Maggie Johnson Handout #XX
CS103A

Boolean Algebra
Key Topics

Introduction

Boolean Operators

Boolean Expressions and Functions
Boolean Identities

More on Boolean Functions
Functional Completeness
Simplification of Boolean Functions
Karnaugh Maps

Introduction

The circuits in computers have inputs (0 or 1) and produce outputs (0 or 1). Circuits can be constructed using any
basic unit that has two different states, one for the 0 input/output, and one for the 1 input/output. Typically, such units
arein the form of switches that can be either on or off.

In 1938, Claude Shannon showed how the rules of propositional logic could be used to design circuits (in his Master's
thesisat MIT). These rulesform the basis for Boolean algebra. A Boolean algebraisjust the operations and rules
used for working with the set { 0,1} where 0 and 1 can take on different meanings. Propositional Logic (which he have
been studying) is a Boolean algebra.

Boolean Operators

The main Boolean operators we will use are complement, sum and product. The complement of an element (which
always has avaue of 0 or 1) is denoted with asingle quote: 0' =1 and 1' = 0. The Boolean sum denoted by + or OR
has the following values:

1+1=1
1+0=1
0+1=1
0+0=0

The Boolean product denoted by ¢ or by AND has the following values:

Or OoOpPR
I n

[cNoNaN

Typicaly, the s isdropped so x « y = xy. Therules of precedence for these operators are: complement, product, sum.
Therefore, the value of

1«0+1

10+0

0+0

0

1-0+(0+12)

Boolean Expressions and Functions

x isaBoolean variableif it can only assume the value of either 0 or 1. A Boolean function is a function whose
domain isaset of n-tuples of O'sand 1's, and whose range is an element of the basic Boolean set {0,1}. We aways
display the values of a Boolean function in atruth table. A Boolean expression on the Boolean variables { x4, X, ...,



Xn} isan expression using those variables and the operations of a boolean algebra.

Every Boolean expression defines a Boolean function. The values of this function are obtained by substituting 0 and 1
for the variables in the expression. For example, we can define a Boolean expression xy + Xy' by a Boolean function
F(x,y) =xy + xy'. Thevalues of this function are displayed in the table below - all we did was substitute all possible

values for the variables.

X y Xy Xy' F(x.y)
0 0 0 0 0
0 1 0 0 0
1 0 0 1 1
1 1 1 0 1

The domain in this function is the 2-tuple which represents the values of x andy. Therangeis{0,1} inthelast
column. The n-tuple of aBoolean function isjust the possible values of the variables. Two Boolean expressions are
equivalent if they represent the same function (i.e., have the same truth table).

Boolean ldentities

Identity Name

x)' =x Involution Law
X+x'=1 Complementarity
Xex'=0

X+ X=X Idempotent Laws
Xe®X=X

X+0=x Identity Laws
Xel=x

x+1=1 Dominance Laws
x*0=0

X+y=y+X Commutative Laws
Xy = yX

X+(y+2z)=(x+y)+z
x(yz) = (xy)z

X+yz=(x+y)(x +2)
X(y +2) =Xy +xz

(xy) =x+Yy'
(x+y)=xy

X + (Xy) =X
X(X +Yy) =X

X+Xy=Xx+y
X(X +y) =xy

Xy +X'z+yz=Xxy +X'z

Associative Laws

Distributive Laws

DeMorgans Laws

Absorption Laws

Redundancy Laws

Consensus Laws

(xHY)(X+2)(y+2) = (x+y)(x'+2)

Thereis aduality principle which appliesto al Boolean algebras. In the definition of the identities above, we always
include two parts that represents the dua identities. The only different isweinterchange* and +, and 0 and 1. Any
proven theorem is automatically true for the dual of the theorem.

In Boolean algebra, we can prove the identities using truth tables or using other identities. So, for example the
distributive law is proven true by the last two columns of the following table:

X y z V+z Xy XZ X(y+2) XY+XZ
1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1



1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0
A proof of the absorption law x(x +y) =X using identities:

X(x+y) =(x+0)(x+y) identity law
=x+0ey distributive law
=x+y+0 commutative law
=x+0 dominance law
=X identity law

M ore on Boolean Functions
In preparation for using all the above information to build circuits, we need to be able to solve two basic problems:
1) Given atable of values for aBoolean function, how do we derive the
corresponding Boolean expression?
2) Isthere asmaller set of operators that can be used to represent a Boolean
function?

First, question 1. Given the following table, how do we figure out the corresponding Boolean expression?

G

OO O0OORRERRERRER|X
OORRFRPROORRERK
OFRPORFRPRORFROR|N
cNoNoNoNol —NoNolyy|
cNeol NoNoNoN e

Notice that the only timethat Fisliswhenx =z=1andy = 0. Thistrandatesto xy'z meaning that the expression
xy'zhasthevaluelifandonlyifx=y'=z=1. Gislintwocases x=y=1andz=0,andx=z=0andy=1.
When we have to deal with two or more cases, we represent the sum of the two products. xyz' + x'yz'. Thisisthe
Boolean expression for G.

Thisillustrates a basic method for constructing an expression from the values of a Boolean function. A minterm of the
Boolean variables x; Xy, ..., X, isaBoolean product yqys...y, wherey; = x; or y; = ;. A minterm hasavalue of 1if and

only if al the values of itsvariablesare 1. So, if x =y =1 and z = 0 then xyZ' is the minterm that equals 1.

By taking Boolean sums of minterms, we can build up a Boolean expression that represents the values of a function
represented by atable. The mintermsin this sum correspond to those combinations of the values for which the
function hasavalue of 1. ThisBoolean sum is sometimes called a sum of products expansion or dis unctive nor mal
form.

Thereis an dual entity called amaxterm which isaproduct of sums expansion (conjunctive normal form). The
table below shows the dudity:

X y z minterm maxterm
0 0 0 xXy'z X+y+z

0 0 1 X'y'z X+y+7'

0 1 0 xX'yz X+y'+z

0 1 1 X'yz X+y'+Z'
1 0 0 xy'z X'+y+z

1 0 1 Xy'z X'+y+Z'
1 1 0 xyz X'ty'+z
1 1 1 Xyz X'+y'+Z



For the following Boolean function F(x,y,z) = (x+2) y

+
N

(x+2)y

PRPRRPRRPROOOOIX
PR OORROOK
RPORORORON
RPRRPRRRPRORONX
PR OOROOO

Xyz + XyZ' + X'yz is the minterm expression; (X+y+z)(X+y+2z')(X+y'+z)(X'+y+z)(X'+y+2') is the maxterm expression.
Every Boolean function has both a minterm and maxterm expansion.

Functional Completeness
The other question posed in the previous section was. Do we need all three operators to express Boolean functions? As
shown above, it's easy with {' + ¢} - since every Boolean function can be expressed with these three operators, we say

the set isfunctionally complete. Isthere asmaller set of functionally complete operators? Thereisasmaller set if one
of the three operators can be expressed in terms of the other two. For example:

x+y=(Xy)

which means we can get rid of the + operator (thisis an application of DeMorgan's Law). So, the set of {" ¢} is
functionally complete. In asimilar way we can eliminate Boolean products:

Xy =(X'+y)

Isthe set {+ ¢} functionally complete? Thereisno way to represent the Boolean function F(x) = x' using these two
operators, so this set is not functionally complete.

Finally, isthere a set of one operator that is functionally complete? Only if we define a new operator. We could define
aNAND operator "[" asfollows:

X y x|y
0 0 1
0 1 1
1 0 1
1 1 0

This set is functionally complete. To prove this, we know that the set {+ '} isfunctionally complete so all we have to do
is show that these two operators can be expressed using |:

X' =X|X
xy=(x[y)[(x]y)

A similar operator that is functionally complete is the NOR operator: 0

X y x0y
0 0 1
0 1 0
1 0 0
1 1 0

Simplification of Boolean Functions

We know that any Boolean function can be built from ANDs, ORs, and NOTs using minterm expansion. However, a
practicing computer engineer will very rarely be satisfied with a minterm expansion, because as arule, it requires more
gates than necessary. The laws and identities of Boolean algebrawill almost always alow us to simplify aminterm
expansion. For example, the minterm expansion for a Boolean function f of three variables might be represented as
follows (taking the values directly from the truth table):



f=XYyZ +Xy'z+XYyzZ +Xyz + Xyz' + Xyz

Thiswould require acircuit with maximum gates: 12 ANDs, 5 ORs and 9 NOTs. Using the identities of Boolean
algebra, this minterm expansion can be simplified considerably:

f =XYy'Z +X'y'z+X'yz' + X'yz + Xyz' + xyz
=XY(Z +2) +XY(Z +2) + xy(Z + 2) distributive law
=Xy + Xy +xy complementarity & identity
=X(y' +y) +xy distributive law
=X+ Xy complementarity & identity
=Xty redundancy

So, that big long minterm reduces down to x' +y which can be built with 1 OR and 1 NOT. Thisisan important point,
but reducing minterms can require alot of luck knowing which identities to apply when. Therefore, we will look at a
very simple technique that usually leads to a significant simplification of minterms. It won't always produce the
simplest form, but it's close enough for most engineers considering the difficulty of the alternative method.

Karnaugh M aps

K arnaugh maps were invented by Maurice Karnaugh, a telecommunications engineer. He developed them at Bell
Labsin 1953 while studying the application of digital logic to the design of telephone circuits. This method is
typically used on Boolean functions of two, three or four variables - past that, it gets quite cumbersome and other

techniques are frequently used.

A Karnaugh map is a 2-dim representation of the truth table for aBoolean function. For example:



PRPPRPPOOOO|IX
PR OORRFROOK
PORPORFRPRORFROI|N

Yz
"

oo 11 10

o1 1 1 1
}:‘.‘II:
1 1 1

Each of the eight cellsin the map correspondsto one of the eight possible combinations of x, y, & z. The templates
for 2 and 4 variable Karnaugh maps are given below.

oo C1 11 10

g

R

iR

10

Once we have placed the 1'sin the map, there is a simple procedure that we apply. Before doing that though, itis
necessary to understand the basis for the procedure. The reason Karnaugh maps are useful is because certain simple
Bool ean functions have simple Karnaugh maps. These simple functions are called product functions; they are
products of some or all of the variables and their complements. For example, X4, Xo'X4 and xyz are all product

functions but x; + X," and Xy + zw are not.

Take the product function f(x,y,z) = xz. Thisfunction accepts two inputs 101 and 111. Its Karnaugh map:

oo o1 11 10

Noticethat the 1'sliein a1x2 rectangular block. Another exampleisg(x,y,z) =y'. Thisfunction accepts
000,001,100,101 (since for al the other possibilitiesy = 1 and thereforey' = 0). Its Karnaugh map:



oo 01 11 10

The minterms for thisone liein a 2x2 rectangular block. It turns out that every product function has a Karnaugh map
whose minterms are confined to ablock whose sidesare 1, 2 or 4 cellslong. Thus, it becomes important to recognize
what product function is represented by a particular Karnaugh map.

To do this, first write down the truth set (the set of combinations with avalue of 1 from the map). For example:

oM 11 10

0 1

Thetruth set is{011, 111}. Next, we analyze the values of the truth set. If the variablesare x, y, and z, we notice that
x can be 0 or 1; whiley and z can be only 1. We characterize thisanaysis asfollows: {*11} wherethe"*" isa
wildcard. If the unknown product function involved X, it would only accept inputs for which x assumed some
particular value. Since x can be either 0 or 1, we conclude that x is not involved. 'y, on the other hand, must be
involved sincey = 1 for al inputs. Soy must be aterm (not y'); the same istrue for z. The product function isyz.

Just for practice, what are the product functions associated with the following Karnaugh maps?

ao o 11 10 oo o 11 10 Qo 01 11 10

] 1 1 a 1 o 1

1) truth set: {011, 010, 111, 110} ={*1*}. The product function never includes wildcard variables; the function is: y.
2) truth set: {010} so the function isx'yz'.
3) truth set: {000, 100, 010, 110} ={**0} = Z. Notice that the rectangular block wraps around.

Finally, try some 2 and 4 variable maps:
Qo o [ 10

0 1

oo 1 1

01

1) truth set = {00, 10} ={*0} =y’

2) (variables are wxyz): truth set = {0001, 0011, 1001, 1011} = {*0*1} = x'z.



The reason thisis al so important is any Boolean function with the same Karnaugh map as, for example, the ones
above, can be represented by the same expression. Another expression with the same Karnaugh map as the two-
variable one above: xX'y' + xy' + X'yxy; therefore, we can represent thisasy' and build a circuit as such.

Unfortunately, not al expressions work out to be equivalent to product function Karnaugh maps. The first example we
looked at did not bresk down into a1, 2, or 4 cell rectangular block.

yz
"

oo 11 10

o1 1 1 1
}:‘.‘II:
1 1 1

We can handl e these too by decomposing the blocks into a union of two product blocks, one representing the varialbe
X' (the ones across the top indicate a 0 value for x) and one representing y (the two ones on the bottom indicate a 1
valuefory). Thefunctionisx' +y, which is exactly the conclusion we cameto earlier. All we are doing is ORing the
two product functions together. We did not bother to show the truth sets for these two blocks ({ 000, 001, 011, 010} =
{0**} =x) - you will reach the same conclusion.

This technique can be applied to any Boolean function. Theideaisto cover the terms using as few product blocks as
possible. Then, write the function as a sum of these product blocks. It'simportant that the blocks are as large as
possible or you may not end up with the simplest expression. For example, in the map above, we could have used three
blocks: one horizantal for the first two onesin the top row, and then two vertical blocks. Thiswould give the
expression: X'y' +yz +yz'. Thisisequivaent, but inferior.

What if you block off the first two onesin the first row and then the four ones across the two rows? The expressionis:
X'y' +y; again it's equivalent but not as simple asthe first. (An application of the redundancy law will simplify this
further). It'simportant to carefully pick the blocks or you may not end up with the simplest expression.
The product blocks that make up arepresentation for an expression are called implicants. X'y', yz and yz' are all
implicants the expression X'y' +yz +yz'. Implicantsthat cover as many cells of the map as possible are called prime
implicants. Therule of the game, therefore, is cover the minterms with as few prime implicants as possible.
As additiona practice, simplify the following functions represented by Karnaugh maps:

] 01 11 10

1

aooood 11 10 o

0 1 1 01 1 1 1 1

11 1

1) X'z +yz
2) WX + XyZ' + Wx'z X'y'Z'

Notice that you can overlap the blocks if ncessary:



oo M 11 10

ny
oo o1 11 10 i

a [ 1) lfﬁ o1 |01 ] 1|1 /1
1 oo b
110 Fl IEEI

Karnaugh maps are certainly easier to deal with than using identities to simpify Boolean functions. However, the trick
isfinding the right set of blocks to get the simplest expression. This takes practice; thereis no simplerule that tells
how it should be done.

Bibliography and Historical Notes

* The study of deduction in logic dates back to Aristotle. Boole devel oped the algebra of propositions, and it isfrom
this work that Boolean algebra comes.

G. Boole, An Investigation of the Laws of Thought, 1854, reprinted by New Y ork: Dover Press, 1958.

* For more on Boolean algebra:

S. Epp, Discrete Mathematics with Applications, Belmont, CA: Wadsworth, 1990.

R. Grimaldi, Discrete and Combinatorial Mathematics, 2nd ed., Reading, MA: Addison- Wesley, 1989.
F.E. Hohn, Applied Boolean Algebra, 2nd ed., New Y ork: Macmillan, 1966.

Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., New Y ork: McGraw-Hill, 1978.

K. Rosen, Discrete Mathematics and its Applications 4nd Ed., New Y ork: McGraw-Hill, 1999.

* Karnaugh maps were introduced in:

M. Karnaugh, "The Map Method for Synthesis of Combinatorial Logic Circuits," Transactions of the AIEE, 72
(1953), 593-599.



	Simplification of Boolean Functions

