BIO 390 - GENETICS

CHROMOSOME MUTATIONS

OVERVIEW

- Multiples of complete sets of chromosomes are called **polyploidy**.
 - Even numbers are usually fertile.
 - Odd numbers are usually sterile.
- Aneuploidy refers to the gain or loss of single chromosomes, usually in meiosis.
- Chromosome aberrations include translocations, inversion, deletion, duplication.
 - Each has characteristic meiotic pairing.
 - Crossing-over may result in abnormal gametes, reduced fertility and unmasking of deleterious recessive alleles.
 - Duplication can also provide material for evolutionary divergence.

CHROMOSOME MUTATIONS

- Two major types
 - change in number of copies of chromosomes
 - alteration of chromosome structure
- Reveal features of meiosis
- Provide insight into gene function
- Useful tools for experimental analysis
- Provide insight into evolution

ABERRANT EUPLOIDY

- Changes in whole chromosome sets
- Euploidy: multiples of basic chromosome set
 - haploid
 - diploid

- Aberrant euploid: more or less than normal number

- monoploid (1*n*)
- triploid (3n)
- tetraploid (4*n*)
- pentaploid (5*n*)
- hexaploid (6*n*)

MONOPLOIDY

- Male bees, wasps, ants
 - parthenogenetic development of unfertilized egg
 - single set of chromosomes
 - produce gametes by mitosis
- Usually lethal in other systems
 - unmasks recessive lethals
 - if individual survives to adulthood, no meiosis, sterility

- Very common in plants
 - associated with origin of new species
 - sympatric speciation
 - may positively correlate to size of individual

- Autopolyploids

- originate within a species
- autotriploid (2n + n)

Note: each chromosome is a pair of chromatids

-sterile due to formation of aneuploid gametes

Figure 24.13 Sympatric speciation by autopolyploidy in plants

- autotetraploid (doubling of 2*n*)
 - spontaneous doubling

- induced by drug such as colchicine

Note: each chromosome is a pair of chromatids

- results in
 - diploid (a,b) gametes which upon fusion will regenerate the tetraploid state
 - nonfunctional aneuploid gametes (c) resulting in sterility

- Allopolyploidy

- hybrid of two or more closely related species
- partially homologous chromosomes (homeologous)
- amphidiploid: doubled diploid
- *Triticum aestivum* (2n = 42)
 - multiple episodes of allopolyploidy

Figure 24.15 One mechanism for allopolyploid speciation in plants

- Agricultural applications

- plant monoploids grown from 1n cells in anther
- bananas (3n = 33)
- Triticale: amphidiploid of wheat and rye

POLYPLOIDY IN ANIMALS

- Rare occurrence
 - species of flatworms, leaches, brine shrimps
 - certain fishes, amphibians, reptiles
- Sometimes artificially induced, e.g., triploid oysters

ANEUPLOIDY

- Chromosome complement differs from normal by part of chromosome set
 - e.g., $2n \pm 1$
 - tolerated in plants
 - usually lethal in animals
- For autosomes:
 - monosomy: 2*n* 1
 - trisomy: 2n + 1
 - nullisomy: 2n 2
 - disomy: n + 1 (in haploids
- For sex chromosomes, notation lists copies of each chromosome. Examples: XXY, XXX, XO

NONDISJUNCTION

- Cause of most aneuploidy
- Failure of chromosomes or chromatids to segregate at meiosis or mitosis
 - mitotic nondisjunction
 - zygotic: all cells aneuploid
 - later in development: aneuploid sectors
 - meiotic nondisjunction
 - an euploid haploid organisms $(n \pm 1)$
 - an euploid gametes $(n \pm 1)$ leading to an euploid zygotes
 - increased frequency if crossing-over fails

MONOSOMY

- 2*n* 1
- Usually deleterious owing to unmasking of recessive lethals in animals
 - lethal in utero in humans

- XO: Turner syndrome in humans

- only viable monosomy in humans
- phenotypic female
- sex organs fail to mature
- secondary sex characteristics fail to develop (breasts)
- normal intelligence
 - some impairment in cognitive functions
- Used to map genes in plants

TRISOMY

-2n+1

- Often lethal in animals owing to chromosome imbalance
 - in euploids the ratio of genes on any one chromosome to the different genes on other chromosomes is 1:1 regardless of the ploidy
 - in aneupolids the ratio of genes on the aneuploid chromosome to genes on the other chromosomes differs from the wild type by 50%
 - 50% for monosomics
 - 150% for trisomics
 - gene-dosage
 - relationship between the number of copies of a gene and the amount of the gene's product
 - amount of transcript produced by a gene directly proportional to the number of copies of the gene
 - compensated for with respect to sex chromosomes
 - in mammals X chromosome inactivation
 - in *Drosophila* X chromosome in males is transcribed at twice the rate of either X chromosome in females
- If viable, may be fertile (meiotic trivalent)

TRISOMY

- XXY: Klinefelter syndrome

- male
- sterile
- mentally retarded
- XYY:
 - fertile, no extra Y in gametes
 - X pairs with one of the Ys
 - other Y does not pair and is not transmitted to the gametes

- XXX:

- fertile, no extra X in gametes
 - two Xs pair
 - third X does not pair and is not transmitted to the gametes

- Trisomy 21: Down syndrome

- characteristic facial features, short stature, heart defects, susceptibility to respiratory infection and mental retardation
- trisomy of chromosome 21(due to nondisjunction)
- frequency correlates with age of the mother

CHANGES IN CHROMOSOME STRUCTURE

- Also called chromosome rearrangements
 - deletion: loss of segment
 - duplication: gain of segment
 - inversion: reversal of region
 - translocation: movement of segment to another chromosome
- Origin in double-stranded breaks where product has centromere and two telomeres
 - acentric fragments lost at anaphase
 - dicentric fragments dragged to both poles, lost

BALANCED REARRANGEMENT: INVERSION

- Change in gene order, but no gain or loss of DNA
- Inversion loop formed at meiosis I
- Paracentric: centromere outside inversion
 - crossing-over in inversion heterozygote results in one dicentric chromatid and one acentric fragment
 - reduced number of viable gametes
 - drastically lower RF
 - close to zero for genes within the inversion
 - reduced in proportion to the size of the inversion for genes flanking the inversion
 - longer the inversion the greater the probability of a crossover occurring within producing an inviable meiotic product
 - crossover products are not recovered

BALANCED REARRANGEMENT: INVERSION

- Pericentric: inversion spans centromere
 - crossing over in inversion results in gene imbalance
 - crossover produces chromatids that contain a duplication and a deletion for different parts of the chromosome
 - crossover products are not recovered
 - reduced number of viable gametes

BALANCED REARRANGEMENT: TRANSLOCATION

- Change in gene order, but no gain or loss of DNA
- **Reciprocal translocations**: exchange between two nonhomologous chromosomes
- Cross-shaped configuration at meiosis I
- Two types of segregations
 - adjacent-1: segregation of each structurally normal chromosome with one of the translocated ones $(T_1 + N_2 and T_2 + N_1)$
 - alternate segregation: segregation of the two normal and two translocated chromosomes $(N_1 + N_2)$ and $T_1 + T_2$)
- Crossing-over results in gene imbalance, semisterility
 - equal numbers of adjacent-1 and alternate segregations
 half of the overall population of gametes (plants) or
 - zygotes (animals)will be nonfunctional
 - diagnostic tool for identifying translocation
 - heterozygotes

APPLICATIONS OF INVERSIONS & TRANSLOCATIONS

- Gene mapping
 - assign gene to specific chromosome region
 - correlation of translocations with a phenotype
 breakpoints (disruptions) define the gene locus
- Synthesizing specific duplications and deletions
 - useful in mapping and study of gene regulation
 - varying gene dosage
- Position-effect variegation
 - gene action can be affected by location near heterochromatin

POSITION-EFFECT VARIEGATION

IMBALANCED REARRANGEMENT: DELETION

- Loss of segment of DNA
- Intragenic deletion: small deletion within gene
 - inactivates gene and has the same effect as a other null mutations fo that gene
- Multigene deletion
 - many genes deleted
 - often severe consequences
- gene imbalance
- expression of deleterious recessive mutation
 - **pseudodominance** seems as if the recessive alleles are showing dominance

<u>a b c d e f g</u> <u>+ +</u> <u>+ + +</u>

- Visible as deletion loop

(a) Meiotic chromosomes

- May be used in deletion mapping

IMBALANCED REARRANGEMENT: DELETION

- prune (*pn*) mutation shows pseudodominance only with deletions 264-38
 - gene located in the 2D-4 to 3A-2 region
- *fa* shows pseudodominance with all but two deletions (258-11 and 258-14)
 - so the locus is located in band 3C-7, the region that all the other deletions have in common

IMBALANCED REARRANGEMENT: DUPLICATION

- Gain of segment of DNA
- Source of new genes and gene families
- Tandem duplication: adjacent duplications
- Insertional duplication: duplicate gene inserted elsewhere in genome
- May be consequence of unequal crossing-over

EVOLUTIONARY ASPECTS

- ~7.5% spontaneous human abortions have chromosomal abnormality
- Chromosomal changes occur in association with speciation
 - fusion of two chromosomes (translocation) to form single chromosome in human evolution
 - duplication and divergence
 - human globin genes
- Chromosomal polymorphism: two or more forms of chromosome in population
 - inversion common
 - paracentric inversions in Drosophila
 - because of the strong reduction in RF caused by inversions genes in inverted region segregate as a unit called a supergene
 - commonness due to peculiarities of meiosis
 - no crossing over in Drosophila males
 - in *Drosophila* females only the two end nuclei (noncrossovers) are included in the egg
- Chromosomal **synteny**: inheritance of blocks of genes through inversions and translocations

EVOLUTIONARY ASPECTS

- Synteny of mouse (2*n* =40) and human (2*n*=46) chromosomes
- Since evolutionary divergence multiple rearrangements have placed homologous blocks of genes in different combinations