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This chapter examines a particular control structure
that has become almost universally used in industrial
control.  It is based on a particular fixed structure
controller family, the so-called PID controller
family.  These controllers have proven to be robust
and extremely beneficial in the control of many
important applications.

PID stands for: P  (Proportional)
I   (Integral)
D  (Derivative)
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Historical Note
Early feedback control devices implicitly or
explicitly used the ideas of proportional, integral and
derivative action in their structures.  However, it was
probably not until Minorsky’s work on ship steering*

published in 1922, that rigorous theoretical
consideration was given to PID control.
This was the first mathematical treatment of the type
of controller that is now used to control almost all
industrial processes.

*  Minorsky (1922) “Directional stability of automatically steered bodies”,
    J. Am. Soc. Naval Eng., 34, p.284.
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The Current Situation

Despite the abundance of sophisticated tools, including
advanced controllers, the Proportional, Integral,
Derivative (PID controller) is still the most widely
used in modern industry, controlling more that 95% of
closed-loop industrial processes*

* Åström K.J. & Hägglund T.H. 1995, “New tuning methods for PID
controllers”, Proc. 3rd European Control Conference, p.2456-62;  and
Yamamoto & Hashimoto 1991, “Present status and future needs:  The view
from Japanese industry”, Chemical Process Control, CPCIV, Proc. 4th Inter-
national Conference on Chemical Process Control, Texas, p.1-28.
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PID Structure

Consider the simple SISO control loop shown  in
Figure 6.1:

Figure 6.1:  Basic feedback control loop

C(s)
R(s) E(s) Y (s)U(s)

−+
Plant
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The standard form PID are:

CP (s) = Kp

CPI(s) = Kp

(
1 +

1
Trs

)

CPD(s) = Kp

(
1 +

Tds

τDs + 1

)

CPID(s) = Kp

(
1 +

1
Trs

+
Tds

τDs + 1

)

Proportional only:

Proportional plus Integral:

Proportional plus derivative:

Proportional, integral and 
   derivative:
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An alternative series form is:

Cseries(s) = Ks

(
1 +

Is

s

) (
1 +

Dss

γsDss + 1

)

Yet another alternative form is the, so called,
parallel form:

Cparallel(s) = Kp +
Ip

s
+

Dps

γpDps + 1
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Tuning of PID Controllers

Because of their widespread use in practice, we
present below several methods for tuning PID
controllers.  Actually these methods are quite old and
date back to the 1950’s.  Nonetheless, they remain in
widespread use today.
In particular, we will study.

◆ Ziegler-Nichols Oscillation Method
◆ Ziegler-Nichols Reaction Curve Method
◆ Cohen-Coon Reaction Curve Method
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(1) Ziegler-Nichols (Z-N) Oscillation 
Method

This procedure is only valid for open loop stable
plants and it is carried out through the following
steps

◆ Set the true plant under proportional control, with a
very small gain.

◆ Increase the gain until the loop starts oscillating.  Note
that linear oscillation is required and that it should be
detected at the controller output.
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◆ Record the controller critical gain  Kp = Kc  and the
oscillation period of the controller output,  Pc.

◆ Adjust the controller parameters according to Table
6.1 (next slide);  there is some controversy regarding
the PID parameterization for which the Z-N method
was developed, but the version described here is, to the
best knowledge of the authors, applicable to the
parameterization of  standard form PID.
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Table 6.1:  Ziegler-Nichols tuning using the
oscillation method

Kp Tr Td

P 0.50Kc

PI 0.45Kc
Pc

1.2
PID 0.60Kc 0.5Pc

Pc

8
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General System

If we consider a general plant of the form:

then one can obtain the PID settings via Ziegler-
Nichols tuning for different values of  τ  and ν0.  The
next plot shows the resultant closed loop step
responses as a function of the ratio

0;1)( 0
0
0

0 >+=
−
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s
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0ν
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Figure 6.3:  PI Z-N tuned (oscillation method) control
loop for different values of the ratio .
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Numerical Example

Consider a plant with a model given by

Find the parameters of a PID controller using the
Z-N oscillation method.  Obtain a graph of the
response to a unit step input reference and to a unit
step input disturbance.

Go(s) =
1

(s + 1)3
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Solution

Applying the procedure we find:

Kc = 8  and  ωc = √3.

Hence, from Table 6.1, we have

The closed loop response to a unit step in the
reference at  t = 0  and a unit step disturbance at t = 10
are shown in the next figure.

Kp = 0.6 ∗ Kc = 4.8; Tr = 0.5 ∗ Pc ≈ 1.81; Td = 0.125 ∗ Pc ≈ 0.45
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Figure 6.4:  Response to step reference and step
input disturbance
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Different PID Structures?

A key issue when applying PID tuning rules (such as
Ziegler-Nichols settings) is that of which PID
structure these settings are applied to.
To obtain an appreciation of these differences we
evaluate the PID control loop for the same plant in
Example 6.1, but with the Z-N settings applied to the
series structure, i.e. in the notation used in (6.2.5),
we have

Ks = 4.8   Is = 1.81   Ds = 0.45   γs = 0.1
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Figure 6.5:  PID Z-N settings applied to series
structure (thick line) and conventional
structure (thin line)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Time [s]

P
la

nt
 o

ut
pu

t

Z−N tuning (oscillation method) with different PID structures



©Goodwin, Graebe, Salgado,  Prentice Hall 2000Chapter 6

Observation

In the above example, it has not made much
difference, to which form of PID the tuning rules are
applied.  However, the reader is warned that this can
make a difference in general.
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(2)  Reaction Curve Based Methods

A linearized quantitative version of a simple plant
can be obtained with an open loop experiment, using
the following procedure:

1. With the plant in open loop, take the plant manually to a
normal operating point.  Say that the plant output settles at
y(t) = y0 for a constant plant input  u(t) = u0.

2. At an initial time,  t0, apply a step change to the plant
input, from u0 to u∞ (this should be in the range of 10 to
20% of full scale).

                                                                                         Cont/...
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3. Record the plant output until it settles to the new operating
point.  Assume you obtain the curve shown on the next
slide.  This curve is known as the process reaction curve.

In Figure 6.6,  m.s.t. stands for maximum slope tangent.

4. Compute the parameter model as follows

Ko =
y∞ − yo

u∞ − uo
; τo = t1 − to; νo = t2 − t1
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Figure 6.6:  Plant step response

The suggested parameters are shown in Table 6.2.
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Table 6.2:  Ziegler-Nichols tuning using the reaction
curve

Kp Tr Td

P
νo

Koτo

PI
0.9νo

Koτo
3τo

PID
1.2νo

Koτo
2τo 0.5τo
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General System Revisited

Consider again the general plant:

The next slide shows the closed loop responses
resulting from Ziegler-Nichols Reaction Curve
tuning for different values of

1)(
0
0

0 +=
−

s
eKsG

s

γ
τ

.
0ν

τ∆
=x



©Goodwin, Graebe, Salgado,  Prentice Hall 2000Chapter 6

Figure 6.7:  PI Z-N tuned (reaction curve method)
control loop
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Observation

We see from the previous slide that the Ziegler-
Nichols reaction curve tuning method is very
sensitive to the ratio of delay to time constant.
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(3)  Cohen-Coon Reaction Curve
Method

Cohen and Coon carried out further studies to find
controller settings which, based on the same model,
lead to a weaker dependence on the ratio of delay to
time constant.  Their suggested controller settings
are shown in Table 6.3:

Kp Tr Td

P
νo

Koτo

[
1 +

τo

3νo

]

PI
νo

Koτo

[
0.9 +

τo

12νo

]
τo[30νo + 3τo]

9νo + 20τo

PID
νo

Koτo

[
4
3

+
τo

4νo

]
τo[32νo + 6τo]

13νo + 8τo

4τoνo

11νo + 2τo

Table 6.3:  Cohen-Coon tuning using the reaction curve.
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General System Revisited

Consider again the general plant:

The next slide shows the closed loop responses
resulting from Cohen-Coon Reaction Curve tuning
for different values of
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Figure 6.8:  PI Cohen-Coon tuned (reaction curve
method) control loop
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Lead-lag Compensators

Closely related to PID control is the idea of lead-lag
compensation.  The transfer function of these
compensators is of the form:

If  τ1 > τ2, then this is a lead network and when τ1 < τ2,
this is a lag network.

C(s) =
τ1s + 1
τ2s + 1
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Figure 6.9:  Approximate Bode diagrams for lead
networks (τ1=10τ2)
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Observation

We see from the previous slide that the lead network
gives phase advance at  ω = 1/τ1 without an increase
in gain.  Thus it plays a role similar to derivative
action in PID.
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Figure 6.10: Approximate Bode diagrams for lag
networks (τ2=10τ1)
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Observation

We see from the previous slide that the lag network
gives low frequency gain increase.  Thus it plays a
role similar to integral action in PID.
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Illustrative Case Study: 
Distillation Column

PID control is very widely used in industry.  Indeed,
one would we hard pressed to find loops that do not
use some variant of this form of control.
Here we illustrate how PID controllers can be
utilized in a practical setting by briefly examining
the problem of controlling a distillation column.
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Example System

The specific system we study here is a pilot scale
ethanol-water distillation column.  Photos of the
column (which is in the Department of Chemical
Engineering at the University of Sydney, Australia)
are shown on the next slide.
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       Condenser      Feed-point         Reboiler
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Figure 6.11:  Ethanol - water distillation column

A schematic diagram of the column is given below:
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Model

A locally linearized model for this system is as
follows:

where

Note that the units of time here are minutes.

[
Y1(s)
Y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
U1(s)
U2(s)

]

G11(s) =
0.66e−2.6s

6.7s + 1

G12(s) =
−0.0049e−s

9.06s + 1

G21(s) =
−34.7e−9.2s

8.15s + 1

G22(s) =
0.87(11.6s + 1)e−s

(3.89s + 1)(18.8s + 1)
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Decentralized PID Design

We will use two PID controllers:

One connecting  Y1  to  U1

The other, connecting  Y2  to  U2 .
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In designing the two PID controllers we will initially
ignore the two transfer functions  G12 and G21.  This
leads to two separate (and non-interacting) SISO
systems.  The resultant controllers are:

We see that these are of PI type.

C1(s) = 1 +
0.25
s

Cs(s) = 1 +
0.15
s
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Simulations

We simulate the performance of the system with the
two decentralized PID controllers.  A two unit step
in reference 1 is applied at time  t = 50  and a one
unit step is applied in reference 2 at time t = 250.
The system was simulated with the true coupling
(i.e. including  G12  and  G21).  The results are shown
on the next slide.
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Figure 6.12:Simulation results for PI control of
distillation column

It can be seen from the figure that the PID controllers give quite acceptable
performance on this problem.  However, the figure also shows something that is
very common in practical applications - namely the two loops interact i.e. a change
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transient in  y2.  Similarly a change in the reference  r2  causes a change in   y2 (as
required) and also induces a change in y1.  In this particular example, these
interactions are probably sufficiently small to be acceptable.  Thus, in common
with the majority of industrial problems, we have found that two simple PID
(actually PI in this case) controllers give quite acceptable performance for this
problem.  Later we will see how to design a full multivariable controller for this
problem that accounts for the interaction.
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Summary

❖ PI and PID controllers are widely used in
industrial control.

❖ From a modern perspective, a PID controller is
simply a controller of (up to second order)
containing an integrator.  Historically, however,
PID controllers were tuned in terms of their P, I
and D terms.

❖ It has been empirically found that the PID
structure often has sufficient flexibility to yield
excellent results in many applications.
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❖ The basic term is the proportional term,  P,  which
causes a corrective control actuation proportional
to the error.

❖ The integral term, I gives a correction proportional
to the integral of the error.  This has the positive
feature of ultimately ensuring that sufficient
control effort is applied to reduce the tracking
error to zero.  However, integral action tends to
have a destabilizing effect due to the increased
phase shift.
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❖ The derivative term, D, gives a predictive
capability yielding a control action proportional to
the rate of change of the error.  This tends to have
a stabilizing effect but often leads to large control
movements.

❖ Various empirical tuning methods can be used to
determine the PID parameters for a given
application.  They should be considered as a first
guess in a search procedure.
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❖ Attention should also be paid to the PID structure.

❖ Systematic model-based procedures for PID
controllers will be covered in later chapters.

❖ A controller structure that is closely related to PID
is a lead-lag network.  The lead component acts
like  D  and the lag acts like  I.
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Useful Sites

The following internet sites give valuable
information about PLC’s:

www.plcs.net

www.plcopen.org

For example, the next slide lists the manufacturers
quoted at the above sites.
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ABB
Alfa Laval
Allen-Bradley
ALSTOM/Cegelec
Aromat
Automation Direct/PLC Direct/Koyo/

B&R Industrial Automation
Berthel gmbh

Cegelec/ALSTROM
Control Microsystems
Couzet Automatismes
Control Technology Corporation
Cutler Hammer/IDT

Divelbiss

EBERLE gmbh
Elsag Bailey
Entertron

Festo/Beck Electronic
Fisher & Paykel
Fuji Electric

GE-Fanuc
Gould/Modicon
Grayhill
Groupe Schneider

Cont/�.
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Hima
Hitachi
Honeywell
Horner Electric

Idec
IDT/Cutler Hammer

Jetter gmbh

Keyence
Kirchner Soft
Klockner-Moeller
Koyo/Automation Direct/PLC Direct

Microconsultants
Mitsubishi
Modicon/Gould
Moore Products

Omron
Opto22

Pilz
PLC Direct/Koyo/Automation Direct

Reliance
Rockwell Automation
Rockwell Software

Cont/�.
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SAIA-Burgess
Schleicher
Schneider Automation
Siemens
Sigmatek
SoftPLC/Tele-Denken
Square D

Tele-Denken/Soft PLC
Telemecanique
Toshiba
Triangle Research

Z-World
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Additional Notes:  Examples
commercially available PID controllers
In the next few slides we briefly describe some of the
commercially available PID controllers.  There are, of
course, a great many such controllers.   The examples we
have chosen are selected randomly to illustrate the kinds
of things that are available.
There are several variations in algorithms, with the three
main types being series, parallel and ideal form.
Some controllers are configured to act on the error and
some apply the D term to the feedback only.  Most have
special features to deal with saturation and slew rate
limits on the plant input.  (This topic is discussed in
Chapter 11).
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Allen Bradley PLC-5  PID Block

The PID function in this controller is an output
instruction that must be executed periodically at
specified intervals determined by the external code.
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There are 4 different forms of the controller equation:

(1) With derivative action on the output
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(2) With derivative action in the error
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(3) Similar to (1) but with different gains

biasyeKu
pK
sdK

di sK
s

K
p +

�
�

�

�

�
�

�

�

+
��
�

��
� +=

+161

(4) Similar to (2) but with different gains
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GEM 80 PIDABS Block

The GEM family of PLC’s have a PID block which
must be executed periodically at specified intervals
determined by the external code.  This function is
implemented by a velocity type algorithm, with the
controller being converted to an absolute controller
by adding the previous output value.  Thus the
controller output is of the form:

( ) ( )
100

2 211
1

−−−
−

+−++−+= tttctcttc
tt

eeeDeIeePuu
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The reader can convert the above discrete
implementation to approximate continuous time
form by noting that

where  ∆  is the sampling interval.  Thus the control
law is roughly equivalent to the following:

dt
dett ee ≅∆

− −1

2
2

2
212

dt
edttt eee ≅

∆
+− −−

�
�
�

�
�
� ∆+∆+= esDeIsePsu c

c
c

2
100

1
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Two comments regarding this equation are:

(1) Much more will be said on the relationship
between                  and      and Chapters 12, 13
and 14.

(2) Note that to achieve approximately the same
performance with different sampling rates,  Ic
and  Dc  need to be scaled.

∆
− −= 1tt eeeδ dt

de
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Yokogawa DCS Function Block

This DCS offers nine types of regulatory control blocks -
◆ PID
◆ Sampling PI
◆ PID with batch switch
◆ two position on/off controller
◆ three position on/off controller
◆ time proportioning on/off controller
◆ PD with manual reset
◆ blending PI
◆ self tuning PID
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The basic PID controller has 5 variations.  The main
3 structures being:

(1)

(2)

(3)

Note that the parameters in these controllers are
(roughly) invariant w.r.t.  ∆.

( ) ( )��
�

��

� +−∆+∆+−+= −−−− 2111 2 ttt
d

t
i

ttpstt eeeTeTeeKKuu

( ) ( )��
�

��

� +−∆+∆+−+= −−−− 2111 2 ttt
d

t
i

ttpstt yyyTeTeeKKuu

( ) ( )��
�

��

� +−∆+∆+−+= −−−− 2111 2 ttt
d

t
i

ttpstt yyyTeTyyKKuu



©Goodwin, Graebe, Salgado,  Prentice Hall 2000Chapter 6

Additional features of these controllers are
◆ Selection of the type of equation, including the facility to invert the

output;
◆ Automatic or manual mode selection, with an option for tracking;
◆ Bumpless transfer;
◆ Separate input and output limits, including rate and absolute limits;
◆ Additional non-linear scaling of the output;
◆ Integrator anti-windup (called reset-limiter);
◆ Selectable execution interval as a multiple of scan time;
◆ Feed forward, either to the feedback or controller output;
◆ A dead-band on the controller output.
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Fisher Controls 4195K Gauge
Pressure Controller

This pressure controller is a pneumatic device, with
mechanical linkages, that is coupled to a control
valve, specifically for providing pressure regulation.
One advantage of pneumatic controllers is that, as
they are powered by instrument air, there is no
electrical power employed.
The controller can be configured as a P, PI or PID
controller, which can be configured as direct or
reverse acting.  Features such as anti-windup are
optional.


