
AN957

Sensored BLDC Motor Control Using dsPIC30F2010
INTRODUCTION

The dsPIC30F2010 is a 28-pin 16-bit MCU specifically

designed for embedded motor control applications. AC

Induction Motors (ACIM), Brushless DC (BLDC) and

DC are some typical motor types for which the

dsPIC30F2010 has been specifically designed. Some

of the key features on the dsPIC30F2010 are:

• 6 independent or 3 complementary pairs of

dedicated Motor Control PWM outputs.

• 6 input, 500Ksps ADC with up to 4 simultaneous

sampling capability.

• Multiple serial communications: UART, I2C™ and

SPI

• Small package: 6 x 6 mm QFN for embedded

control applications

• DSP engine for fast response in control loops.

In this application note we discuss how the

dsPIC30F2010 is used to control a sensored BLDC

motor. Please refer to AN901 for details on how BLDC

motors operate and general information on what needs

to be done to run and control BLDC motors. This

application note discusses the specific implementation

using the dsPIC30F2010. It touches only briefly on

BLDC motor details

BLDC MOTORS

BLDC motors are basically inside-out DC motors. In a

DC motor the stator is a permanent magnet. The rotor

has the windings, which are excited with a current. The

current in the rotor is reversed to create a rotating or

moving electric field by means of a split commutator

and brushes. On the other hand, in a BLDC motor the

windings are on the stator and the rotor is a permanent

magnet. Hence the term inside-out DC motor.

To make the rotor turn, there must be a rotating electric

field. Typically a three-phase BLDC motor has three

stator phases that are excited two at a time to create a

rotating electric field. This method is fairly easy to

implement, but to prevent the permanent magnet rotor

from getting locked with the stator, the excitation on the

stator must be sequenced in a specific manner while

knowing the exact position of the rotor magnets.

Position information can be gotten by either a shaft

encoder or, more often, by Hall effect sensors that

detect the rotor magnet position. For a typical three-

phase, sensored BLDC motor there are six distinct

regions or sectors in which two specific windings are

excited. These are as shown in Figure 1.

FIGURE 1: BLDC COMMUTATION

DIAGRAM

By reading the Hall effect sensors, a 3-bit code can be

obtained with values ranging from 1 to 6. Each code

value represents a sector on which the rotor is

presently located. Each code value, therefore, gives us

information on which windings need to be excited. Thus

a simple lookup table can be used by the program to

determine which two specific windings to excite and,

thus, turn the rotor.

Note that state ‘0’ and ‘7’ are invalid states for Hall

effect sensors. Software should check for these values

and appropriately disable the PWM.

Change Notification Inputs

Taking this technique a step further, the Hall effect

sensors can be connected to dsPIC30F2010 inputs

that detect a change (Change Notification (CN) inputs).

An input change on these pins generates an interrupt.

In the CN Interrupt Service Routine (ISR) the user

application program reads the Hall effect sensor value

and uses it to generate an offset in the lookup table for

driving the windings of the BLDC motor.

Author: Stan D’Souza

Microchip Technology

FIRING

60o

HALL R

HALL Y

HALL B

HALL STATE

RYB
5 4 6 2 3 1 5 4 6

Q1,Q5Q1,Q6Q3,Q5Q1,Q5Q1,Q6Q2,Q6Q2,Q4Q3,Q4Q3,Q5
 2004 Microchip Technology Inc. DS00957A-page 1

AN957
MOTOR CONTROL PULSE WIDTH
MODULATION (MCPWM)

Using the above method, you can get full speed

rotation of the BLDC motor. However, to get variable

speed of the BLDC motor, you must apply a variable

voltage to the terminals of the windings. Putting this in

digital terms, the variable voltage can be obtained by

different duty cycles of a PWM signal going to the

windings of the BLDC motor.

The dsPIC30F2010 has six PWM outputs that can be

driven with the PWM signal. As shown in Figure 2, the

three windings can be driven ON High, driven ON Low

or not driven at all by using six switches, IGBTs or

MOSFETs. When one leg of the winding is connected

for example, to the high side, the variable duty cycle

signal PWM can be injected on the low side driver. This

has the same effect as having a PWM signal on the

high side and connecting the low side to VSS or GND.

When driving the PWM signal, low side drivers are

preferred over high side drivers.

FIGURE 2: BEMF SENSING

HARDWARE EXAMPLE

PWM is provided by the dsPIC30F2010’s dedicated

Motor Control (MC) PWM. The MCPWM module has

been designed specifically for motor control

applications. (Please refer to Figure 3 as you follow this

discussion of the MCPWM module.)

 The MCPWM has a dedicated 16-bit PTMR time base

register. This timer is incremented by a user defined

clock tick, which can be as low as TCY. The user also

decides the period required for the PWM by selecting a

value and loading it in the PTPER registers. The PTMR

is compared to the PTPER value at every TCY. When

there is a match, a new period is started.

The duty cycle is controlled similarly, by loading a value

in the three duty cycle registers. Unlike the period com-

pare, the value in the duty cycle register is compared at

every TCY/2 interval (i.e., twice as fast as the period

compare). If there is a match between the PTMR value

and the PDCx value, then the corresponding duty cycle

output is driven low or high as dictated by the PWM

mode selected. The three outputs from the duty cycle

compare are channeled to a complementary output

pair where one output is high while the other is low, and

vice versa. The two outputs can also be configured as

independent outputs. When driven as complementary

outputs, a dead time can be inserted between the time

the high level goes low and the low level goes high.

This dead time is hardware configured and has a

minimum value of TCY. Dead time insertion prevents

inadvertent shoot-thru in output drivers.

R B

Q1 Q3

Q4 Q6

Y

=

VDC

z

z

z
z

DS00957A-page 2  2004 Microchip Technology Inc.

AN957
FIGURE 3: PWM BLOCK DIAGRAM

PDC3

PDC3 Buffer

PWMCON1

PTPER Buffer

PWMCON2

PTPER

PTMR

Comparator

Comparator

Channel 3 Dead Time
Generator and

PTCON

SEVTCMP

Comparator
Special Event Trigger

FLTACON

OVDCON

PWM Enable and Mode SFRs

FLTA Pin Control SFR

PWM Manual

Channel 2 Dead Time
Generator and

Channel 1 Dead Time
Generator and

PWM Generator
#2

PWM Generator

#1

PWM Generator #3

SEVTDIR

PTDIR

DTCON1 Dead Time Control SFR

Special Event

Postscaler

FLTA

PWM1L

PWM1H

PWM2L

PWM2H

PWM3L

PWM3H

1
6
-b
it
 D
a
ta
 B
u
s

Override Logic

Override Logic

Override Logic

Control SFR

 PWM time base

Output
Driver
Block

Note: Details of PWM Generator #1 and #2 not shown for clarity.
 2004 Microchip Technology Inc. DS00957A-page 3

AN957
There are several modes in which the MCPWM module

can be configured. Edge aligned output is probably the

most common mode. Figure 4 depicts the operation of

an edge aligned PWM. At the start of the period, the

outputs are all driven high. As the PTMR increments, a

match with the duty cycle registers causes the corre-

sponding duty cycle output to go low thereby marking

the end of the duty cycle. The PTMR match with

PTPER register caused a new period to start and all

outputs go high to start a whole new cycle.

FIGURE 4: EDGE-ALIGNED PWM

The other modes that the MCPWM can be set up for

are center-aligned PWM and single-shot PWM. These

modes are not discussed here because they were not

used for controlling the BLDC motor. For details on

these modes, please refer to the dsPIC30F Family

Reference Manual (DS70046).

The important feature of the MCPWM used in this

application is the Override Control. The Override

Control is the last stage of the MCPWM module. It

allows the user to directly write to the OVDCON

register and control the output pins. The OVDCON reg-

ister has two 6 bit fields in it. Each of the six bit fields

corresponds to an output pin. The high byte portion of

the OVDCON register, determines if the corresponding

output pin is driven by a PWM signal (when set to 1) or

(when set to 0) driven Active/Inactive by the corre-

sponding bit field in the low byte portion of the

OVDCON register. This feature allows the user to have

PWM signals available, but not driving, at all output

stages of the pins. For BLDC motors, the same value is

written to all PDCx registers.

Depending on the value in the OVDCON register, the

user can select which pin gets the PWM signal and

which pin is driven active or inactive. When controlling

the BLDC sensored motor it is necessary to excite two

winding pairs depending on where the rotor is located

and dictated by the value of the hall sensors. In the CN

Interrupt Service routine the hall sensors are read and

then the value of the sensors is used as an offset in a

lookup table which corresponds to the value which will

be loaded in the OVDCON register. Table 1 and

Figure 5 show how different values are loaded in the

OVDCON register depending on which sector the rotor

is located in and thereby which windings need to be

excited.

TABLE 1: PWM OUTPUT OVERRIDE

EXAMPLE

FIGURE 5: PWM OUTPUT OVERRIDE

EXAMPLE
Period

Duty Cycle

0

PTPER

New duty cycle loaded from PDCx

PWM1H

PWM2H

PDC1

PDC2

PTMR value

State OVDCON<15:8> OVDCON<7:0>

1 00000011b 00000000b

2 00110000b 00000000b

3 00111100b 00000000b

4 00001111b 00000000b

PWM3H

PWM3L

PWM2H

PWM2L

1 2 3 4

PWM1H

PWM1L

STATE

Note: Switching times between states 1-4 are controlled
by user software. The state switch is controlled by
writing a new value to OVDCON. The PWM
outputs are operated in the independent mode for
this example.
DS00957A-page 4  2004 Microchip Technology Inc.

AN957
HARDWARE DESCRIPTION

The block diagram in Figure 6 depicts how the BLDC

motor is driven using a dsPIC30F2010. For a detailed

schematic please refer to Appendix C.

FIGURE 6: HARDWARE BLOCK

DIAGRAM

The six MCPWM outputs are connected to three

MOSFET driver pairs (IR2101S), which in turn are

connected to six MOSFETs (IRFR2407). These

MOSFETs are connected in a three-phase bridge

format to the three BLDC motor windings. In the current

implementation, the maximum MOSFET voltage is 70

Volts, and the maximum MOSFET current is 18 Amps.

It is important to note that adequate heat dissipation

must be provided if the maximum capabilities are being

used. MOSFET drivers also require a higher voltage

(15V) to operate, so this voltage level needs to be pro-

vided. The motor is a 24V BLDC motor so the DC+ to

DC- bus voltage is 24V. A regulated 5V is provided to

drive the dsPIC30F2010. The three Hall effect sensor

inputs are connected to input pins that have Change

Notification circuits associated with them. These inputs

are enabled along with their interrupt. If a change

occurs on any of these three pins, an interrupt is gen-

erated. To provide a speed demand, a potentiometer is

connected to an ADC input (RB2).

To start and stop the motor, a push button switch is

provided at RC14. To provide some current feedback to

the motor, a low value resistor (25 milliohms) is con-

nected between the DC- bus voltage and ground or

Vss. The voltage generated by this resistor is amplified

by an external op amp(MCP6002) and fed to an ADC

input (RB1).

FIRMWARE DESCRIPTION

Two firmware programs are included in Appendix A

and Appendix B to illustrate the methods described in

the Application Note. One program uses open-loop

speed control. The other uses proportional and integral

feedback for closed loop speed control.

The open-loop method is generally not practical for

actual applications. It is included here primarily to

illustrate the BLDC motor drive methodology.

Open-Loop Control

In open-loop control, the MCPWM directly controls

motor speed based on the voltage input from the Speed

Pot. After initializing the MCPWM, ADC, Ports and the

Change Notification inputs, the program waits for an

activation signal (e.g., a key press) to indicate a start

(see Figure 7). When the key is pressed, the Hall

sensors are read. Based on their value, a correspond-

ing value is retrieved from the table and written to the

OVDCON. At this point the motor starts spinning.

FIGURE 7: OPEN-LOOP FLOW

PWM3H

PWM3L

PWM2H

PWM2L

PWM1H

PWM1L

BLDC
dsPIC30F2010

CN5

CN6

CN7

AN2

Demand

Hall Effect Sensor Feedback

 MOSFET
Drive
Circuit

Start

Read Hall Effect Sensors;
Load OVDCON with

TableLoState

Demand Pot Read?

Initialize MCPWM, ADC &
Ports

Key Pressed?

Load PDCx with
Demand Value

Stop MCPWM using OVD-
CON

Key Pressed?

No

No

No

Yes

Yes

Yes
 2004 Microchip Technology Inc. DS00957A-page 5

AN957
At first the duty cycle value is held at a default 50%. On

the very next loop of main program, however, the

potentiometer is read and its value (i.e., the correct

demand value) is inserted as the duty cycle. This deter-

mines the speed of the motor. The higher the duty cycle

value the faster the motor will spin. The speed is

controlled by the voltage control pot, as shown in

Figure 8.

FIGURE 8: OPEN VOLTS CONTROL

MODE

The Hall effect sensors are connected to the Change

Notification Pin. The CN interrupt is enabled. As the

rotor spins, the position of the rotor magnet changes,

and the rotor enters a different sector. Each new posi-

tion is signaled by a CN Interrupt. In the CN Interrupt

routine, which is shown in Figure 9, the Hall effect

sensors are read and based on the value, a table

lookup value is got and written to the OVDCON

register. This action will insure that the correct windings

are excited in the right sector and the motor will

continue to spin.

FIGURE 9: CN INTERRUPT FLOW

Phase Advance

For details on Phase Advance and how to implement,

please refer to AN901.

Closed-Loop Control

In the closed-loop control version of the firmware, the

main difference is that the pot is used for setting the

demand. The control loop provides Proportional and

Integral (PI) control of the speed. To measure the

actual speed, TMR3 is used as a timer to gate a com-

plete electrical cycle. Since we are using a 10-pole

motor, five electrical cycles result in one mechanical

cycle. If T seconds is the time for one electrical cycle

then the speed S = 60/(P/2*T) rpm, where P is the

number of poles of the motor. The control is as shown

in Figure 10. A closed-loop control flow chart is shown

in Figure 11.

FIGURE 10: CLOSED VOLTS CONTROL

MODE

FIGURE 11: CLOSED-LOOP CONTROL

FLOW

dsPIC®

MCPWM

BLDC
Motor

Voltage
Demand

Start

Read Hall Effect Sensors

Get TableLoState Value

Load OVDCON

End

dsPIC®

MCPWM
Speed PI
Controller

Demand

+

-

Calculated Motor Speed

Motor

Σ

Start

Read Hall Effect Sensors;
Load OVDCON with

TableLoState

Actual Speed Read?

Initialize MCPWM, ADC
and Ports

Key Pressed?

Calculate Proportional and
Integral Speed Errors *

Stop MCPWM using
OVDCON

Key Pressed?

No

No

No

Yes

Yes

Yes

* PDCx = KP(Proportional Speed Error) + KI(Integral Speed Error)
DS00957A-page 6  2004 Microchip Technology Inc.

AN957
CONCLUSION

The dsPIC30F2010 is well suited for closed-loop

control of a sensored BLDC motor. The peripherals and

DSP engine provide an excellent bandwidth for a

sensored BLDC applications with sufficient code space

available for the customer’s application program.

REFERENCES

• AN885 – Brushless DC (BLDC) Motor

Fundamentals

• AN901 – Using the dsPIC30F for Sensorless

BLDC Control

• AN857 – Brushless DC Motor Control Made Easy

• AN889 – Brushless DC Motor Control Using

PIC18FXX31 MCUs
 2004 Microchip Technology Inc. DS00957A-page 7

AN957
APPENDIX A: SOURCE CODE LISTING FOR OPEN-LOOP CONTROL

This appendix contains the source code listing for open-loop control.

//---
// Software License Agreement
//
// The software supplied herewith by Microchip Technology Incorporated
// (the “Company”) is intended and supplied to you, the Company’s customer,
// for use solely and exclusively with products manufacture by the Company.
// The software is owned by the Company and/or its supplier, and is protected under
// applicable copyright laws. All rights are reserved. Any use in violation of the
// foregoing restrictions may subject the user to criminal sanctions under applicable
// laws, as well as to civil liability for the breach of the terms and conditions of
// this license.
//
// THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS,
// IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//---
// File: ClosedLoopSenBLDC.c
//
// Written By:Stan D'Souza, Microchip Technology
//
// The following files should be included in the MPLAB project:
//
// ClosedLoopSenBLDC.c-- Main source code file
// p30f2010.gld-- Linker script file
//
//
//---
//
// Revision History
//
// 10/01/04 -- first version
//--
/***

Low side driver table is as below. In this StateLoTable,
the Low side driver is PWM while the high side driver is
either on or off. This table is used in this exercise

***/

unsigned int StateLoTable[] = {0x0000, 0x0210, 0x2004, 0x0204,
0x0801, 0x0810, 0x2001, 0x0000};

/**
Interrupt vector for Change Notification CN5, 6 and 7 is as below.
When a Hall sensor changes states, an interrupt will be caused
which will vector to the routine below.
The user has to then read the PORTB, mask bits 3, 4 and 5,
shift and adjust the value to read as 1, 2 ... 6. This
value is then used as an offset in the lookup table StateLoTable
to determine the value loaded in the OCDCON register
***/

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-

TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-

LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00957A-page 8  2004 Microchip Technology Inc.

AN957
void _ISR _CNInterrupt(void)
{

IFS0bits.CNIF = 0; // clear flag
HallValue = PORTB & 0x0038; // mask RB3,4 & 5
HallValue = HallValue >> 3; // shift right 3 times
OVDCON = StateLoTable[HallValue];

}

/***
The ADC interrupt loads the PDCx registers with the demand pot value.
This is only done when the motor is running.

***/

void _ISR _ADCInterrupt(void)
{

IFS0bits.ADIF = 0;
if (Flags.RunMotor)
{

PDC1 = ADCBUF0; // get value ...
PDC2 = PDC1; // and load all three PWMs ...
PDC3 = PDC1; // duty cycles

}
}

int main(void)
{

LATE = 0x0000;
TRISE = 0xFFC0; // PWMs are outputs
CNEN1 = 0x00E0; // CN5,6 and 7 enabled
CNPU1 = 0x00E0; // enable internal pullups
IFS0bits.CNIF = 0; // clear CNIF
IEC0bits.CNIE = 1; // enable CN interrupt
InitMCPWM();
InitADC10();
while(1)
{ while (!S2); // wait for start key hit

while (S2) // wait till key is released
DelayNmSec(10);

// read hall position sensors on PORTB
HallValue = PORTB & 0x0038; // mask RB3,4 & 5
HallValue = HallValue >> 3; // shift right to get value 1, 2 ... 6
OVDCON = StateLoTable[HallValue]; // Load the overide control register
PWMCON1 = 0x0777; // enable PWM outputs
Flags.RunMotor = 1; // set flag
while (Flags.RunMotor) // while motor is running

if (S2) // if S2 is pressed
{

PWMCON1 = 0x0700; // disable PWM outputs
 OVDCON = 0x0000; // overide PWM low.

Flags.RunMotor = 0; // reset run flag
while (S2) // wait for key release

DelayNmSec(10);
}

} // end of while (1)

}

 2004 Microchip Technology Inc. DS00957A-page 9

AN957
/***
Below is the code required to setup the ADC registers for :
1. 1 channel conversion (in this case RB2/AN2)
2. PWM trigger starts conversion
3. Pot is connected to CH0 and RB2
4. Manual Stop Sampling and start converting
5. Manual check of Conversion complete

***/
void InitADC10(void)
{

 ADPCFG = 0xFFF8; // all PORTB = Digital;RB0 to RB2 = analog
 ADCON1 = 0x0064; // PWM starts conversion
 ADCON2 = 0x0200; // simulataneous sample 4 channels
 ADCHS = 0x0002; // Connect RB2/AN2 as CH0 = pot ..

// ch1 = Vbus, Ch2 = Motor, Ch3 = pot
 ADCON3 = 0x0080; // Tad = internal RC (4uS)
 IFS0bits.ADIF = 0;
 IEC0bits.ADIE = 1;

 ADCON1bits.ADON = 1; // turn ADC ON
}

/**
InitMCPWM, intializes the PWM as follows:
1. FPWM = 16000 hz
2. Independant PWMs
3. Control outputs using OVDCON
4. Set Duty Cycle with the ADC value read from pot
5. Set ADC to be triggered by PWM special trigger
***/

void InitMCPWM(void)
{

PTPER = FCY/FPWM - 1;

PWMCON1 = 0x0700; // disable PWMs
OVDCON = 0x0000; // allow control using OVD
PDC1 = 100; // init PWM 1, 2 and 3 to 100
PDC2 = 100;
PDC3 = 100;
SEVTCMP = PTPER;
PWMCON2 = 0x0F00; // 16 postscale values
PTCON = 0x8000; // start PWM

}

//---
// This is a generic 1ms delay routine to give a 1mS to 65.5 Seconds delay
// For N = 1 the delay is 1 mS, for N = 65535 the delay is 65,535 mS.
// Note that FCY is used in the computation. Please make the necessary
// Changes(PLLx4 or PLLx8 etc) to compute the right FCY as in the define
// statement above.

void DelayNmSec(unsigned int N)
{
unsigned int j;
while(N--)
 for(j=0;j < MILLISEC;j++);
}

DS00957A-page 10  2004 Microchip Technology Inc.

AN957
APPENDIX B: SOURCE CODE LISTING FOR CLOSED LOOP CONTROL

This appendix contains the source code listing for closed loop control.

//---
// Software License Agreement
//
// The software supplied herewith by Microchip Technology Incorporated
// (the “Company”) is intended and supplied to you, the Company’s customer,
// for use solely and exclusively with products manufacture by the Company.
// The software is owned by the Company and/or its supplier, and is protected under
// applicable copyright laws. All rights are reserved. Any use in violation of the
// foregoing restrictions may subject the user to criminal sanctions under applicable
// laws, as well as to civil liability for the breach of the terms and conditions of
// this icense.
//
// THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS,
// IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//---
// File: ClosedLoopSenBLDC.c
//
// Written By:Stan D'Souza, Microchip Technology
//
// The following files should be included in the MPLAB project:
//
// ClosedLoopSenBLDC.c-- Main source code file
// p30f2010.gld-- Linker script file
//
//---
// Revision History
//
// 10/01/04 -- first version
//---
//***
ClosedLoopSenBLDC.c is a sensored Closed Loop Control for a BLDC motor.
The task consists of the following:
Sense changes in the Hall Sensors connected to CN5,6 & 7 (PortB)
During the CNInterrupt, read the sensors input by reading PortB
Mask and determine the state of the position 1, 2, ... 6.
Use the StateLoTable and the lookup table provided to determine the
Overload Control Register value. Set the OVDCON to this value.

The PWM is initialized to generate independant continuous PWMs.
The value of the Pot REF is used to determine the demand or desired
speed of the Motor. The desired speed value is then used with the
actual speed value to determine the Proportional Speed Error and the
Integral Speed Error. With these two values the new DutyCycle is determined
as: NewDutyCycle = Kp*(Portportional Speed Error) + Ki*(Integral Speed Error)
All 3 PWM Duty cycles are then loaded with the NewDutyCycloe 10-bit value.

The FPWM = 16000hz

The ADC is setup for a PWM trigger to start the conversion
**/
 2004 Microchip Technology Inc. DS00957A-page 11

AN957
#define __dsPIC30F2010__
#include "c:\pic30_tools\support\h\p30F2010.h"

#define FCY 10000000// xtal = 5.0Mhz; PLLx8
#define MILLISEC FCY/10000// 1 mSec delay constant
#define FPWM 16000
#define Ksp1200
#define Ksi10
#define RPMConstant60*(FCY/256)

#define S2!PORTCbits.RC14

void InitTMR3(void);
void InitADC10(void);
void AverageADC(void);
void DelayNmSec(unsigned int N);
void InitMCPWM(void);
void CalculateDC(void);
void GetSpeed(void);

struct {
unsigned RunMotor : 1;
unsigned Minus : 1;
unsigned unused : 14;

} Flags;

unsigned int HallValue;
int Speed;
unsigned int Timer3;
unsigned char Count;
unsigned char SpeedCount;
int DesiredSpeed;
int ActualSpeed;
int SpeedError;
int DutyCycle;
int SpeedIntegral;

//***
Low side driver table is as below. In this StateLoTable,
the Low side driver is PWM while the high side driver is
either on or off. This table is used in this exercise

***/

unsigned int StateLoTable[] = {0x0000, 0x1002, 0x0420, 0x0402,
0x0108, 0x1008, 0x0120, 0x0000};

/**
Interrupt vector for Change Notification CN5, 6 and 7 is as below.
When a Hall sensor changes states, an interrupt will be caused which
will vector to the routine below.
The user has to then read the PORTB, mask bits 3, 4 and 5,
shift and adjust the value to read as 1, 2 ... 6. This
value is then used as an offset in the lookup table StateLoTable
to determine the value loaded in the OCDCON register
***/
DS00957A-page 12  2004 Microchip Technology Inc.

AN957
void _ISR _CNInterrupt(void)
{

IFS0bits.CNIF = 0; // clear flag
HallValue = PORTB & 0x0038; // mask RB3,4 & 5
HallValue = HallValue >> 3; // shift right 3 times
OVDCON = StateLoTable[HallValue];// Load the overide control register

}

/***
The ADC interrupt loads the DesiredSpeed variable with the demand pot
value. This is then used to determing the Speed error. When the motor
is not running, the PDC values use the direct Demand value from the pot.
***/
void _ISR _ADCInterrupt(void)
{

IFS0bits.ADIF = 0;
DesiredSpeed = ADCBUF0;
if (!Flags.RunMotor)

{
PDC1 = ADCBUF0; // get value ...
PDC2 = PDC1; // and load all three PWMs ...
PDC3 = PDC1; // duty cycles
}

}

/**
The main routine controls the initialization, and the keypress to start
and stop the motor.
**/

int main(void)
{

LATE = 0x0000;
TRISE = 0xFFC0; // PWMs are outputs
CNEN1 = 0x00E0; // CN5,6 and 7 enabled
CNPU1 = 0x00E0; // enable internal pullups
IFS0bits.CNIF = 0; // clear CNIF
IEC0bits.CNIE = 1; // enable CN interrupt
SpeedError = 0;
SpeedIntegral = 0;
InitTMR3();
InitMCPWM();
InitADC10();
while(1)
{

while (!S2); // wait for start key hit
while (S2) // wait till key is released

DelayNmSec(10);
// read hall position sensors on PORTB
HallValue = PORTB & 0x0038; // mask RB3,4 & 5
HallValue = HallValue >> 3; // shift right to get value 1, 2 ... 6
OVDCON = StateLoTable[HallValue];// Load the overide control register
PWMCON1 = 0x0777; // enable PWM outputs
Flags.RunMotor = 1; // set flag
T3CON = 0x8030; // start TMR3
while (Flags.RunMotor) // while motor is running

if (!S2) // if S2 is not pressed
 2004 Microchip Technology Inc. DS00957A-page 13

AN957
{
if (HallValue == 1) //IF in sector 1
{
HallValue = 0xFF; // force a new value as a sector
if (++Count == 5) // do this for 5 electrical revolutions or 1

// mechanical revolution for a 10 pole motor
{
Timer3 = TMR3;// read latest tmr3 value
TMR3 = 0;
Count = 0;
GetSpeed();// determine spped
}

}
}
else // else S2 is pressed to stop motor
{

PWMCON1 = 0x0700;// disable PWM outputs
 OVDCON = 0x0000; // overide PWM low.

Flags.RunMotor = 0;// reset run flag
while (S2)// wait for key release

DelayNmSec(10);
}

} // end of while (1)

}

/***
Below is the code required to setup the ADC registers for :
1. 1 channel conversion (in this case RB2/AN2)
2. PWM trigger starts conversion
3. Pot is connected to CH0 and RB2
4. Manual Stop Sampling and start converting
5. Manual check of Conversion complete

***/
void InitADC10(void)
{

 ADPCFG = 0xFFF8; // all PORTB = Digital;RB0 to RB2 = analog
 ADCON1 = 0x0064; // PWM starts conversion
 ADCON2 = 0x0000; // sample CH0 channel
 ADCHS = 0x0002; // Connect RB2/AN2 as CH0 = pot.
 ADCON3 = 0x0080; // Tad = internal RC (4uS)
 IFS0bits.ADIF = 0; // clear flag
 IEC0bits.ADIE = 1; // enable interrupt

 ADCON1bits.ADON = 1; // turn ADC ON
}

DS00957A-page 14  2004 Microchip Technology Inc.

AN957
/**
InitMCPWM, intializes the PWM as follows:
1. FPWM = 16000 hz
2. Independant PWMs
3. Control outputs using OVDCON
4. Set Duty Cycle using PI algorithm and Speed Error
5. Set ADC to be triggered by PWM special trigger
***/

void InitMCPWM(void)
{

PTPER = FCY/FPWM - 1;

PWMCON1 = 0x0700; // disable PWMs
OVDCON = 0x0000; // allow control using OVD
PDC1 = 100; // init PWM 1, 2 and 3 to 100
PDC2 = 100;
PDC3 = 100;
SEVTCMP = PTPER; // special trigger is 16 period values
PWMCON2 = 0x0F00; // 16 postscale values
PTCON = 0x8000; // start PWM

}

/**
Tmr3 is used to determine the speed so it is set to count using Tcy/256

***/

void InitTMR3(void)
{

T3CON = 0x0030; // internal Tcy/256 clock
TMR3 = 0;
PR3 = 0x8000;

}

/**
GetSpeed, determins the exact speed of the motor by using the value in
TMR3 for every mechanical cycle.
***/

void GetSpeed(void)
{

if (Timer3 > 23000) // if TMR3 is large ignore reading
return;

if (Timer3 > 0)
Speed = RPMConstant/(long)Timer3;// get speed in RPM

ActualSpeed += Speed;
ActualSpeed = ActualSpeed >> 1;
if (++SpeedCount == 1)

{SpeedCount = 0;CalculateDC();}
}

 2004 Microchip Technology Inc. DS00957A-page 15

AN957
/***
CalculateDC, uses the PI algorithm to calculate the new DutyCycle value which
will get loaded into the PDCx registers.
**/

void CalculateDC(void)
{

DesiredSpeed = DesiredSpeed*3;
Flags.Minus = 0;
if (ActualSpeed > DesiredSpeed)
SpeedError = ActualSpeed - DesiredSpeed;
else

{
SpeedError = DesiredSpeed - ActualSpeed;
Flags.Minus = 1;
}

SpeedIntegral += SpeedError;
if (SpeedIntegral > 9000)

SpeedIntegral = 0;
DutyCycle = (((long)Ksp*(long)SpeedError + (long)Ksi*(long)SpeedIntegral) >> 12);
DesiredSpeed = DesiredSpeed/3;
if (Flags.Minus)
DutyCycle = DesiredSpeed + DutyCycle;
else DutyCycle = DesiredSpeed - DutyCycle;
if (DutyCycle < 100)

DutyCycle = 100;
if (DutyCycle > 1250)

{DutyCycle = 1250;SpeedIntegral = 0;}
PDC1 = DutyCycle;
PDC2 = PDC1;
PDC3 = PDC1;

}

//---
// This is a generic 1ms delay routine to give a 1mS to 65.5 Seconds delay
// For N = 1 the delay is 1 mS, for N = 65535 the delay is 65,535 mS.
// Note that FCY is used in the computation. Please make the necessary
// Changes(PLLx4 or PLLx8 etc) to compute the right FCY as in the define
// statement above.

void DelayNmSec(unsigned int N)
{
unsigned int j;
while(N--)
 for(j=0;j < MILLISEC;j++);
}

DS00957A-page 16  2004 Microchip Technology Inc.

AN957
A
P
P
E
N
D
IX
 C
:

S
C
H
E
M
A
T
IC
S

T
h
is
 a
p
p
e
n
d
ix
 c
o
n
ta
in
s
 s
c
h
e
m
a
ti
c
 d
ia
g
ra
m
s
 f
o
r
u
s
in
g
 t
h
e
 d
s
P
IC
3
0
F
2
0
1
0
 t
o
 c
o
n
tr
o
l
a
 s
e
n
s
o
re
d
 B
L
D
C
 m
o
to
r.

F
IG
U
R
E
 C
-1
:

M
O
T
O
R
 C
O
N
T
R
O
L
 S
C
H
E
M
A
T
IC
 1
 2004 Microchip Technology Inc. DS00957A-page 17

AN957
F
IG
U
R
E
 C
-2
:

M
O
T
O
R
 C
O
N
T
R
O
L
 S
C
H
E
M
A
T
IC
 2

1
V
C
C

2
H
IN

3
L
IN

4
C
O
M

5
L
O

6
V
S

7
H
O

8
V
B

1
V
C
C

2
H
IN

3
L
IN

4
C
O
M

5
L
O

6
V
S

7
H
O

8
V
B

1
V
C
C

2
H
IN

3
L
IN

4
C
O
M

5
L
O

6
V
S

7
H
O

8
V
B

DS00957A-page 18  2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WAR-

RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,

WRITTEN OR ORAL, STATUTORY OR OTHERWISE,

RELATED TO THE INFORMATION, INCLUDING BUT NOT

LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,

MERCHANTABILITY OR FITNESS FOR PURPOSE.

Microchip disclaims all liability arising from this information and

its use. Use of Microchip’s products as critical components in

life support systems is not authorized except with express

written approval by Microchip. No licenses are conveyed,

implicitly or otherwise, under any Microchip intellectual property

rights.
 2004 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,

PRO MATE, PowerSmart, rfPIC, and SmartShunt are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,

SmartSensor and The Embedded Control Solutions Company

are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,

dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,

FanSense, FlexROM, fuzzyLAB, In-Circuit Serial

Programming, ICSP, ICEPIC, Migratable Memory, MPASM,

MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,

PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,

PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,

SmartTel and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2004, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00957A-page 19

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00957A-page 20  2004 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address:

www.microchip.com

Atlanta
Alpharetta, GA

Tel: 770-640-0034

Fax: 770-640-0307

Boston
Westford, MA

Tel: 978-692-3848

Fax: 978-692-3821

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo
Kokomo, IN

Tel: 765-864-8360

Fax: 765-864-8387

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

San Jose

Mountain View, CA

Tel: 650-215-1444

Fax: 650-961-0286

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200

Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506

Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507

Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355

Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061

Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8632

Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526

Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399

Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4420-9895

Fax: 45-4420-9910

France - Massy
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869

Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Introduction
	BLDC Motors
	Change Notification Inputs

	Motor Control Pulse Width Modulation (MCPWM)
	Hardware Description
	Firmware Description
	Open-Loop Control
	Phase Advance
	Closed-Loop Control

	Conclusion
	References
	Appendix A: Source Code Listing for Open-Loop Control
	Appendix B: Source Code Listing for Closed Loop Control
	Appendix C: Schematics
	Worldwide Sales and Service

