Chapter 3. The Conventional Axial Mode Helix Antenna

3.1 Introduction

In this chapter we examine the conventional axial mode helix and its operation. Through
an exploration of the conventional axial mode helix, we gain insights into the operation of
axial mode structures that support circular polarization and lay the groundwork for
understanding the operation of the Stub Loaded Helix (SLH) antenna. In this chapter we
also examine the performance behavior of the axial mode helix which will provide

benchmarks against which the performance of the SLH can be compared.

3.2 Conventional Helix Geometry

Figure 3.1 shows the geometry for a conventional axial mode helix, repeated from Chapter
2 for convenience. The defining parameters of the conventional helix are the helix
diameter, D, the helix circumference, C, the turn-to-turn spacing, S, the pitch angle of the
turns, o, and the axial length, A. The diameter, and hence circumference, primarily
determine the frequency of operation of the helix. The circumference of the helix is

approximately equal to one wavelength at the center frequency of operation of the helix.

Not shown in Figure 3.1 is the groundplane and feed details of the helix. The helix is
usually mounted above the groundplane at the feed end of the helix with the groundplane
perpendicular to the axis of the helix as shown in Figure 3.2. The groundplane can be any
shape, but is typically square or round with a diameter of one-half to one wavelength.
Other groundplane configurations may be used, for example the conical reflector of the
helicone shown in Chapter 2. For our discussions we will only consider the conventional

axial mode helix with a flat groundplane.
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Figure 3.1 Basic helix geometry defining diameter (D), turn-to-turn spacing (S), axial
length (A), circumference (C), turn length (L), and pitch angle («). In (b) the relationships
between S, C, D, L and « are shown for a single turn that has been stretched out flat.
[Kraus, 1988]
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Figure 3.2 Conventional axial mode helix showing the feed and groundplane

3.3 Operating Principles for the Axial Mode Helix Antenna

Kraus [1988] discovered axial mode operation occurs when the circumference, C, of the
helix is approximately one wavelength at the center frequency of operation and endfire
axial mode operation is supported for approximately 0.75A < C < 1.3\. The optimal pitch
angle, o, was found to be approximately 10° < o < 20° for axial mode operation. This

corresponds to a inter-turn spacing of 0.17\ <S < 0.36\ at the center frequency of
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operation. The axial-mode helix's primary attributes are that it produces circular
polarization and moderate gain over a wide (~50%) bandwidth. The purpose of this
discussion is to review the operating principles of how the axial mode helix operates. In
particular, this discussion centers on how the current modes and phasing on the helix

conductor affect the helix's properties.

To a first approximation, the helix can be considered to be a continuous linear antenna
carrying a traveling wave. Since the helical winding is periodic with a period equal to the
turn spacing, the helix can be considered to be a periodic structure, allowing us to borrow

analytical tools developed for more generalized periodic structures.

Consider the linear array of » isotropic point sources with equal amplitude and spacing
shown in Figure 3.3. The phase difference of the fields from adjacent sources as observed
in the far field is given by [Kraus, 1988]

Y = %\—:Scosgb—é = [ypScosp — 6 (3-1)
where S = spacing between sources, m

Ao = free space wavelength, m

¢ = angle between array axis and observation point, rad.

0 = relative phase difference between sources, rad.

By = free space phase constant

For the endfire case, ¢ = 0, linear array theory shows this corresponds to 6 = 4 3,5
[Kraus, 1988]. If the spacing, S, is a half-wavelength there will be two endfire lobes (0°,
180°). In order to eliminate the unwanted lobe, the spacing must be reduced below a half-
wavelength. It can be shown that for the ordinary endfire case the condition on the

spacing is given by [Stutzman and Thiele, 1981]

s<3(1-%) (3-2)
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Figure 3.3 Linear array model for an n-turn axial-mode helix antenna consisting of n point

sources with equal spacing, S, and amplitudes.

The directivity of a linear array can be increased over that of the ordinary endfire case if
the interelement phase, ¢, is increased. This is given by the Hansen-Woodyard condition

for increased directivity where [Stutzman and Thiele, 1981]
6==(3s+12) (3-3)

In order to prevent the back lobe from becoming as large or larger than the main lobe,
Hansen-Woodyard also places a restriction on the spacing between elements such that
[Stutzman and Thiele, 1981]

s <3(1-1) (3-4)

The Hansen-Woodyard condition illustrates the necessary requirements for maximum
endfire directivity for a linear array, namely the requirements for interelement phasing and
spacing. It is of limited usefulness in considering a periodic structure such as the axial
mode helix since only one mode of operation is considered. Instead a more generalized

approach is required.

If we assume that the array is a periodic structure supporting a traveling wave traveling
from left to right along the array, the phase constant, (3, of the traveling wave can be given
by [Kraus, 1981]
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g =2 (rad m™1) (3-5)

Aop

where p = v/c = relative phase velocity, dimensionless
v = wave velocity, m s’!

c = velocity of light, m s™!
The phase difference between sources is thus given by [Kraus, 1981]

§ =28 (rad) (3-6)

Aop

For the fields from the n sources to be in-phase at a distant point it is required that [Kraus,
1981]

Y = 2mm (rad) (3-7)
where m = mode number = 0,4+1,42, etc.
Substituting equations (3-1) and (3-6) into (3-7) we obtain [Kraus, 1981]
2mm = [3yS cos p — BS (3-8)

where [3)S = electrical distance between sources for a free-space wave, rad

(BS = electrical distance between sources for the guided wave, rad

For the periodic structure there are now three parameters that determine the angle of the
beam maximum: the mode number, m, the element spacing, .S, and the relative phase
velocity of the guided wave, p. Thus, for a given periodic structure with spacing, .S, there
are mathematically an infinite number of modes, with corresponding guided phase
velocities, that have a beam maximum in the direction of ¢. However, not all of these
modes are realizable since the guided phase velocity to support the mode may not be

realizable.
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As an example consider a structure with a spacing S = %. For the endfire case, cos
¢ = 1, the values of the relative phase velocity for the guided wave, p, for several modes
are given in Table 3.1.

Table 3.1 Relative phase velocity for different modes with S=%

mode number, m | relative guided phase velocity, p
0 1
-1 1/5
1 -1/3
-2 1/8
2 -1/7

From Table 3.1 it is obvious that the m = 1 and m = 2 modes cannot be realized. For this

structure no positive mode numbers can be supported.

A more common way of analyzing periodic structure is to plot the electrical spacing, 3,5,
of the free space wavelength versus the electrical spacing, 3.5, of the guided wave along
the array. These quantities are usually normalized by 27 so that the plot is of S/ versus
S/pA, or more commonly referred to as a k-3 diagram. This is also termed a Brillouin
diagram [Brillouin, 1946] and is a useful tool for illustrating which modes are propagating
on a structure. This is particularly useful in analyzing helical antenna structures since the

helix supports several current modes on its structure.

For example, Sensiper [1955] describes how a helix supports more than one current mode.
Sensiper analyzed a sheath model for the helix in which the helix is modeled by an
anisotropic current conducting sheet. Solving for solutions of the determinantal equation
of the sheath helix, he showed a solution for the n = 1 mode in addition to the n = 0 mode
which was previously known. The k-3 diagram for his solution is shown in Figure 3.4. In
this figure the phase velocity of the wave is given by the slope of the straight line drawn
for the origin to a point on the curve. The group velocity is given by the slope of the

curve at that point.
Mathematically, it can be shown that a helical structure will support more than one current

mode, but there is also experimental evidence to support this conclusion. In some of the

earliest measurements on axial mode helices by Kraus and Williamson [1948], it became
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evident that the current distribution on the helix structure was complex. Figure 3.5 shows
measured current distributions along a helix for two different frequencies as reported by

Kraus and Williamson [1948]. The upper plot in Figure 3.5 shows the current distribution
along the helix at a frequency where the helix does not radiate a circularly polarized wave.

The lower plot is for a frequency where the radiation is circularly polarized.
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Figure 3.4 Solutions of the sheath determinantal equation, ka vs fa forn =0, 1, 90° <
< 0° [Sensiper, 1955].

ka= pasin¥

Kraus uses these current distributions to attribute the axial mode helix operation to the
presence of four traveling waves; an unattenuated wave and an exponentially attenuated
wave traveling in each direction as illustrated in Figure 3.6. The unattenuated and
exponentially attenuated wave, 1 and 2 in Figure 3.6, are launched from the feed end of
the helix. Both traveling waves propagate along the helix until they reach the open end of
the helix winding. At this end, they are reflected forming the two backward traveling
waves, 3 and 4 in Figure 3.6. Interference between these four traveling waves create the

current distributions shown in Figure 3.5.
The upper plot in Figure 3.5 shows a standing wave pattern that is created when only the

two unattenuated waves, 2 and 4, propagate along the helix. This occurs in the region of

operation where the axial mode helix does not generate a circularly polarized wave. When
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the helix supports propagation of both the unattenuated and exponentially attenuated
waves, the result is a current distribution such as the lower plot of Figure 3.5. Also, for

this mode of operation, the magnitude of the exponentially attenuated wave is larger than

the unattenuated wave.

Table 3.2 Design Parameters for the Helix Results in Figure 3.5 [Kraus and
Williamson, 1948]

C, circumference 70.68 cm
D, diameter 22.5 cm
a, pitch angle 12°

S, turn-to-turn spacing | 15 cm
N, # turns 7

L, axial length 112 cm
Groundplane dia. 66 cm

I Open end

L 1 I
| 2 Meters 3 4 5

1 1 ] l
I 2 Meters 3 4 5

Figure 3.5. Measured current distributions on a helix at 250 MHz (upper) and 450 MHz
(lower) for the helix specified in Table 3.2 [Kraus and Williamson, 1948]
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Figure 3.6. Illustrative current amplitude distributions of traveling waves supported on an
axial-mode helix. With the feed at the left hand side of the graph, 1 represents an
exponentially decaying forward traveling wave, 2 represents an unattenuated forward
traveling wave, 3 represents an exponentially decaying reverse traveling wave generated
by the reflection at the end of the helix, and 4 represents an unattenuated reverse traveling
wave generated by the reflection at the end of the helix. After [Kraus and Williamson,
1948].

Kraus and Williamson [1948] suggest that anytime a traveling wave is supported on a
helix, a circularly polarized wave is radiated. However, the backwards traveling wave
resulting from the reflection at the open end of the helix results in a circular wave of the
opposite sense also being radiated. This explains why the helix would not radiate a
circularly polarized wave for the case of the upper plot shown in Figure 3.5 because the
forward and backward traveling waves are approximately the same amplitude, resulting in
two opposite sense circularly polarized waves being radiated in the forward direction.
Clearly for circular polarization to occur, it is necessary that the reflected waves from the

open end of the helix be significantly attenuated relative to the forward traveling wave.

In the work by Kraus and Williamson [1948], they reported measurements of the phase
velocity of the traveling waves along the helix shown in Figure 3.7. Figure 3.7 shows that
the phase velocity is approximately equal to the speed of light, c, at low frequencies. Ata
certain point the phase velocity exhibits a sudden drop to less than ¢, indicating the

presence of a slow wave on the helix. There is a gradual increase in the phase velocity
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with frequency back toward c. This region of slow phase velocity corresponds to the
operating frequencies at which the helix will produce circular polarization. Hence, it
appears that a slow wave condition is necessary for axial mode operation with circular

polarization.

-Vc Meas. \
6 chic.— |

200 300 400 S00

Figure 3.7. Measured and calculated phase velocity ratio of helix as a function of
frequency in MHz. [Kraus and Williamson, 1948].

The phase velocity measurements by Kraus and Williamson [1948] seem to imply that all
the traveling waves are slow waves in the operational frequency region of the helix.
However, a more extensive measurement campaign by Marsh [1951] reached a different
conclusion. Marsh made current distribution measurements of a uniform circular helix
over a wide bandwidth including below and above the operating frequency range of the
axial mode of operation. In explaining the helix current distributions and radiation
characteristics, Marsh used multiple traveling waves much like Kraus and Williamson, as
illustrated in Figure 3.6, but he applied them to a mode distribution concept. Marsh
defined three mode distributions Ty, T, and T, which describe the currents and waves
supported by the helix. The three mode distributions correspond to the frequency regions
below where circularly polarized radiation is supported (T(), where endfire circularly
polarized radiation is supported (T;) and above where endfire circularly polarized

radiation is supported (T5).
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The Ty mode predominates when the helix circumference C < 0.675\. The T traveling
waves experience little attenuation as they travel down the helix and they propagate with a
phase velocity equal to the speed of light, c. The result is a large standing wave pattern
such as shown in the upper plot of Figure 3.5. The T, mode waves correspond to the
unattenuated waves 2 and 4 shown in Figure 3.6. Marsh, like Kraus and Williamson,

showed that these waves propagate with a velocity of c. These modes radiate very poorly.

The T; mode currents occur for a helix circumference of 0.8\ < C < 1.3\ [Marsh, 1951].
The T, mode currents are decaying amplitude waves, similar to the exponentially
attenuated waves 1 and 3 shown in Figure 3.6. Marsh shows that the T; mode currents
propagate at a phase velocity that is less than ¢ and is frequency dependent as shown in
Figure 3.8 [Marsh, 1951]. Ty mode currents also are present on the helix when T; mode
currents predominate but their amplitude is much less than that of the T, currents. This is

the operating region which produces endfire circularly polarized radiation.

The endfire radiation of an axial mode helix is the result of the presence of two different
current traveling wave modes supported by the helix's periodic structure: an unattenuated
current mode with a phase velocity of ¢, and an exponentially decaying current mode with
a phase velocity less than c. Each of these waves is launched from the feed end of the
helix. At the open end of the helix, both modes experience a reflection that generates an
equivalent backward traveling wave of lower amplitude along the helix. The radiation
pattern and axial ratio of the antenna is the a function of the resultant fields produced by

these four waves.

In Marsh's analysis, the endfire radiation is explained by traveling waves of two current
modes, T and T, but one current mode has a phase velocity of ¢ and the other has is a
slow wave with a phase velocity less than c. This is the key difference between the

analysis of Marsh and that of Kraus and Williamson.

Marsh defines a third current mode called the T, mode which occurs when C > 1.3\. The
T, current mode is also an exponentially decaying wave but it does not decay as rapidly as
the T; mode wave does and it has a slower phase velocity than the T; mode as shown in
Figure 3.6 In the region of operation where the T, mode is supported the helix antenna
pattern has broken up into a large number of lobes. Therefore, there has been little

interest in investigating this mode.

29



Po

0.8 —

0.6 —

Figure 3.8. Relative phase velocity, p, versus relative circumference, C,, for the Ty, Ty,
and T, modes on the helix [Marsh, 1951].

3.4 Simulation of Conventional Helix Antenna

3.4.1 Simulation of Conventional Helix Antenna Currents

In order to understand the operation of both conventional axial modes helices, as well as
the Stub Loaded Helix, NEC, the Numerical Electromagnetics Code, was used to model
the currents on a conventional axial mode helix. The design parameters for the axial mode
helix used in these following simulations are given in Table 3.3. All simulations assumed

an infinite groundplane.

The center frequency of operation, f., for the helix was nominally 300 MHz, because the
helix circumference, C, was fixed at | m. NEC simulations were performed for this
antenna at frequencies of 200, 300, and 400 MHz, corresponding to 0.66 f;, f., and 1.33
f.. By examining operation at these frequencies, we can observe the behavior of the helix
current for the different modes that can be supported on the structure using the currents
predicted by NEC.

Table 3.3 Design parameters of NEC simulated full size axial mode helix

C, circumference 1 m

f. , center frequency | 300 MHz
a, pitch angle 13°

N, number of turns | 10

L, axial length 2.3l m
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Figure 3.9 shows the NEC results of the current magnitude and phase for the full size helix
at a frequency of 0.66 f;, (200 MHz) where the circumference is slightly below the normal
axial mode operating range. The current along the helix is plotted as a function of axial
length along the helix in Figure 3.9(a), . The current magnitude indicates a standing wave
along the helical winding that is very similar to Kraus' measured results shown in Figure
3.5. This is a region in which the helix does not support a circularly polarized wave. The
current on the helix is essentially a superposition of unattenuated forward and a reverse

traveling waves along the structure.

The phase of the current along the helix is shown in Figure 3.9(b). The current phase is
very nonlinear in its progression. There are abrupt, almost step, changes in the current
phase that correspond to the nulls in the current magnitude. Also plotted along with the
simulated helix current phase is the corresponding Hansen-Woodyard phase condition for
this structure. It is obvious that the current phasing differs markedly from the Hansen-
Woodyard condition. This is most likely due to the a combination of strong interaction of
the forward and reverse traveling waves on the structure and geometry of the helix. In
Figure 3.9(a), the standing wave pattern of the current magnitude indicates that both
forward and reverse traveling waves have comparable amplitudes. The result is that the
phase of the reflected wave has a significant impact on the vector sum of the forward and

reflected waves.

Additionally, the geometry of the helix has an impact on the spatial phasing of the currents
on the helix. The circumferntial turn length is small relative to the wavelength for the
results in Figure 3.9 where C = 0.677 A at 200 MHz. The result is that the spatial phasing
due to the turn length and pitch angle are such that the currents on the helix deviate

significantly from the Hansen-Woodyard condition.
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Figure 3.9 NEC simulation of current magnitude and phase along a conventional helix of

yard condition

0.66 f. (C=0.66 \.), f=200 MHz. Vertical dashed lines indicate
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Figure 3.10 shows the NEC simulation results for the conventional helix at 300 MHz, f.,
the center frequency of operation for the full size helix where C = A.. The current
magnitude shown in Figure 3.10(a), shows an initial decay of current from the feedpoint.
This is followed by a slight increase in magnitude, which then settles down to gradual
rippling decay. At the end of the helix we see a region of small standing waves, much like
in Figure 3.9(a). This region at the end of the helix is where the forward traveling wave is
reflected from the end of the helix to create a reverse traveling wave. The interaction of

these two waves of comparable amplitudes, results in the standing wave pattern.

The increase in current amplitude centered around turn 3 can also be explained by an
interaction between forward and reverse traveling waves as well. In this region, the waves

interfere constructively at turn 3, but destructively at the ends of turns 2 and 5.

The results in Figure 3.10(a) at 300 MHz (f;) are qualitatively comparable to Kraus'
results shown in Figure 3.5 for his helix at 450 MHz. This approximately exponential
decay of the helix current along its axis is indicative of the structure supporting a circularly

polarized wave.

The current phase shown in Figure 3.10(b) indicates an almost linear phase taper along the
helix, except at the last turn or two. At the end, of course, there is the strong interaction
of the forward and reverse traveling waves, resulting in the standing wave pattern seen in

the current magnitude and the nonlinear phase progression.

The Hansen-Woodyard condition is also plotted in Figure 3.10(b). It should be noted that
the current phase along the helix closely matches the Hansen-Woodyard condition over
most of the helix length. The greatest deviation from the Hansen-Woodyard condition
occurs at the end of the helix, as might be expected. At the end of the helix, the reflected,
or reverse traveling, wave has its greatest amplitude. Thus, its impact on the vector sum
of the forward and reverse traveling currents is greatest. As the reverse traveling wave
propagates back toward the feed end of the helix, it is attenuated as a result of radiation.
Thus, it could be argued that almost all of the variation from the Hansen-Woodyard
condition could be explained as a result of interaction of the forward traveling wave with

the reverse traveling wave.
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Figure 3.10 NEC simulation of current magnitude and phase along a conventional helix

of Table 3.3 at f

f. (C= ), =300 MHz. Vertical dashed lines indicate boundaries

between turns. In (b) the Hansen-Woodyard phase condition is also indicated.
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Figure 3.11 shows the NEC simulation results for the helix in Table 3.3 modeled at 400
MHz, or 1.33 f, (C=1.33 \.). The current magnitude along the helix length is shown in
Figure 3.11(a). It has the appearance of a superposition of two standing wave patterns,
one with a short period and one with a long period. As in the previous results shown in
Figure 3.9, we conclude that this pattern is the product of interaction between forward
and reverse traveling waves of comparable amplitudes. It would appear that for
frequencies far above the center frequency of the helix, there is the appearance of another
mode on the helix as identified by Marsh [1951] as the T, current mode.

The simulated helix current phase is shown in Figure 3.11(b). The phase progression
along the helix is quite non-linear, similar to the previous case shown in Figure 3.9.
Again, the Hansen-Woodyard condition is plotted on the same graph as the helix current
phase. The variation of the simulated helix current phase from the Hansen-Woodyard

condition is significant.
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Figure 3.11 NEC simulation of current magnitude and phase along a conventional helix
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between turns.



Figure 3.12 shows the NEC predicted patterns for three cases discussed above. Figure
3.13 shows the NEC predicted axial ratio for the three cases. The patterns shown for
frequencies of 0.66 f. and f, in Figure 3.12(a) and (b), are typical of patterns expected for
an axial mode helix. Although the pattern in Figure 3.12(a) appears fairly normal, the
axial ratio is poor as seen in Figure 3.13. In Figure 3.12(c), the pattern for the f=1.33 £,
(C=1.33 \.) case is starting to show splitting in the main lobe of the pattern. This is
indicative of higher order modes being excited on the helix. As Figure 3.13 shows, the

axial ratio has also deteriorated.

(c)
Figure 3.12 NEC simulated normalized patterns for the full size helix of Table 3.3 at (a)
0.66 f;, (b) f;, and (c) 1.33 £..
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Figure 3.13 NEC simulated axial ratios as a function of pattern angle for the full size
helix of Table 3.3 at frequencies of 0.66 f, f., and 1.33 f. (C=0.66 A\., A, 1.33 X\.).

3.4.2 Simulation of Conventional Helix Performance

There have been numerous studies of the performance capabilities of the conventional
helix antenna over the years. They have been empirical [King & Wong, 1980], theoretical
[Lee, et al., 1982], and numerical [Emerson, 1994]. These studies have primarily
addressed the issue of boresight gain as a function of helix diameter, length, and pitch.

The conclusions from these different studies are not in complete agreement.

What is probably considered the classic experimental study of helix performance is the
work of King and Wong [1980] who made an extensive series of gain and pattern
measurements on conventional helices of varying lengths and across a wide bandwidth.
Figure 3.14 is a graph from their results showing the gain of a conventional axial mode
helix as a function of helix length and circumference. These results are usually considered
the standard by which other results, theoretical and numerical, are compared. While the
work of King and Wong is excellent, the comparisons with these results shows poor
agreement, as we shall see.
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Figure 3.14 Measured gain versus axial length of a conventional axial mode helix as a

function of helix circumference. [King and Wong, 1980]

Emerson [1994, 1995] conducted an extensive modeling campaign using NEC2
(Numerical Electromagnetics Code) to explore the design space of the conventional helix
antenna with respect to gain and axial ratio. His study explored the effects of turn
diameter, spacing and axial length on boresight gain, axial ratio and input impedance.
Figure 3.15 shows a comparison of the gain versus turn radius as measured by King and
Wong and simulated by Emerson. From Figure 3.15, it is obvious that the gain values
predicted by Emerson's models are less than those measured by King and Wong. The

differences are typically 1 - 2 dB, a fairly significant amount.

Figure 3.16 is a graph from Emerson's [1995] work that shows the peak helix gain as a
function of axial length. For comparison, the measurements of King and Wong, and the
theoretical results of Lee and Wong are shown with Emerson's results. From these results,
it is obvious that there are significant differences between both the theoretical results of
Lee and Wong [1982] and Emerson's simulation results, both underestimating the
measured gains of King and Wong.
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Figure 3.15 Comparison of gain versus helix radius for conventional helices of 2, 3, and 4
wavelengths axial length as measured by King and Wong [1980] and modeled by Emerson
[1994].
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Helix gain vs total length
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Figure 3.16 The peak gain of a helix antenna as a function of its length as determined by
the following methods: KW (dashes & triangles) measurements of King and Wong; NEC
(short dashes & stars) simulation by Emerson; LW (long dashes & squares) theoretical
gain from Lee and Wong. [Emerson, 1995]

The large differences between the various gain values in Figure 3.16 obtained by
measurement, simulation and theory are disturbing. There is, however, an explanation for

at least some of the differences that we now present.

Figure 3.14 shows the results of King and Wong's measurements along with a description
of their experimental test article. The helix that King and Wong built used a cup reflector
backing the helix rather than a flat plate reflector. A cup reflector can have a significant
effect on the helix pattern and gain. When compared to a flat plate reflector, a cup
reflector can significantly reduce the back- and sidelobe levels of the pattern and can also
enhance the gain of the helix, depending on the diameter and depth of the cup reflector. In
the limit of large cup size, the resulting cup reflector transforms the helix into a helicone
antenna [Carver, 1967].
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The NEC models used by Emerson assumed a flat, infinite groundplane. While an infinite
groundplane does eliminate any radiation in the hemisphere behind the helix, it does not
account for the gain enhancement caused by the cup reflector. Emerson did examine
models using finite groundplane of one and one-half wavelengths across using wire-grid
mesh models, he found that there are little differences from those for the infinite
groundplane cases. Thus, we should expect any simulation results that assume a flat
planar reflector to under-estimate helix gains when compared to King and Wong's

measured results as observed in Figure 3.16.

The theoretical model used by Lee and Wong [1982] made some simplifying assumptions
about the current on the helix. They assumed that the smoothly decaying current in the
feed region of the helix and the small amplitude reverse traveling on the helix could be
ignored when computing the radiation fields of the helix. Thus, they considered the helix
to only support a uniform amplitude, forward traveling wave. Based on models for the
radiated fields of the helix they developed [Lee and Wong, 1982], they calculated the
directivity of helices with the same parameters that King and Wong measured. Their
efforts were an attempt to reconcile differences in gain measured by King and Wong and
an earlier empirical gain expression for helix gain presented by Kraus [1988]. Kraus'
empirical gain formula produced values greater than measured by King and Wong. Lee
and Wong's theoretical results produced gain (directivity) values less than those measured
by King and Wong as shown in Figure 3.16. As discussed above, Lee and Wong's model
ignored some of the currents on the helix. In comparing their results to both King and
Wong's measured results and Emerson's NEC simulations, it would appear that those the

contributions of those currents are not insignificant after all.

In order to establish a baseline for our own simulations, we attempted to reproduce some
of Emerson's results using NEC2 for modeling. Figure 3.17 shows a comparison of
predicted gain for helices of 1, 2, and 3\ in axial length between our results and Emerson's
results. Our results under predict the helix gain compared to Emerson's results. The
differences vary with helix radius, but are generally less than 1 dB. We have investigated
several issues that might account for these differences, but have come to no definitive
conclusions. However, the two results are comparable at least qualitatively. We will use
our simulation results in comparisons in following chapters with those of the Stub Loaded
Helix with the implicit proviso that these results may be pessimistic when compared to the

results of others.
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Figure 3.17 Comparison of predicted helix gain as a function of turn radius and axial

length from NEC2 simulations to Emerson's [1994] results.



