief pause
lcdout "Contents of 7 ,Addr
Gosuh ERead ' Read data from address 2
locdout 5fe,5cO ' Mowve to second line
lcdout EE Ewteln ' Print the read data
Loop: goto Loop ' Remain in loop

' Write one byte in EEPROM

EWrite: ' Write data
I2CWRITE 5DA&,5CL,%10101110,4ddr, [EE_Bytelur]
Pause 10 ' 10 msec pause
Return

' Reading one byte from EEPROM

ERead: ' Read data
T2CREAD 35DA4,3CL,%10101110,4ddr,[EE_Eyteln]
Return
End ' End of program

121

Communication between two devices is easiest to achieve via serial RS232 communication. However, there are
certain limitations of this type of communication. First of all, it is meant for local devices in 10-15m radius. The second
drawback is that it can be used with only one device (for example, only one mouse can be connected to one COM
port of PC).

RS-485 communication goes past these shortcomings, supporting up to 32 devices (even 128) with maximal network
length of up to 1500m. The example of connecting 485 interface is shown on the picture below.

5 Shielded wire
Master - [] \
Mmooy o= i = i
T}f | - c:] _ x _ 1l Maxirmum number of slave
RiT —E{ oE 4 [| S devices is 32
H_‘H’ _[ol (L 1n] o +§I'l-'ll \""II
i]
LTI:‘E Il|l'_|l-_|lJ_| IJ_II_'|I_-|Il| J_
Hoxa H@m<a —
L =) x = x -
) :) 2
* - ReceivelTransmit data gpu B oW -)
= =
= =
2 IPT &Y
EE EE
o [Vl

The role of the line interface LTCA485 is similar to MAX232 interface with serial communication (adjusting the level).
Using the shielded wire is not necessary, but is recommended for reducing the glitch.

Ending resistor Rt should set the specific impendence on the line and usually has value about 100-200 ohms. With
lines shorter than 300m, there is no need for ending resistor. Resistors Rb are placed in order to avoid incorrect
reading when all the drivers are in receiving mode. Value of these resistors should be 680 ohms if they are placed on
single device or 4K7 if they are placed on more than 8 devices in the network. RS485 is a half-duplex communication
which uses 2 lines (marked as A and B) for data transfer. The information if data on the receiver side equals binary
one or not can be read from the voltage difference of lines A and B. If voltage difference between lines A and B
exceeds 200mV data is binary one and if it is lower than -200mV data is binary zero. This method proved very
efficient for eliminating great deal of glitch which can occur on the line. As data transfer commences via two lines,
organization of sending and receiving the data must be regulated to avoid interference of data on the line. Direction of
data (sending or receiving) is determined by state of input pins RE and DE of line interface RS485. When states of
pins are RE=0 and DE=1, line interface is set to the receiving mode. When states change to RE=1 and DE=0 line
interface changes to the sending mode.

One of the typical solutions for RS485 communication is master/slave communication, where one master device takes
over the control while other slave devices get the address which upon they can be called. Communication is initiated
by master device sending the same N byte message to all slave devices and going to receiving mode. This N bye
sequence contains the address of the specific slave device that is to receive data. Address is commonly located at the
beginning of the sequence and consists of one byte (8 bits). When all of the slave devices receive the sequence, they
extract the address from it and compare it to their own identification address. Slave device with matching address
sends its address to the master device as a confirmation of successful transfer and receives data, while other slave
devices return to the receiving mode. Master device receives the address of the mentioned slaved device and that
ends the transfer between master and slave devices. In case that slave device does not send its address in some
specified (Time out) period of time, master will declare that slave device inactive. This time out period ranges from
10ms to 100ms. The following picture shows format of the sequence that master sends to slave devices.

122

Sequence sent by masterto
slave devices via R5485 line

Address of slave | Data Data + 1

L 1 T T
Sire of address and data
is one kte (8 hits)

Newer systems consist of PC as master and multiple microcontroller slave devices. One such network is shown on
the picture below.

oy \J Connecting PC and a PIC
—LWRReme e] microcontroller via R5485
[reavan REdirs | . . .
g it res [communication line
- [rearabiztirer- red |] _
] rearenanasee et [] Up to 32 devices
[reairock rea [can be connected to
Reset [| rasretud Rer [F=485 line
—— | REnFians REICHT [] D
‘ [JreraiFiene g wad | [
a +’5]—\"" [[recgar i =[] Y |]
[] e % roTese [i []
— = LK roavse [] I
ookl RDSrsRs [1E il 1— |
— | mscaroeour Podiesed [= B]—l_‘
—_— [Jrecomicsomcrs RoimoT | L['3 ——
I % [|rermoce RCATSE |] Qo -
T o T | [Jroacce Rs [—
[rca Rcd [
' [] rogiese Roarese] [=
= [rosiese ro2vse] [Shielded wire less than A4
300m lang 1—]*4"—(%_ e

4TuF +54

|

+q1 .] !

L I

c I

+ —I: Ci+ - [r —[F et N @ I

til Lge oo = 3 |

*I—L[cl Tind,] [II .5.] I

g A —| = Rin [} = ol MO @ |

;LI_I_[I:!- o [] ¥ |

P rin] LTCdAS |

] e L |

] Fen Feol [= :

N hLI12 |
-

I

I

|

|
%
R3232 to RS485 carmertar

As there is no output for RS485 on PC it is necessary to create RS232 to RS485 converter, while the microcontroller
can be directly connected to LTC485 line interface. For physical connection of master and slave devices in RS485
network, RS485 interfaces other than LTC485 may be used - for example, SN757176 manufactured by Texas
Instruments.

The following program is an example of connecting one master and up to 8 slave devices. Role of the master is given
to the PC which is connected to the network via RS232/RS485 converter. Slave devices are PIC16F877
microcontrollers which are connected to the network via line RS485 interface LTC485 and each one of them owns
unique address given as number in 0-7 range. In order to make data received from the master "visible", diodes are

123

connected to port B of every PIC. In the sample, master changes the states of LED diodes on the slaves devices. The
following picture represents a window of PC software for communication with PICs via RS485 line.

== mikroElektronika RS485-Demo

—Addresz of slave devices— — Set LED s

Sendtnshvel
|1 [+] LDOD
ID []Lm
Iu [] LDz
||] LD3

] Set all LED 2
||] LD4 _—
Iu— Clear all LED s
Iﬂ +LED's
II]

-LED "z

When the button "Send to slave" is clicked, PC sends the address of slave device from the field "Address of slave
device" to the RS485 network and it also sends the states of LED diodes as they are set in the group "Set LED's"
(total of 2 bytes). All of the PICs receive the address and LED states, but only one of them actually changes LED
diode state. That PIC answers by sending its address to PC in 50ms as confirmation of successful receipt and
marks the end of the transfer between PC (master device) and PICs (slave devices). In case that PIC does not
answer in the expected 50ms, PC will interpret it as if PIC with specified address is not present in the network and
will report an error (data transfer is serial, asynchronous at 9600 bauds). Communication with PICs is software
based via instructions SERIN2 and SEROUT. The instruction SERIN2 expects a data that matches the address of
slave device (in this case, "1" ASCII). Upon receiving the address, next received data is stored into variable BO, it's
contents being displayed on port B LED diodes.

_ Program: Bi4&5 . EA3
[

' Modes of transfer used by instructionsz ZERINZ and SEROUT
Include "modedefs.bas"™

' Pin used for sending data

symbol 30 = FORTC.A

' Pin used for receiwving data

symbol 3I = FORTC.7

' Pin for defining direction of data transfer

symbhol RT = FORTE.O

E0 war byte " Temp. war. of byte Lype

TRIZE = 00 ' LED diode may be connected to port E
Main:

low RT ' Microcontroller iz in receiving mode

' If address received iz "1™, store data into EO

gerin? 5I,84,20,Main,[wait ("1"),B0]

high RT ' Microcontroller iz in sending mode

pause 50 ' Wait for S0m3

' Return the address sa confirmation of successful transfer

gserout 30, TO9500,["1"]

PORTE = EO ' Dizgplay data on LED diodes
goto Main ' Repeat loop
end " End of program

124

LTC1290 is a 12-bit AD converter with serial access. It has 8 inputs and thus can measure up to 8 different signals
and send them to microcontroller via SPI communication. SPI is abbreviation for Serial Peripheral Device and it is
form of master-slave communication.

Microcontroller and AD converter are connected over 4 lines: MOSI, MISO, SS and SCK. The first line is named
Master Out Slave In and it is used for instructions that master sends to slaves. The second line is reverse - Master
In Slave Out for data master receives from slaves. Line SS (Select Slave) is used for defining which slave will
master address, because there can be several slave devices connected to the same communication lines, but with
different SS lines. The last line is named Clock indicating that it brings clock to communication between master and
selected slave.

Data is sent in form of binary sequence via MISO or MOSI lines and master or slave reads it in the middle of CLK
impulse creating synchrony between sent and received message. Although it might sound complicated, it is a pretty
simple form of communication for creating software.

125

l_“|
208
= [a=drand EEEUE | = .__mrm_ if e [—
3 |m %00 Ty | | S— PP i
v 0
— s En_p_MH] o 1 _HH ~ “_.“_ m__| .
m“_“_“____w_.__ﬁa sl T_”i _ el
M DRLAEOLL (] i 062101 E
' e = oy
o NXE n, o3 T
15E4U03 (077 ? wm i - m ” — . S ; R Bt
1 m H. 5 vy [o & wmln_ o [———
o . na o [—r——
il [Jrareas o H__“w_“““ w ﬂi W wl EM —]——
| 98000000000809 [O swrsea [say Qoxs aof—c—
wmiminir 4 W 0k e R i —— _I_T:H W2 [———
= yamard | | S A T_w_|
m an [MEIEIEIE ilm = T
(e e EE | | | Qo wed | 0BQEJEIE)E| oo
Q94 AHLMd b
HENARNRRERERENED ~ | _._._M K
' Qem 30
0621LD 17 42M2AUCD e

a/¢ Bunsauuod jo ajdwexsy

sindul
JouaAund Oy

Mt

[oo doo & o

140

— (&

Main:

Ll:

Program:LTC1i90 BAT

DEFIHE LCD_DEEG FORTDr ' I/0 port which LCD is connected
' to

DEFIHE LCD _DEIT 4

DEFIHE LCDI' R3EG PORTD

DEFTHE LCD_RSEIT 2 ' Register select pin

DEFIHE LCDI' EREG PORTD

DEFIHE LCD _EEIT 3 ' Enable pin

DEFIHE LCD_EITS 4 ' 4-bit data bus

DEFTHE LCD_LINE3 2 " LCD has two character lines

gsymhol C5 = PORTA.Z ' ADC select pin

symhol Dout = PORTC. 4 ' gending data from ADC to MCT

symbol Din = PORTC.S ' sending data from MCT to ADC

symhol 5clk = PORTC. 3 ' clock

ADwal MSE wvar hbyte
ADwal LSE war hyte
BEO war byte
El war hyte

Wo war word

"IN
PORTC = O

TRISA = %11111011
TRISC = §10

TRISD = 0

PIEL = 0

INTCON = O

SEPCON = 521
ADval LSE = O
ADval MSE =

lcdout 5fe,l

lcdout "Chamnel: 7
lcdout
lcdout
high C3

gfe,s7c0

AT conr "

gosub Read AD
gosub Display &Dwval
pause -0

goto Main

Fead AD:

low C3
33PEUF

%¥11101111

if S5P3ITAT.O

ADval MSE
C2EDRETTR —

33PEUF
[l

ITIALIGZATTIO

0 then goto L1 !

' higher bajt

' lower bajt

' temporary wariahle
' temporary wariable

' temporary wariable

n

' paort C is on log. 0 lewvel

' A1l pins are output except EBAZ
' 411 pins are output except RC4
' All pins are output

' 3PI communication interrupt
' dizabled

'""All interrupts dizabled

' 8PI communication register

' Print the text in the first line

Print the text in the second line

Disgable further LCD instructions

Bead the walue of AD input

and print it on LCD

Repeat all

Enable sgending to ADC

Channel no.5 selected

Wait until transferred

3tore higher byte of converted result

]l o m

DA converters convert digital information into voltage (they have much more restricted application than AD
converters). In this sample we use LTC1257, 12-bit DA converter with serial access, manufactured by Linear
Technology. Type of communication with DA converter is SPI, which is explained in the previous sample. The
program sends data containing the desired voltage to the AD converter which translates that data into voltage. We
can check the program by measuring voltage on converter's output.

o
T —] mwm;u rETFa] E [] E [] E [l]
[(Jrenern rearas []
= [] RAllAMI FEs []
= [reaarmyre- rea []
[} TR reaFa [] - T Tz
[Jruatoce REZ f“ 1“ 1
Rzl [roaens Fet I
Q (| FEnFDians reamr [—
1 [renFinrs = v []
b e [JreEacaian >, v [) =
T_[Vi ﬂ FompaeT [Example of connecting voltage
— = 22 rearses [D/& convertor LTC1257
| [[iﬁ:ﬁ:n = E: % CQutput of DUA converter
— I:FJ:I:ITIIJEJ:ITIIIHI RCTIREIDT :I +3u 0-2.048%
Pﬂl‘{ E [frenma reaTack [—] e =]_T -
T.T = [Jrcaccr ps [—1—J] o var (] —1 1
F3 Fia [{] @0 REF
= [Jroipsrs ReaFsFz | | LTIz Z w
E =
=
S

128

— &

Program: LTC1:57 .E&3

Include "modedefs.bas™ ' Modes of data transfer used
' by instruction 3HIFTOUT
TxData wrar word ' Wariable for transferring data

' to shift registar

EO0O war hyte ' Wariabhle used by instruction
' BUTTON
symbol LTC Data = PORTC.S5 ' Din line is connected to pin RCS
symbhol LTC _Clk = PORTC.3 ' Clk line iz comnected to pin BC3
symbol LTC _Load = FORTA.1 ' Load line iz connected to RAl
symhol EButtonl = PORTE.O ' Button TO is connected to REOD
symbol Buttonl = PORTE.1 ' Button Tl is connected to REL
symhol EBEutton:s = PORTE.Z2 ' Button T2 is connected to REZ
TRISA = 0O ' Configuring I/0 ports
TRISE = %11111111
TRISC = %11010111
LTC Load = 1 ' Dizsable writing in D& converter
Main:
EO = 0" If button TO is pressed jump onto Full
button ButtonO,0,255,0,B0,1,Full
EO = 0" If button Tl iz pressed jump onto Half
bhutton Euttonl,0,255,0,B0,1,Halt
EO = 0" If button TZ iz pressed jump onto Zero
button BEuttonz,0,255,0,B0,1,Zexa
goto Main ' Jump to beginning
' Full scale on DAL coverter output has wvalue 2.043 ¥
Full:
TxData = sfff ' Write sfff in wariable TxData
gosub Jend data ' WMrite data in DA cowverter
goto Main ' Jump to beginning
Half: ' DA converter output walue iz 1.024 V which iz exactly
' half of the full scale (Z2.045 V)
TxData = §7f£f
gosub jend darta
goto Main
Zero: ' VWoltage on DA converter output iz 0 ¥
TxData = 30
gosub Jend data
goto Main
Jend Data:

' Transfer 1l2-bit data to 3HIFT register of DA conwerter
shiftout LTC_Data,LTC_Clk M3BFIRST,[TxData%lzZ]

LTC_Load=0 ' Transfer data from 3HIFT register
' to LATCH of D& conwverter

Pauseus 10

LTC Load=1

Return

End ' End of program

When talking about DA converters we usually refer to voltage converters. However, there are electric current
converters - they simply change the current at output instead of voltage. Current signals are very frequent in
industrial applications due to their reliability in information transfer. Common range for electrical current signal in the
industrial applications is 4-20mA. Lower limit value (4mA) allows line break or similar malfunctions to be noticed
instantly and thus increases safety of signal transfer (when the line breaks or electronics fails, signal drops to 0 mA
signalizing the supervising system that the malfunction has occurred). In this sample we used 16-bit DA converter
AD421 manufactured by Analog Devices. The program itself is quite simple and it's purpose is to set the lowest,
medium and the highest value on the output of DA converter via 3 buttons.

|

Rezet

0

-
I_.Eﬂ‘—
Hidr

A1 Jrrrir—i

£,
=
—

1

_ L)
MELRRUppT Hit

Fanionn
Fiat deH

R N2 e
Fii5 40N 5 e
R OCK
FilSioNd
REOFD/MHS
FE1 AMFi2HE
RE2CTMNT
wild

s
O5C1ELKIN
OSC2ELKOUT
RO S0 CK
RE1M103]
RC2CCR

il

ROOFSPD
RO1#P35R1

£48491201d

RETPGD
REGPGC
RES
FREd
RESPGM
RE2
RE1
REOANT
wild
WEE
ROTPSPT
RDERSPE
ROSPSPS
RDdF 5P
RCTRXOT
RCETXCK
RCE
RCd
ROGPSPS
RDPSPE

5
<

10FI0A
1
1|

10FE

o0——1 1+

Example of connecting current
04 converter AD421

4-20mA

1]

7-24%

130

]
1
% - . = D& converter output
O L]
I
[— ‘ ‘ ‘ BCE33 2M4391
— 1] 0y
i = \) +[:
g ¥
[{rert wie [
] —|rEFz BO0sT [} 10nF
] +——Tlrerm come []
% — v ORIVE |]
[fLarc o []
] Ifcu:u:rc ce jl—
] [Joars &3 [1 g H
:| —|LooPRTH com -
% £Ddz1

Program: AD4i]l .E&3

—(&

Include "modedefs. bas™ ' Modes of data transfer used by
' instruction SHIFOUT
TxData war word ' ¥Wariahle for sending data to
' shift register
E0 war byte ' ¥Wariahle used by instruction
' BUTTON
symbol AD Data = PORTC.S
symhol 4D Clk = PORTC.3
symbol &l Cs = FORTA.D
symbol Buttonl = PORTE.O ' Button TO is comnected to EEO
symhol EButtonl = PORTE.1 ' Button Tl is connected to BEL
symbol ButtonZ = PORTE.:Z ' Button T2 is comnected to EBEZ
TRIZA = 0 ' Configuring I/0 ports
TRISE = %11111111
TRISC = %11010111
ADh Cz = 1 ' Disable writing in DA conwerter
Main:
BO =0 ' If button TO is pressed jump onto label Full
button Taster0,0,255,0,B0,1,Full
EO =0 ' If button Tl is pressed jump onto label Half
button Tasterl,0,255,0,B0,1,Half
EO =0 ' If button T2 is pressed jump onto label Zero
button Taster2,0,255,0,B0,1,Zero
goto Main ' Jump to the begimning
Full: ' Full =scale of D4 conwverter produces 20wl current at output
TxData = FE£fff ' Write $E£fff in wariahle TxData
gosub Gend data ' Write data in D/4 conwverter
goto Main ' Jump to the begimning
Half: ' At half of the scale current at output iz 12 md
TxData = 8000
gosub Jend data
goto Main
Zero: ' At beginning of the =zcale, current at the output iz 4 md
TxData = 30
gosub Send data
goto Main
Jend Data:

AD Cs=0 ' Enable writing in D/4 converter
' Transfer data from TxData to
' SHIFT regiszter of D/A converter

shiftout AD Data,AD Clk,MSEFIRST,[TxData]

AD Cs=1 ' Transfer data from 3HIFT register to
' DIfA converter Latch

Return

End ' End of prodgram

Knowing the real time is of outmost importance in some projects. Let's take for example meteorological
observations where we measure temperature, humidity and atmospheric pressure twice a day - these information,
without the date and precise time when the measuring took place, would be incomplete. Unless we used real time
clock, we would have to utilize microcontroller internal timers to create a second, minute, day, month and a year.
Another drawback is the significant cumulative delay that will certainly amount until the end of the year. Even chips
intended for special purpose (like the one used in the sample) exhibit significant delays.

For such purpose it is much more efficient to use special chip with it's own power supply, so that time always equals
the real time. Accuracy of PCF8583 is about 1 second daily, so that maximal yearly deviation does not exceed 6
minutes (most applications do not require higher accuracy than this).

132

+

15U02 (2] nT
1
et

|

00000000000000 (s

PRY PRYFRATHWE 3 A0 10 S0 MO =020 0.0

Pl
o
I'--.
os
[

Hi

“—
a O
2 O
“—

III:I
i

}T'-

oo —{ | a0y s |

5 [stmirms 00 |]
O+ £

—{ s ELLT:] |
[Jroemaz sl 2

(llomsss wowcsowwn [
——— | ey L0100 ¥E 20
% HTISTY pe HIHTNEDED

P

————— | Wx g5 =,
% M W P,

d { = T wmvad|]

[re m stz | |

— | v Rl |l

ﬁ 193 ey w
1EDS LT

[I menrens st [

[s | |

[= thaerd |

[zcuras ey | |
[asnrga }EE._&E

il

=
=

Jesay

il

. CLUQEEING
+
¥ T
n_i o w =
u M
£onad
[m= ana [
s = ar [—
g [020
1 4 13 |0 [F—
ot Lhlvd =
B ddgz-5

ZHASAL' IS

o

1
S |
LTI0T

1
| S|
LI0T

LTI0T

T %] O—
(i
[
c

>
o

£96940d 42012 @wi3 [eas Buposuuod Jo ajd wexg

133

Program: BTC .EAS

— &

DEFITHE LCD DREG PORTD ' I/0 port with LCD
DEFTHE LCD DEIT 4
DEFIHE LCD_R3EG PORTD
DEFIHE LCD_ERSEIT 2 ' Register select pin
DEFIHE LCD_EREG PORTD
DEFTHE LCD _EEIT 3 ' Enable pin
DEFIHE LCD_EITS 4 ' d-hit data bus
DEFIHE LCD_LINE3 2 ' LCD has two character lines
symbol Tp = PORTE.3 ' Button Up is comnnected to BEE3
gymhol Down = PORTE.:Z ' Button Dowm iz connected to BEZ
symhol et = PORTE.1 ' Button Set iz comnected to REL
symbol 5CL = PORTC. 3 ' I2C data pin
symhol 5D& = PORTC.S ' I&C clock pin
Gec var hit
EO var hyte
a3 rvar hyte ' Seconds
jul rar hyte ' Mimates
H var hyte ' Hours
D var hyte ' Day
Mn var hyte ' Month
b var hyte ' ¥Year
OPTION_REG = 7L ' Enable pull-up resistorzs for
' PORTE
lcdout sfe,l ' Clear the display
Main:

togyle Sec
I2CEEAD 5D& 5CL,%10100001,2,[3]
I2CRERD DA, 5CL,%10100001,3, [M]
I2CREAD 5DA SCL,%10100001,4, [H]
I2CPEAD =D&, 5CL,%10100001,5,[D]
I2CEEAD S5DA SCL,%10100001,6, [Mn]
I2CRERAD 5D4,5CL,%10100001,6,[F]
lcdout $fe, 2
lcdout "Time: ™, hex (H),":", hex(M),” ", hex (3]
locdout $£fe, 5c0
lcdout "Date: ™, hex(D),".", hex (Mn),".20" hex|¥Y)
if 3ec = 0 then

lcdout SFE 8B, ©

else

lcdout $FE $5E,":"
endif
goto Main
End ' End of program

Temperature measuring is still one of the most common observations. Despite various means of measuring
temperature (starting from temperature couples like PT100 all the way to NTC and PTC resistors) new, easier ways
are being discovered. One of these new ways was presented by company Dalas with their new chip DS1820. Itis a
digital temperature sensor with only three pins. The advantage over the mentioned PT100 and NTC sensors which
have output in milivolts or ohms (both signals must be converted into digital values in order be handled and
displayed) is that DS1820 has digital information in degrees of Celsius, practically solving the problem of analog
electronics. It's only limitation is the temperature range, in this case -55 C ~ +125 C. Precision is 0.5 C and the
measuring takes 200ms which is more than sufficient, considered the fact that the temperature change is a slow

process.
Example of connecting digital
therm ometer DS1820) -
D318 T e .
RETIPCD — =
125 10c L™ e b FlElAPERLlRAl LI | |
o c| |2 1 b clBl [IS ERERLL T L | | o
-85 [Jraaiaeanirmis rElm [
[Jraarmack rez []
ﬂ RESEt E Rdﬁl’ﬂd e % D DT OF OF O= 0J 02 O O F RMTEE bk e {:}
R ENiFGins RBIINT
1 1“ L Qoo 2wl BOBFS00TINILOD lsv
2y = Y
i o el e ||| IS
— M= @ Roiss D& —>[E| LCOD contrast
oECLkW ~ RDSiEER
o ——{ | oecaicikour ROdiPSH D4 1
— [reomosomckl rorRsor [=
%m{ g [fromos REATICK |]
L jE RE3CCH res]
[rea red] E
{f D oo 8

135

— (&

Main:

Wait:

Program: DELl§i0. Bal

DEFIHE LCD_DREG PORTD *

DEFIHE LCD _DEIT 4

DEFIHE LCDI R3REG PORTD

DEFIHE LCD_E3EIT Z

DEFIHE LCD_EREG: PORTD

DEFIHE LCD_EEIT 3
DEFIHE LCD_EITA 4
DEFIHE LCD_LINE3 Z
symbhol D0 = FORTC.Z

tewmperature War Word
count_remain YWar Byte
count_per c© War Byte
ADCONL = 7

pause 100

OWOut DQ, 1, [$CC, $44]

0WIn DQ, 4, [count remain]'

I/0 port with LCD

Register select pin

Enable pin
4-hit data bus
LCD has two character lines

Dg line is connected to RCZ

Var.for storing measured walue
Count remaining

Count per degree C

et PORTA and PORTE to digital

Pause for starting LCD

Start measuring temperature

Check if it is finished

If count_remain = 0 Then Ceka)

OWOut DO, 1, [$CC, $EE]

Fead the measured tCemnperature

O0WIn D), 0O, [tewmperature.LOWEY¥TE, temperature.HIGHEYTE,

3kip 4, count_remain, count _per c]

' Display temperature in DEC

Lemperature = [(Cemperature >=> 1] % 100) - 25) +

[[[count_per ¢ - count_remain) * 100) / count_per o)

Lecdout $fe, 1, DEC [(temperature / 100), ".", DECZ

tewperature, " C7

Pause 1000 ' Measure every second
Goto Main ' Repeat all

End ' End of program

136

Appendix A

PIC BASIC AND MPLAB

Introduction

A.1 Installation of the program / MPLAB
A.2 Connection of PIC BASIC and MPLAB
A.3 Toolbar

MPLAB is a Windows programming package that facilitates writing and the development of the
program. The easiest way to describe it would be to characterize it as a development environment
for some standard programming language intended for PC programming. Using MPLAB
technically facilitates some of the operations which all the way up to the appearance of the IDE
environment, were operating out of the command line with very big number of parameters.
Nevertheless, out of different tastes, some programmers even today prefer standard editors and
compilers operating out of the command line. In any case the written code is very manifest and
provided with a relatively well-provided HELP menu (the abbreviation IDE was born out of the
initials Integrated Development Environment).

MPLAB is composed out of several different entities

- The grouping of the files belonging to the same project (Project Manager)
- The creation of the program and its elaboration (Text Editor)

- Simulator of the code whereby its work on the microcontroller is simulated.

137

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_a.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_a.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_a.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_a.htm

Besides there exist support for Microchips products such as PICStart Plus i ICD (/n Circuit
Debugger). As this book doesn’t rely upon them, they'll be mentioned as options only.

The minimal requirements in order to start up MPLAB on your computer are:

- Compatible PC of 486 class or higher

- Microsoft Windows 3.1x or Windows 95 and more recent Windows OS versions
- VGA graphic card

- 8MB of memory space (32 MB recommended)

- 20MB space on hard disk

- The mouse

To start MPLAB it is necessary to install it first, which is understood as a process of copying of
MPLAB files from CD onto the hard disk of the PC. On each newly opened window there is button
for going back to the previous window so mistakes should not represent any problem. The
installation itself flows similarly as those of almost all Windows programs. The welcome screen
pops up first and then you have the option choice and the installation menu in order to finally get
the message that your installed program is ready to be started.

Steps in the installation:
1. The starting of the Microsoft Windows
2. Put the Microchip CD disk into the CD ROM
3. Click onto the START in the lower left corner of the screen and choose the RUN option
4, Click onto the BROWSE and select CD ROM drive for your PC
5. On the CD ROM find the directory under the name of MPLAB
6. Click onto the SETUP.EXE and then on the OK button

7. Click once again on OK button in the RUN window

After these seven consecutive steps the installation will start. The following pictures explain the
meaning of single steps in the installation process.

138

MPLAB IDE ¥5.30 Installation

Welcome!

Thiz inztallation program will inztall the MPLAE IDE +5.30.

Prezs the Mest button ko start the installation. v'ou can press
the Cancel button nows if wou do not want to install the MPLAR
IDE +5.30 at this time.

< Back

LCancel |

The WELCOME screen at the beginning of the installation

At the very beginning it is necessary to choose those components of MPLAB with which we are
going to work. As it is supposed that there are no original Microchip’s hardware additions such as
programming devices or emulators, only the MPLAB environment, Assembler, Simulator and the
instructions for use will be installed.

MPLAB IDE ¥5.30 Installation E
Select Components
Chooze which components to install by checking the boxes
belom.
[V MPLAE IDE Files 22k
¥ MPASH AszemblerdMPLINE LinkerMPLIE Files 7614 k
[V MPLAE S1M Simulator Support Files E393 |
[~ MPLAE ICE Emulator Support Files B7a9 k
[~ PICMASTER Emulator Suppart Files 1200k
[~ PRO MATE Il Suppart Files B70 k.
[T PICSTART Pluz Suppart Files 156 k.
[T MPLAE ICD Debugger Support Files 247 k.
¥ Help Files 106k
Digk Space Required: 20835 k
Digk Space Remaining: 1720592 |
< Back LCancel

Selection of the components of the MPLAB development environment

139

The second supposition is that the OS will be Windows 95 (or some more recent version), so that
in the selection of the assembler language is taken out everything that is connected to DOS
operating system. However if you nevertheless wish to work in DOS, it is necessary to perform the
deselecting of all the options connected with Windows, and choose the corresponding DOS

components.

MPLAE IDE 530 Installation
Select Language Components
Chooze which components o ingtall by checking the boxes
below.
W MPASHM Aszembler for Windows 837 k.
[~ MPASM Assembler for DOS 584 |

¥ MPASHM Aszembler Header Files, Samples, and T 2226k

¥ MPLINE Linker/MPLIE for wWindovws35 1604 k
™ MPLIME Linker/MPLIE for wWindows 31/D05 2174 k
¥ Frocessar Linker Scripts 189k
Dizk Space Fequired: 18077 k
Digk Space Remaining: 1726198 k

< Back Cancel

Selection of the assembler and OS
As it is normal for any program, MPLAB should be installed into a defined directory. This option
can be changed into any directory on any hard disk of your PC. Unless you have some specific
reason, it should be left on the selected location.

MPLAE IDE 530 Installation

Select Destination Directory

Pleaze zelect the directary where the MPLAB IDE +5.30 files
are to be inztalled.

C:\Program FilezhWMPLAR Browse |

< Back

Cancel |

140

Selection of the directory for the MPLAB installation

The next option is necessary for the users who already had some previous MPLAB version
(different from one that is being installed). It's purpose is to save all the file copies that are subject
to change upon the transition to an updated version. In our case the selection of NO assumes that
the installation in course is the first one.

MPLAE IDE 530 Installation

Backup Replaced Files?

T hiz installation pragram can create backup copies aof all files
replaced during the inztallation. Do you want to create
backupz of the replaced files?

" es
Mo

< Back

Cancel |

The option necessary to the users who install the new version of MPLAB over some already
existing installation

The start menu is the set of the pointers onto the programs opened by the click onto the START
button in the lower left corner of the screen. It is necessary to leave this option exactly as it is
offered, since MPLAB is going to be started from here.

141

MPLAB IDE ¥5.30 Installation

Add to Start Menu?

Do pou want to create shortcuts to access the installed files?

v ‘fes
Mo

< Back

Cancel |

Adding MPLAB into the START menu

Location mentioned next is related to the part of MPLAB which will not be explained here as it is

insignificant for users. By selecting an apposite directory, MPLAB will keep all the files in
connection with the linker in that directory.

Linker Scripts

Linker script Location

Due to the expanded number of linker scripts you may
now inzkall therm in their oven sub directory. Uzers with
previous projects may prefer to keep them in the MPLAE
directony for compatibility with exizting projects [def.ault],
[F o are a new uzer you may wizh o keep these in the
WLER sub direchany.

€ Inztall files bo MPLAR install directany

i+ |nztall files to MPLABALKr sub directony

Hest » Cancel

Selection of the directory for the linker files

142

Every Windows program has the system files, usually stored in the same directory as the
Windows itself. After numerous installations, the Windows directory has a tendency of becoming
too big and encumbered. Therefore, some of the programs permit their system files to be kept in
the same directory as the program itself. MPLAB is one such program so that the option below
should be selected.

Select System Files

Select System Files

YWwhould pou ke bo ingtall spstern DLL Ales bo pour
WadindowzhS e directony? If pau are rinning MPLAR
inztalled on a common netwark, vou may not be
allovwed to write files to this directony. [F pou do not
inztall them in the YwWindowzhSes directon, they wil
be put in the zame directory az MPLAE.

™ Irngtall files bo YwindowshSys

& | mstall files to MPLAE install directon

Hest » Cancel

Selection of the system files directory

Following all steps up to now after pressing the button ‘Next’ the installation is under way

MPLAE IDE 530 Installation

Ready to Install!

Y'au are how ready ta ingtall the MPLAR |DE 530,

Presz the Mext button to begin the installation or the Back
button ko reenter the ingtallation informatiorn.

< Back

Cancel |

The screen exactly before the installation

143

The installation itself is brief and the course of the copying can be monitored on the small screen
in the right corner.

Inztalling

Copying file:
C:%Program FileshMPLABYPTECEEZ3IMC

B

The installation in course

When the installation is terminated, two dialog boxes are present on the screen — one for the last
information concerning corrections and the version of the program, the other greeting one. If the

text files (Readme.txt) are opened they should be closed.

MPLAE IDE 530 Installation

View README Files?

Each inztalled component of MPLAB IDE has an azsociated
README file that containg important information, such as
device zupport and known izsues.

whould yau like ta view theze files now?

{* ‘fes
Mo

Please review these files before contacting
Customer Support.

Cancel |

The last information concerning version and the corrections on the program

By clicking on the Finish button the installation of the program is thereby terminated.

144

To make work as easy as possible to those who already got used to the assembler’s compiler and
MPLAB, Microchip has left the option of using, besides its proper, the compilers of the other
manufacturers in its MPLAB development tool. Before starting to write a program, it is necessary
to undertake some adjustments. Let's assume that, for example MPLAB is installed in directory:
C:\ Program Files \ MPLAB and PIC BASIC Pro compiler in C:\ PBP.

You just start the MPLAB and choose Install Language Tool from the Project menu. The dialog
box where the corresponding options is to be set, the manufacturer first, (whereby directly in the
next option comes the list of compilers by the same manufacturer) and accordingly the compiler
itself — in our case Pic Basic Pro Compiler- and exactly as the one on the picture bellow will
appear then. At the end on should click at the option “browse” and find PBP.EXE file on the disk
(in this case C: PBP\). By clicking on OK the basic settings are completed.

Install Language Tool

Language Suite: |micmEngineering Labs Incj|

Tool Hame: | PicBasic Pro Compiler j|

Executable: |E:'\FB P\PBP.exe | Browse. . |
' Command-line " Windowed

Start MPLAB and choose the Install Language Tool from the Project menu.

Next step is the creation of the project that is done in a standard way by selecting New Project
from the Project menu and by assigning the project name e.g. “probe.pjt”. A special care is to be
given to the project storage location. The new project and all its components must be located in
the same directory as PicBasic Pro! For this case, the project must be stored in C:/PBP.

Mew Project |
File Hame: Directories: | 1] 4 I
proba_pjt c:\pb
| | | PP Cancel |

o A -
{3 pbp Hel |
Help
[inc
[samples
List Files of Type: Drives:
IPmiect Files [*.pit] j I = c: system j

Creating project by selecting New Project from Project menu and assigning the project name as,
e.g. “probe.pjt’.

145

By clicking OK the new window Edit Project appears. In Language Tool “microEngeneering Labs”
is to be selected (answer the incoming question with OK). It is, hence, necessary to click on
‘probe [.hex]’ in the lower part of the window whereby the option Node Properties is activated.

E dit Project

— Project
T arget Filename

|pmha. hex |
Include Path

Library Path

Linker Script Path

Development Mode: |EditDl Only16F84 | Change...

Cancel

Help

adil,

Language Tool Suite: | microEngineering Labs j|

— Project Files

Add Hode,..

Eopy Node.

BEmld/ Niode

|
|
Delpte Hote |
|
|

Mode Properties. .

The New window Edit Project for the definition of the manufacturer. Choose “microEngeneering
Labs”

The purpose oh this window is to set the microcontroller for which the program is written.

By clicking Change button, the new window for choosing the available microcontrollers appears.
As an option, Editor only is to be left in the absence of any available Microchip’s tools (this option
states the use of MPLAB as a shell for PIC Basic compiler).

Bu clicking Node Properties the window shown on the picture below appears. Choose "PM"
version in the assembler selection. Clicking the OK returns us to the previous window.

146

Mode Properties Ed |

Node: | PROBA HEX j| Language Tuul:| PicBasic Pro Compiler j|
— Options
Description | | | I I Data =
Assembler o MPASMDO MPASMWE PM —
Show BASIC Source a1 On o Off

Command Line
|-ol -p16F84 |

Additional Command Line Options

N

The Add Node button is active now, and through it the name to the file with basic program is
assigned. It is in our case, ‘probe.bas’. it is to take notice that the present action is only assigning
name of the file into the project. Its actual creation is done in next step.

Add Node HE|
File name: Folders:
|pmha.has | c:\pbp

Cancel |

12c508 bas - e -
12c508a.bas — 5 pbp
12ch09.bas B Help |
12ch09a.bas ne
12¢671.bas 1 samples Network... |
12cb72 bas — [usb —
12ceb18.bas =
12ceb19.bas il

List filez of type: Drives:

ISuun::E files [*.bas] j I =) c: spztem j

Window for naming the program in writing. Opening of the file is done in next step.

So far we defined microcontroller and the programming language. It still remains to open the file,
write the code and register it under the name given in previous step. (proba.bas).

By clicking File-> New the window in which the basic program will be written appears.

Before we start the program writing, file must be registered with the command File-> Save as, file

147

name being obviously “proba.bas”. The code writing can start now. The program here serving as
an example is a very simple one and its only function is to make the diode on a port B twinkle.

MPLAR IDE - C-APRFPROBA. FIT

Eie Prosc Edd Debupg Opiors Teoks Window Hep

[DE E1ES B 3 6 B i1 e oA P il il =<

= Hame : Proba.BAS -
= Hotice : Copyright {e) 2002 mikroElektrenika =
- A1l Rights Reserwed =
- Date o SRS EERE -
= lersion HE] -
= Hotes : -
defFine osc
Hain:
PORTE = SFF * Twrn on all LED dindes
Pause 500 * LS sec panse
FORTE = §@0 * Twrn ofF all LED diodes
FPause SO0 YRS sec pause

The window for writing Basic program

Upon finishing the code writing, the click on PROJECT-> Build All is performing the compilation of

the program. Unless there have been some errors, the obtained file is C:/PBP/probe.hex readable
into the microcontroller.

148

Changing a toolbar

Saving a project

Cutting a part
of the text out

Pasting a part
of the text

Start program
execution

Step by step program
execution

Microcontroller reset

RAM memory Window

Yariables Window

E _

£lio|
id

CIEEREA

RO

=

T

==
E—

5

Y

[sFR]f|——

Opening the project
Searching for a
part of the text
Copying a part
of the text
Saving the
assembler file
Stop program

execution

Skip conditions

RAM memory
Window

SFR registers
Window

Repeat translation of
the entire project

Since MPLAB is composed of several separate parts, each of them possesses its own toolbar.
However, there exists a toolbar being a sort of a combination of all the others, which may be
considered as a common one. This toolbar is sufficient for our needs so it will be the explained in
details. On the picture bellow this toolbar is given with the brief explanations of the icons. Out of
the limited format of this book, the basic toolbar is displayed as the free one and in a standard
position is always bellow the menu, displaced horizontally along the entire screen.

If, for whatever reason, currently used toolbar does not respond, upon clicking this icon the next
toolbar becomes available. The change goes into circle so that upon the 4th click, the same

toolbar is obtained again.

149

B

v

£

5|

|

)

2 2 = &

id

B B EEE

If the current toolbar for some reason does not respond to a click on this icon, the next
One appears. Changeover is repeated so that on the fourth click we will get the same
toolbar again.

Icon for opening a project. Project opened in this way contains all screen adjustments
and adjustment of all elements which are crucial to the current project.

Icon for saving a project. Saved project will keep all window adjustments and all
Parameter adjustments. When we read in a program again, everything will return to
the screen as when theproject was closed.

Searching for a part of the program, or words is operation we need when searching
Through bigger assembler or other programs. By using it, we can find quickly a part of
the program, label, macro, etc.

Cutting a part of the text out. This one and the following three icons are standard in all
Programs that deal with processing textual files. Since each program is actually a
common text file, those operations are useful.

Copying a part of the text. There is a difference between this one and the previous
icon. With cut operation, when you cut a part of the text out, it disappears from the
screen (and from a program) and is copied afterwards. But with copy operation, text is
copied but not cut out, and it remains on the screen.

When a part of the text is copied, it is moved into a part of the memory which serves
For transferring data in Windows operational system. Later, by clicking on this icon it
can be 'pasted' in the text where the cursor is.

Saving a program (assembler file).

Start program execution in full speed. It is recognized by appearance of a yellow status
line. With this kind of program execution, simulator executes a program in full speed
until it is interrupted by clicking on the red traffic light icon.

Stop program execution in full speed. After clicking on this icon, status line becomes
gray again, and program execution can continue step by step.

Step by step program execution. By clicking on this icon, we begin executing an
instruction from the next program line in relation to the current one.

Skip requirements. Since simulator is still a software simulation of real work, it is
possible to simply skip over some program requirements. This is especially handy with
instructions which are waiting for some requirement following which program can
proceed further. That part of the program which follows a requirement is the part that's
interesting to a programmer.

Resetting a microcontroller. By clicking on this icon, program counter is positioned at
the beginning of a program and simulation can start.

By clicking on this icon we get a window with a program, but this time as program
memory where we can see which instruction is found at which address.

With the help of this icon we get a window with the contents of RAM memory of a
microcontroller.

By clicking on this icon, window with SFR register appears. Since SFR registers are
used in every program, it is recommended that in simulator this window is always
active.

If a program contains variables whose values we need to keep track of (ex. counter), a
Window needs to be added for each of them, which is done by using this icon.

When certain errors in a program are noticed during simulation process, program has
to be corrected. Since simulator uses HEX file as its input, so we need to translate a
program again so that all changes would be transferred to a simulator. By clicking on
this icon, entire project is translated again, and we get the newest version of HEX file
for the simulator.

150

Appendix B

Introduction

B.1 Installation of the PIC Basic Pro compiler

B.2 Installation of a MicroCODE studio

B.3 Connecting MicroCODE Studio and PBP _compiler
B.4 Connecting MicroCODE Studio and the programmer
B.5 Code writing and compilation in MicroCODE studio

Although the code writing can be done with the simplest editor and compiled in command line
(those who had programmed in DOS probably remember well those acrobatics) using special
“editors” appropriate for programming language is far better.

Such specialized editors are called “Integrated Development Environments” - IDE. Using them
makes code writing easier as the programmer is able to supervise which variables, labels or
similar program elements have already been used. At the same time, they make command words
bold and even write them in another color rendering thereby program more intelligible. The option
for automatic call up of the programmer is also available together with many other facilities.
Simply put, having those facilities without using them is like climbing on foot to the 13" floor of a
building with elevator.

The first thing to be done is to create a new directory into which the compiler will stored. Let it be the directory
C:/PBP. Then follows the copying of data file PBP240.EXE into that directory and its unpacking (compiler enters in
the form of unpacking archive)? by double-clicking it. Unless the compiler is unpacked it is enough to copy it into the
desired directory.

Installation of the editor starts by double-clicking on MCSTUDIO. Afterwards, the standard setup
process is started where the computer location for the editor’s installation can be chosen. The
setup process starts with the usual warning to close all other active windows. By clicking on
button Next, the setup continues.

151

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/app_b.htm

Welcame ta the MCS Setup prograrm. This program
will inztall MCS on pour computer.

[t iz gtrongly recammended that you exit all Windows programs
before minning thiz Setup program.

Click Cancel to quit Setup and then cloze any programs poul
have running. Click Mest bo continue with the Setup progranm.

WSRMIMG: Thiz program is protected by copuright law and
international treaties.

Inauthorized reproduction or digtribution of thiz program, or arp
partion af it, may rezult in severe civil and criminal penalties, and
will be prozecuted ta the maximum extent pozzible under law.

Cancel |

The first window after the installation starts. It is necessary to click on button Next

Next question is whether you accept the license and copyright rules or not. By accepting these
rules by clicking on the Yes button, the installation goes forward. The next image corresponds to
that phase of the installation.

Software License Agreement Ed |

Pleasze read the following Licenze Agreement. Press the PAGE DOWH ke to zee
the rest of the agreement.

Lizensze Agreement -
Fleaze read the following carefully before uzing thiz software. By inzstalling the zoftware

oL are agreeing to be bound by the fallowing terms and conditions, PLEASE MOTE

THAT THIS SOFTWARE PACKAGE IS MOT COPYRIGHT FREE. IF 0L *ISH TO
REDISTRIBUTE THIS SOFTWARE PACKAGE OR MAKE IT AVAILAELE FOR
DOWHMLOAD WA THE INTERMET OR WwWORLD WIDE »WEE [wiww], 0L MUST
COMTACT MECAMIQUE UK FIRST AMD OBTAIM PERMISSION.

Copyright

Al title and coperghts in and to the Software Package and any copies of the Software
Package are owned by Mecanigue UK unless stated otherwize. The Software Package

iz protected by copuright laws and international treaty provizgions. Therefore, you must

treat the saftware like any ather copyrighted material. The Saftware Package and

elementz of the Software Package may not be reverze engineered, zold, lent, dizplayed, LI

Do wou accept all the terms of the preceding License Agreement? |f pou chooge Mo, Setup
will cloze. Tainstall MCS, pau must accept this agreement.

< Back ez Ho |

The directory for editor location is the next question. In case of failed statement of the directory,
the installation is to be effectuated in C:\ProgramFiles\Mecaniqe.

152

Choosze Destination Location Ed |

Setup will inztall MCS ik the fallowing folder.
Ta inztall ko this falder, click Mesxt.

To inztall ko a different folder, click Browse and select another
folder.

You can chooze not toingtall MCS by clicking Cancel to exit
Setup.

" D estination Faolder

C:%Program Filez\MecaniguestCS Browse... |

< Back Cancel

The choice of an installation directory. The best choice is to leave the option by default. It is
necessary to click on OK button in order to proceed

The name and address of directory is without any special meaning for further programming. The
real issue is the available memory space on the hard disk or on the need for keeping all items
associated with a single program in the same directory.

The next question refers to the name of programming group. The name already offered
corresponds to the program name so it should be left as such.

Select Program Folder Ed |

Setup will add pragram iconz ta the Pragram Falder listed Belaw.
'ou may type a new folder name, ar zelect one from the exizting
Faolders list. Chck Mest o continue.

Frogram Folders:

MicroCodesSudio

E zizting Folders:

Activizion VWalue
Adobe

ahead Mer
Animagic GIF
ATHEL AVE Toals

Bittfare locons

Cheyenne Bitw!are j

< Back I Ment » I Cancel |

The program group is to be named MicroCodeStudio. Clicking on Next, the installation goes on

153

Finally, the window appears confirming the successfully performed installation.

5

etup Complete

Inztallation is now complete.

Click Finizh to complete Setup.

% Black

Clicking on Start-Programs-MicroCode Studio starts up the just installed MicroCode Studio and
the window from the picture bellow will appear.

MicroCode Studio - PICBasic Pro [Untitled_bas)

| Fle Edt Search Yiew Help
D EE S S
J Target Processar : I%MEFEEB j o v | = | o [E B a ek
| & -/ e 0w w | Po:fcomt =)=
JE|
_I |n|:|udES fsi-si-si-si-si-si-si-si-si-sési-sési-si-si-si-si-si-si-***********************d
] Defines rE Name : UNTITLED.BAS *
] Constants r# Autkhor ¢ [set under view...options] *
] Wariables "% HNotice @ Copvright (c) 2002 [set under view...options) *
] Alias and Modifiers i : All Rights Reserved *
3 Symbols '+ Date :oa2/ze/08 %
7 Labels r#® Version : 1.0 *
'* Notes *
LaF *
L R R R R R R R RN
-
< :
@ ready B Ln11: Call | 5

154

To connect MicroCode Studio and PBP compiler a new window is to be opened. It's done by
clicking on the Options from the View menu. If the compiler is already copied into a hard disk
directory clicking on the Find Automatically button whereupon will the program itself search for the
directory with compiler through the hard disk. When the program finds the compiler, above the
button the path “C:\PBP” will appear above the button Find Automatically.

Options |
FICE azic I Editor | Online Updating |

Cormpiler I Azzembler I Programmer I

f-‘uzersibane\pic_easy_newipichasic

Find Autarmatically | |_] Find Manually... |

Includes I Options I

.-i'-.u:ld... | IE.' Hemwel

[¥ Gave Sethings on Exit Cancel Help

Connecting MicroCode studio and PBP compiler. If the PBP compiler is already copied into a
directory on a hard disk, it is enough to click on the Find Automatically button and the program will
find it on its own

155

Beside the path to the compiler, it is still necessary to define the path to the include data file. By
clicking on Add the paths C:/PBP and C:/PBP/inc are added within Includes.

FICBazic | E ditar I Online Updatingl
[
Campiler |.ﬁ.ssembler| F'n:ugrammerl Select Folder |
Fleaze zelect the folder pou wish o add to your cument include
c:\pbhp list:
Find Automatically | 1 Find w-] igre =]
{:l b zzql?
-4 My Documents
Includes | Options | (] Nedvee |
=] pbp
g
(] samples
L] ush
- Pic-gasy
[—:I{:l Program Files
#-_] Accessories
-] ACD Systems
mﬁ & rhsizian Waliie j
Add.. R
st | 5 renore o] el |

¥ Save Settings on Exit OK. Cancel | Help |

Include data files are necessary for successful compilation of the program. Clicking the Add, the
new window appears with the inc directory into which the PBP compiler is copied

156

Options |
PICE asic | Editor | Online Updating |

Caompiler | fzzembler I Programmer I

c:hpbp
Find Automatically | [Find tarually... |

|ncludes | I:Ip[igngl

o hpbphinc
c:hpbp

.-'1‘-.|:|-:|... | E'Hemwel

[V Save Settings on Exit Cancel Help

Options window after setting the path to the compiler and include data files. Notice that there are
include data files in the very C:\PBP directory so that their path should be specified as well

This step finishes the setting part referring to the compiler. MicroCode studio is now ready for
program reading and compiling.

The installation of the programmer that MicroCode will call upon successfully accomplished
program compilation is to be undertaken only if the user possesses some development
environment or some of the programmers that will read in the compiled program into the
microcontroller. In lack of any of these tools this part of MicroCode studio setting is to be omitted.

The setting of the programmer starts by clicking on Programmers whereupon two distinct options
appear, one for adding of programmer into the list and another for their removal. The programmer
that is to be used here ranks as the simplest economic programmers of PIC microcontrollers that
are available at the moment. The name of this programmer is /Cprog and it uses the serial pin of
the computers port in order to communicate with the microcontroller (more details can be found in
the special appendix contained in this book).

157

Options |
PICE azic | Editor | Online Updating |

I:Dmpilerl Agzembler Progranrner |

Crefault Prograrmmer : IEF'IE"-.-\-"in j Edi... |

Add Mew Programmer... | n_E' Remove Pragrammer Entry |

[nzludes | Dptigngl

.-’-‘-.u:lu:l... | @Hemnvel

¥ Save Settings on Exit aK Cancel Help

By clicking Programmers the part for setting the programmer appears

Before installing the programmer, it has to be copied in a directory on the hard disc, e.g.
“C:\Programmer”. Clicking the “Add new Programmer...”, the brief procedure of selecting the path
to programmer begins.

The first step is writing the name of the programmer or any abbreviation that could bear
resemblance to it. As Icprog programmer is used it is logical to name it “ICprog”.

Add Hew Programmer |

Select Display Hame

Twpe inthe name of the programmer to be dizplayed in
@ MicroCode Studios drop doswn selection boxes. For

example, ERICWIn ar melabs Loader. The name is for

dizplay purposes only, and can be anything you like.

Dizplay Matme Iiu:pr-:ug

< Back | M et > Cancel

In this option the name of the programmer is to be written. It can well be any of the names bearing
resemblance to the programmer we wish to install

158

The next step is the writing of the exact name of the programmer. It is very important not to make
any mistake; otherwise the program will not be able to locate it on a hard disk.

Add Hew Programmer E |

Select Programmer Executable

Type inthe name of the programmet executable name. For
@ example, epicyvin.exe or meloader exe. Dont include the
pathname, just the executable name.

Programmer Filename : |

< Back M et > Cancel

In this option, the exact name of the executive data file of the programmer is to be indicated. In
this case it’s icprog.exe

Finally, by clicking on Find Automatically, the program then finds on its own the path towards the
programmer.

Add Hew Programmer E |

Select Programmer Path

MicroCode Studio can automatically search for the path
@ that contains the programmer executable, or you can
chooze it manually .

c'programmer

[Find kanually... |

< Back M et > | Cancel |

By clicking on Find Automatically the program finds the path to the programmer on its own

159

Option to define additional parameters is next. Nevertheless, it is to be omitted due to the fact that
it will be used in a later phase of the operation when the longer programs are written and the
program name is not changed very often. Clicking on Finished overrides this option.

Add Hew Programmer |

Select Parameters

when the programimer iz started. You can alzo 'hind' hex
filenames and target devices using fhex-filenamed and
Jtarget-deviced respectively.

Click here to view an example

@ MicroCode Studio enables you to pass cerain parameters

Parameters I

< Back | e Finished

The option to define the additional parameters of the programmer is not to be used here;
therefore it is to be omitted by clicking on Finished

The window Option out of the View menu with the set parameters for the compiler and the
programmer now looks like exactly as on the image bellow. Thereby all relevant settings of the
MicroCode Studio are finished.

Options |

PICE asic | Editar I Online Updatingl

Eu:umpilerl fzeembler Frogrammer |

Default Programmer : I TI Edit... |

Add Mew Programmer... | aE' Femove Programmer Entry |

[nzludes | I:Ip[igngl

o hphphing
c:hpbp

.-’-'-.u:ld... | E'Fiemnvel

¥ Save Settings on Exit ok Cancel Help

Window Option with all the parameters for the compiler and the programmer set

160

Besides the setting of the compiler and the programmer, there are somewhat less important
settings as that of an editor. Since those parameters are already well set we will not take them
into consideration now.

The MicroCode studio looks like most of the Windows programs. Above the working area there
are menu lines, toolbars and the line connected to the compilation and reading of a program into
the microcontroller.

MicroCode Studio - PICBasic Pro [proba.baz)

| File Edit Search View Help
] DeE & 23| & &
J Target Prucexsnr:l@éP'IEFB?? j [= nﬁ - | & |) [Eiank
J & e o0 n ow| P comt 2| =
|
] Includes Pk ok o ok o o ok o o o o ok o o o o ok o
£ Defines '4 Name : Proba.BAS *
E} o3 ' Notice @ Copyright (c) 2001 mikreoelektronika *
7] Constants T ! A1l Rights Reserwved *
(2 Wariables ' Date ;o 1/02/502 *
E; LED tE Veprsien : 1.0 *
E?l '€ Notes *
. . L3 -
] Aliaz and Modifiers
L R R R R R R R R R R R]
(3 Symbols
ﬁ LEDs define osc S
“ By LED: TRIS
D LahEIS_ gymbol LED=z = PORTE ' Led diodes are on port B
= Main gymbol LED= TRIS = TRISE ' Direction register of LED port
----- = Flash
LED wvar hyte ' Variable for storing
' LED diodes states
1 wvar hyte ' Counter
LED=s_TRIZ = 500 ' LED port iz output
LEDs = O ' Turn off LED doides
Main:
LED = 1 ' Ztarting satate of LED dicdes
<
(@ ready B Ln26:CalB3 |

The menu line contains all standard submenus as File, Edit, Search, View and Help.
The toolbar contains but a few basic icons and their purpose we will not explain in details.

What separates the MicroCode studio from the other development environments is its simplicity

and legibility. Its most important part is located in the left part by the name Code Explorer. When

necessary, that part of the window can be shut down by clicking on View — Code Explorer...
161

although it is recommended to leave it as it is for it contributes to the better legibility and
organization of the program. The code writing is done in the right part of the window. The process
of code writing itself is largely facilitated by thickening of the commands, and by the excellent
solution for the complicated commands with the greater number of parameters as “button”
command is. Namely, after writing of this command and the first empty (blank) character, the
yellow frame with all parameters of the respective command appear.

Upon having written the code, by clicking on icon Compile Only (in triangular shape on the right
side) the compilation of program starts. If an error occurs, it's reported in a special part at the
bottom of the window. By clocking on Error, the cursor is positioned exactly at the row in which
the error occurred. After correction, the program is compiled as long as the compilation process
becomes successful.

If the programmer is already configured, then the icon right next to the Compile Only can be used
instead, which will, upon a successfully accomplished compilation, call the programmer.

| # MicroCode Studio - PICBasic Pro [proba.bas)
| Ele Edt Seach View Help
lDeE|:EE S S
| | Target Processor: [@ 16F577 Bl - & | Eneck
J - 0 n o PDrt:WEDmD"EDM}"FS

-

1 5]
I] Includes next i ' repeat the loop § times [(0-7)
[C7 Defines
E} e gosub Flash ' Ca3l1 the subroutine Flash
| 1 Constants
| Warables goto Main " Jump to the beginning
- ¥ LED
¥y Flash: ' Beginning of the subroutine Flash
] Aliaz and Modifiers)
Cl Symbals for 1 =0 to 2
- By LEDs LED=s = &ff " Tur on al11 LED diodes
By LEDs TRIS Pause 500 ' 0.5 sec pause .
- LEDs = 500 " Turn off all LED dicdes
@ LE'I:'EIS_ Pause 500 ' 0.5 sec pause
: I;':alr; next i ' repeat the loop § times (0-7)
a3
return
End

4

g enor line 59: bad exprezzion. [probabag)

|. compilation emrors ||'_§'| Ln53: Col1 |

Clicking on the icon in the port form, the special window for examining the serial connection with
the microcontroller opens. The Serial communication window serves for the serial communication
between PC and the microcontroller. An additional option exists which enables the change of all
the transfer parameters such as the port on which the microcontroller is attached, the transfer rate
or the transfer format.

162

Serial Communication Window

| File Edit Help

J 3 | Connect

Sendleszage | I

1 Port :I
o i COMY
|71 Baudrate
|7 Pariy
| 7] Bute Size
| 7] Stop Bits
Kl _'*I_I
| @ dizconnected o

Option for examining the serial connection with the microcontroller

163

