

Batteries and Beyond

Power Sources for the Next Generation of Wireless Sensors Wednesday, June 9, 2004

Andrew Girson InHand Electronics, Inc. agirson@inhandelectronics.com

Presentation Overview

Market Issues & Opportunity
Overview of Current Battery Technologies
New Power Source Technologies
Summary

Wireless Devices - A Rapidly Expanding Market

 Batteries are a multi-billion dollar market, spread across a variety of industries (materials, precious metals, cellular telephones, PDAs, wireless sensors, etc.)

 Yet, cellular telephone penetration was just 16% in China in 2003

What is Slowing this Market? - Energy Density

- Electronics performance grows exponentially
- New wireless technologies provide large increases in bandwidth and range
- Silicon, board, and device geometries dramatically shrink
- Yet, it took a decade for energy density in Li-lon batteries to double

What is Slowing this Market? - Energy Density

- The slow growth in energy density has fostered the multi-billion dollar power management market
- Engineering teams spend inordinate time optimizing for energy consumption
- Solving the energy density problem will allow dollars and talent to be used to create better devices

Overview of Current Battery Technology

Two Types of Batteries

- Primary
- Rechargeable

Each has advantages and disadvantages

Primary Batteries

Different Types

- Carbon-Zinc
- Alkaline
- Silver Oxide
- Zinc Air (ZiO₂)
- Lithium (LiFeS₂ and LiMnO₂)

Comparison of Primary Battery Types

Chemistry	Cell	Cell	Gravimetric	Volumetric	Capacity
	Voltage	Capacity	Energy	Energy	loss per
	(V)	(mAh)	Density	Density	YEAR
			(WHr/kg)	(WHr/I)	(@ 20C)
Carbon- Zinc	1.5	10-5000	105-195	100-180	5%
Alkaline	1.5	10-5000	125-225	150-440	4%
Silver Oxide	1.5	5-200	155-285	250-500	3%
Zinc Air	1.4	30-1000	245-455	470-1450	5% (sealed)
Lithium	1.5, 3.0	10-3000	32-260	340-500	1%
					SENSOIS EXPO & conference Cobo Conference & Exhibition, Detroit, M

Characteristics of Primary Batteries

- Primary batteries have higher energy density (vs. rechargeables)
- Primary batteries have lower capacity loss over time (vs. rechargeables)
- Carbon-Zinc and Alkaline are commodity "drugstore" batteries

Characteristics of Primary Batteries

 Lithium batteries are good all-around performers with flat discharge curves, high energy density, and excellent shelf life and low-temperature capacity

 Zinc-Air batteries have relatively high energy density, and use oxygen in chemical reaction, so care must be taken to ensure adequate shelf-life

Rechargeable Batteries

• Different Types

- NiCad
- NIMH
- Li-lon

Comparison of Rechargeable Battery Types

Chemistry	Cell	Cell	Gravimetric	Volumetric	Capacity
	Voltage	Capacity	Energy	Energy	loss per
	(V)	(mAh)	Density	Density	MONTH
			(WHr/kg)	(WHr/I)	(@ 20C)
NiCad	1.2	50-5000	55	170	10%
NiMH	1.2	10-5000	70	250	15%
Li-lon	3.6	25-1600	120	350	3%

Sensors expo & conference Cobo Conference & Exhibition, Detroit, M

Characteristics of Rechargeable Batteries

- Rechargeable batteries are reusable, reducing cost and environmental issues
- Li-lon batteries are best performers, but are costly and require tight control of charging algorithms
- NiMH and Li-Ion can be dangerous if overcharged
- NiCad is simpler with better overcharging tolerance, but lower performing

Battery Life Estimates for Common Scenarios

- Smart sensor 50mW on; 0.5mW sleep; 2% on time
 - 3 AAA Alkaline cells (Energizer): ~2700 hours
 - 1 Li-lon cell (iPAQ): ~2900 hours
- PDA 900mW on; 200mW idle; 5mW sleep; 1% on time; 3% idle time
 - 3 AAA Alkaline cells (Energizer): ~200 hours
 - 1 Li-lon cell (iPAQ): ~200 hours

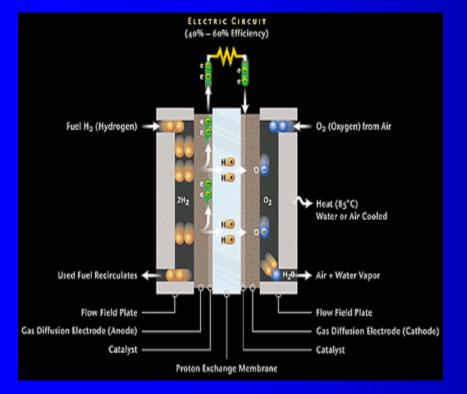
New Technologies

Fuel CellsHarvestingOthers

Fuel Cells - The Hype

 >10X energy density increase over today's Li-lon technologies

- Instant recharging
- Environmentally friendly



Fuel Cells - How They Work

- Uses hydrogen and oxygen to produce electricity
- Many different types
 - Proton Exchange Membrane (PEM)
 - Direct Methanol (DMFC)
 - Solid Oxide (SOFC)

Fuel Cells - How They Work

PEM

- H₂ flows on one face,
 O₂ on the other
- catalyst spurs H₂ to oxidize protons and give up electrons
- electrons flow to load

water/heat produced

Fuel Cells - The Reality

- Cost/watt-hour is too high, especially for use in automobiles
- Likely to appear in small devices first, starting in 2004 or 2005
- Governing issues
- Issues with cold temperature operation
- Still several years away (recent study by ABI Research estimates only 10-15% of laptops will use fuel cells in 2012)

Micro-Fuel Cell

- DMFC approach
- Focusing on handheld device market
- Product launch planned for end of 2004

- Micro-Fuel Cell
 - Uses methanol
 - Initial focus on creating battery chargers for small devices

- Micro-Fuel Cell
 - Uses DLFC (directliquid fuel cell) technology
 - 130 cu. cm
 - 200 grams
 - Initial focus on creating auxiliary power sources and chargers for handheld devices

22

 NEC, Hitachi, and Toshiba are developing fuel cells for notebook computers

- Methanol-based cells weigh about 900 grams, and provide 12-24 Watts
- first fuel-cell notebooks planned in 2004-2005
- Toshiba achieved 5 hours of use on a 50cc methanol fuel cartridge
- NEC achieved 50 mW/cm² and plans a 40-hour system by the end of 2005

Harvesting - Old and New

 Power "harvesting" involves transducing ambient energy into electrical power

- Harvesting has been around for years
 - solar
 - wind
 - hydro

There are interesting new approaches

Solar Cells

- Convert solar energy into electricity
- Typical efficiency of 50-100mW/in2
- Useful in recharging batteries at remote locations
- Limited by availability of direct sunlight, size, and fragility

Solar Cells - Example

Silicon Solar

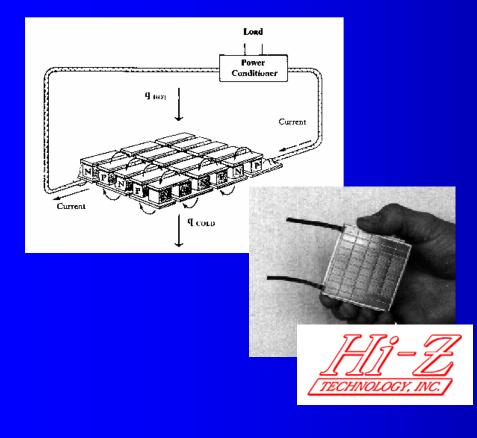
SunPal PDA Charger

- 6.25x3.25 inches
- 5 ounces
- 1-3 hour charging time

Solar Cells - Example

 Solar Charger and Power Source

- Charges handheld devices
- Can be embedded in a laptop's case


Thermal Energy

 Convert heat and temperature difference into electricity

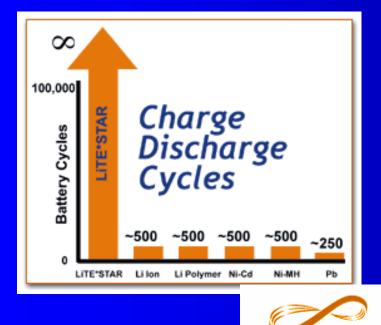
 Heat sources may include engine exhaust, body heat, etc.

Thermal Energy - Example

 Thermoelectric Generator

- As small as 1 cu. in.
- 5mW at 3V for wireless sensors
- Harvests power from shipboard interior thermal environment

Other Approaches


 Lots of venture capital is being provided for startups developing fuel cells and other new power source technologies
 Types of approaches are quite varied

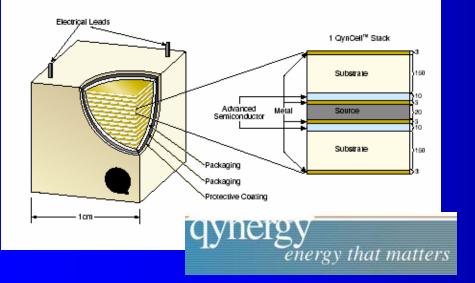
SuperCaps

- Aero-gel capacitors with low resistance
- Deliver "pulse" power efficiently at peak current
- Pulses can last seconds or minutes; up to amperes of current
- Can be charged by small batteries
- Hybrid Batteries
 - Combo of high-energy and high-power batteries

Infinite Power Solutions

Lite*STAR

- Thin-film batteries
- Wide temperature range
- 100-150mW loads
- >90,000 charging cycles
- <1% energy loss/year</p>



- Advanced Battery
 - MIT spinoff
 - Based on Li-lon, but with nanoscale dimensions
 - 600WHr/I and +225WHr/kg

33

Oyncell

- Radiationinsensitive material converts radiation to electricity
- cm³ cell: 50mW for years

Summary

- Today's battery technologies are inexpensive and plentiful, but limited in energy density
- Powering wireless sensors for months or years at a time will require new advances in power sources
- Fuel cells, harvesting, and other technologies have significant potential, but most are not yet in production

