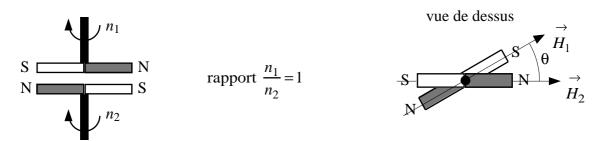
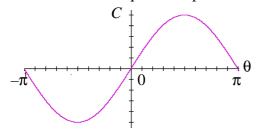

C33 - Machine Synchrone (MS)


Moteur synchrone

- Transmissions mécaniques synchrones (transmissions de couple) :
 - Transmissions par engrenages ou par courroies


Si $r_1 = r_2$, les 2 axes tournent en synchronisme. La transmission du couple est indépendante de la charge, et le couple moteur est intégralement transmis à celle-ci : $C_{1(\text{moteur})} \equiv C_{2(\text{résistant})}$.

- Transmission magnétique par aimants (champ d'excitation magnétique H)

On a toujours : $C_{1(\text{moteur})} \equiv C_{2(\text{résistant})}$. Mais :

- a) Le couple qu'il est possible de transmettre est limité.
- b) À vide $\theta = 0$. Mais en charge l'angle θ séparant les deux aimants augmente avec le couple résistant. On montre que le couple transmissible vaut :

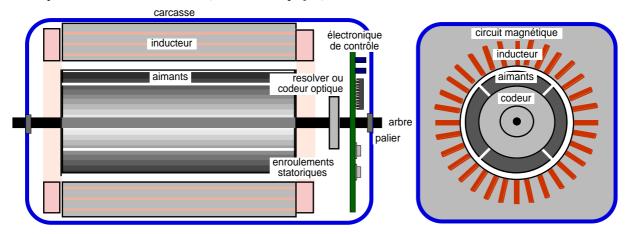
$$C = k H_1 H_2 \sin \theta$$

- à vide (couple résistant nul), $\theta = 0$
- θ augmente avec la charge
- C est maximum pour $\theta = \pi/2$
- au-delà, il diminue.

- c) Conséquences :
- au démarrage, si la vitesse de rotation n_1 augmente brusquement, il est probable que l'inertie de la charge empêche une variation instantanée de $n_1 = 0$ à $n_1 = n_2$. L'angle θ variant alors de 0 à 2π , la valeur moyenne de $\sin\theta$ est nulle, il n'y a pas de couple transmis. Le système ne démarre pas.
- en marche, si le couple résistant augmente, θ peut dépasser la valeur de $\pi/2$. Le système devient instable, car le couple transmis diminue alors que la charge augmente. La transmission s'interrompt rapidement. On dit qu'elle "décroche".
 - Principe du moteur synchrone

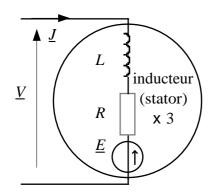
C'est celui d'une transmission magnétique synchrone, avec ses limitations...

• Constitution


Le stator est un bobinage polyphasé (en général branché en Y), qui engendre un champ tournant.

Pour les petites puissances (usuellement < 10 kW), le rotor est à aimants permanents. N'ayant ni collecteur ni balais, le moteur est appelé "brushless".

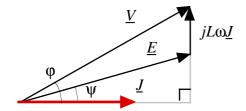
Pour des puissances plus importantes, le rotor est bobiné. Son alimentation en courant continu (connexions du + et du –) peut être assurée par un collecteur à deux bagues (beaucoup plus simple ISBN 2-9520781-0-6 http://www.syscope.net/elec/


que celui d'une MCC). Il est aussi possible d'associer sur le même arbre une deuxième MS fonctionnant en alternateur, à aimants permanents, de puissance inférieure, débitant dans un pont redresseur tournant qui alimente le rotor de la machine principale. Il n'y a alors ni bagues, ni balais.

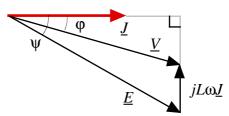
Exemple: moteur "brushless" (schéma simplifié):

- Caractéristiques (moteurs brushless) :
 - Fortes caractéristiques dynamiques (accélération, couple de démarrage)
 - Vitesse élevée (> MCC)
 - Durée de vie élevée
 - Intégration facile dans les applications d'entraînement et d'asservissement
- Modèle électrique (cf §C31) :

Vitesse de synchronisme (= vitesse du champ tournant) :



$$\Omega_s = \frac{\omega}{p} \operatorname{rad} / \operatorname{s} \text{ ou } n_s = \frac{f}{p} \operatorname{trs} / \operatorname{s}$$


(1)
$$\underline{V} = \underline{E} + (R\underline{J}) + jL\omega \underline{J}$$
 loi des mailles

(2)
$$\underline{E} = \frac{d\Phi}{dt} = j\omega\Phi$$
 fcem (loi de Lenz)

- L'induit (rotor bobiné ou à aimant permanent) n'est pas représenté sur ce schéma.
- L'inducteur (stator) d'une MS triphasée comprend trois enroulements (⇒ schéma ci-dessus x 3).
- Hypothèses : la machine n'est pas saturée ; les champs magnétiques sont sinusoïdaux.
- Au stator s'appliquent les grandeurs d'enroulement : \underline{V} (tension entre phase et neutre) et \underline{J} .
- (eq. 1) *R* est souvent négligée. A la loi des mailles (écrite en convention récepteur), correspond un diagramme de Fresnel qui peut prendre deux formes différentes selon la valeur de *E* :

machine "sous-excitée" : E < V $\Rightarrow \phi > 0$: MS \approx récepteur inductif

machine "sur-excitée" : E > V $\Rightarrow \phi < 0$: MS \approx récepteur capacitif

- (eq. 2) Φ est le flux du champ engendré par le rotor à travers un enroulement statorique, en

fonctionnement à vide (parfois noté Φ_v). Comme pour la MCC, l'amplitude de la fem est proportionnelle à la vitesse de rotation : $E = \omega \Phi = p\Omega_s \Phi = K_e \Omega_s$, le coefficient de proportionnalité ne dépendant que des caractéristiques physiques de la machine.

• Conversion electromécanique

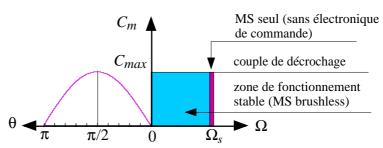
- Conversion électromécanique parfaite :

(3)
$$C_m = \frac{P_{em}}{\Omega_s} = \frac{3VJ\cos\phi}{\Omega_s}$$

- Dans les diagrammes de Fresnel indiqués ci-dessus, on remarque que : $V\cos\varphi = E\cos\psi$. On en déduit que : $C_m = 3p\Phi J\cos\psi = K_c J$. Comme pour la MCC, le couple est proportionnel au courant. On remarque que la constante de couple et la constante électrique sont liées par : $K_c = 3K_e\cos\psi$.

On montre (voir compléments) que l'angle électrique ψ et l'angle géométrique θ sont complémentaires. Donc : $\cos \psi = \sin \theta \implies C_m = 3 p \Phi J \sin \theta = K_c J$ avec $K_c = 3K_e \sin \theta$. La "constante" de couple du MS dépend donc de l'angle géométrique entre les deux champs, donc du couple résistant. Pour obtenir un fonctionnement analogue à celui d'une MCC ($K_c = c^{te}$), il faut pouvoir contrôler θ pour asservir le couple : c'est le principe du moteur synchrone autopiloté (voir plus bas).

- Conversion électromécanique réelle : bilan des puissances Il est donné §C31 (conversion electromécanique réelle). Les pertes Joule électriques sont celles du stator : $P_{JR} = 3RJ^2$. Rendement $\eta = \frac{P_u}{P_a} \approx 99\%$!


Cas d'un rotor bobiné : il faut ajouter au bilan des pertes la puissance consommée par celui-ci ; mais il permet de contrôler le facteur de puissance cos φ en agissant sur le courant d'excitation.

• Fonctionnement statique

La caractéristique statique mécanique d'un MS (sans électronique de commande) se réduit à un segment de droite, pour $\Omega = \Omega_s = c^{te}$.

Si la fréquence du réseau est fixe, un moteur synchrone ne peut démarrer seul.

Avec un variateur électronique, démarrage possible à l'intérieur de la zone de fonctionnement.

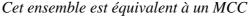
• Fonctionnement dynamique en boucle fermée : moteur synchrone auto-piloté ("brushless")

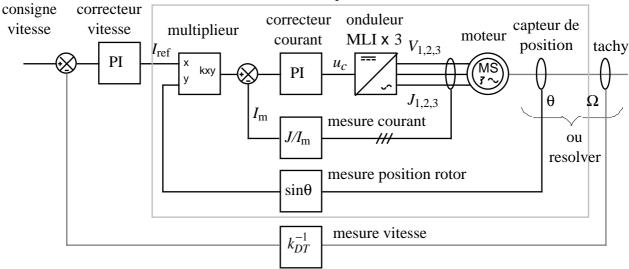
Il est régi par les équations (1), (2), (3) et (4) :
$$C_m = J \frac{d\Omega}{dt} + C_r$$

Le moteur est contrôlé comme un MCC par une régulation cascade. Un capteur de courant permet de générer les ordres de commutation d'un onduleur qui alimente le stator à tension V et fréquence f variables (boucle de régulation interne).

Un capteur de position calé mécaniquement sur le rotor permet de mesurer l'angle θ , c'est-à-dire la position angulaire du rotor par rapport au champ statorique. Après multiplication, cela permet de contrôler le couple, puisque celui-ci est proportionnel à $J\sin\theta$.

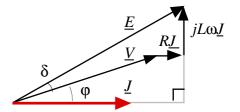
Cette machine est équivalente à un MCC car l'ensemble {capteurs + onduleur} joue le rôle d'un


collecteur mécanique. Vu côté électronique, il possède les mêmes équations electromécaniques :


Fem et couple : $E = K\Omega$ et $C_m = KI$ (avec : I : intensité dans une phase)

Constante de temps mécanique : $\tau_m = \frac{rI}{K^2}$ (avec : r : résistance entre 2 phases)

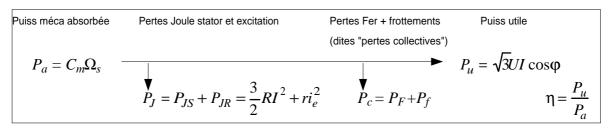
Constante de temps électrique : $\tau_e = \frac{l}{r}$ (avec : l : inductance entre phase)


Il est donc facile d'adjoindre une régulation de vitesse comme sur un MCC, mais avec une précision encore améliorée du fait des propriétés du MS.

MS en fonctionnement réversible - alternateur

- Fem efficace par enroulement statorique, à vide : Un enroulement a N conducteurs, soit N/2 spires. Soit Φ_0 le flux sous un pôle à travers une spire ($\Leftrightarrow \Phi = N\Phi_0/2$). L'alternateur fournit par enroulement la tension à vide suivante :

$$E = \omega \Phi \Rightarrow E_{\rm eff} = \frac{2\pi f}{\sqrt{2}} \frac{N}{2} \Phi_0 = 2,22 f N \Phi_0 = K_{app} f N \Phi_0$$


En pratique le "coefficient de Kapp" K_{app} est propre à chaque type de machine et vaut entre 2,2 et 2,6.

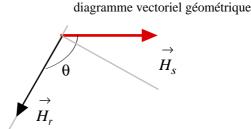
- Fem en charge : il faut tenir compte de R et de L.

L'angle δ s'appelle "décalage interne" ou "décalage électrique". Il est >0 quand la machine fonctionne en alternateur (<0 en moteur).

La charge pouvant varier dans des proportions considérables, une régulation de tension est indispensable, obtenue en agissant sur Φ_0 , donc sur le courant d'excitation.

- Bilan des puissances

COMPLEMENTS


• Relation entre l'angle électrique ψ et l'angle géométrique θ

On peut donner d'une démarche rigoureuse de géométrie vectorielle dans l'espace-temps la démonstration simplifiée suivante :

$$rotor: e(t) = \frac{d\Phi_r(t)}{dt} = \stackrel{\rightarrow}{S} \frac{d \stackrel{\rightarrow}{B_r(t)}}{dt} = \mu_0 \mu_r \stackrel{\rightarrow}{S} \frac{d \stackrel{\rightarrow}{H_r(t)}}{dt} \Rightarrow \stackrel{\rightarrow}{E} \perp \stackrel{\rightarrow}{H_r}$$

stator:
$$\overset{\rightarrow}{H_s}(t) = N.\vec{J}(t) \Rightarrow \overset{\rightarrow}{H_s}/\vec{J}$$

diagramme vectoriel électrique

On en déduit que :
$$\theta = \psi + \frac{\pi}{2} \Rightarrow C_m = 3p\Phi_r J\cos\psi = 3p\Phi_r J\sin\theta$$

• Production de l'énergie électrique

NB: alternateur toujours branché en Y pour sortir le neutre

Types: Vitesse lente ⇒ grand nombre de pôles
Rotor à pôles saillants
Centrales hydrauliques
→ qq 100 MVA

valeurs	normalisées
nb paires pôles p	n (tr/min)
1	3000,0
2	1500,0
3	1000,0
4	750,0
5	600,0
6	500,0
7	428,6
8	375,0
10	300,0
12	250,0
16	187,5
20	150,0
24	125,0
32	93,8
40	75,0

Vitesse élevée ⇒ faible nombre de pôles Rotor à pôles lisses (turbo-alternateur) Centrales thermiques et nucléaires → GVA

nb paires pôles p	n (tr/min)
1	3000
2	1500

rotor refroidi à l'hydrogène stator refroidi à l'eau

Exemples Barrage de Grand Maison (Isère)

$$p = 7 \\ n = 428,6 \text{ tr/min} \\ P = 153 \text{ MVA} \\ U = 15,5 \text{ kV} \\ I = 6333A \\ \eta = 98,5\% \\ P \text{ excitation}: 323 \text{ kW}$$

M = 419 t

Tranche nucléaire 1300 MW
$$p=2$$

$$n=1500 \text{ tr/min}$$

$$P=1300 \text{ MVA}$$

$$U=20 \text{ kV}$$

$$M = 755 t$$