Mechanical Vacuum Pumps

Andrew Chew andrew.chew@bocedwards.com CERN Accelerator School Spain, May 2006

Disclaimer

The author and his employer, BOC Edwards, disclaim any and all liability and any warranty whatsoever relating to the practice, safety and results of the information, procedures or their applications described in this presentation.

Contents

- Vacuum basics: reminder
- Primary and secondary mechanical pump technology

Gas Quantity

- Mass
- Number of molecules
- Moles
- Pressure/Volume units
 - -q = PV
 - e.g. mbar liter/sec
 - Could be expressed in joules

Quantity q

Speed

• Speed = Volume rate
$$S \equiv \dot{V}$$

Speed curve example

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Throughput

• Throughput = Pressure x Volume rate (where pressure is constant)

$$Q = P\dot{V} = PS$$

Throughput and Mass Flow

Quantity
$$q = PV = w \frac{R_o T}{M}$$

Quantity/unit time
(Throughput)
$$Q = P\dot{V} = \dot{w} \frac{R_o T}{M}$$

Q tells us nothing about Pressure and Volume rate separately - only the product

What do we mean by Speed?

- Manufacturers generally mean
 - Volume flow rate measured under standard conditions
 - Generally units are:

m3/h, l/m or cfm for primary

- and I/s for secondary
-(many other units used)
- Gas inlet from a source at 20°C (standards specify between 15°C and 25°C)

Displacement?

• Manufacturers generally mean:

This is the swept volume rate D
i.e. the trapped or isolated inlet volume/unit time

Maximum possible flow rate of the pump

– S < D

Rarefied gas and ranges of vacuum

Vacuum range	mbar	Pa
Rough	1013 - 1	10 ⁵ - 10
Fine/medium	1 - 10 ⁻³	10 ² - 10 ⁻¹
High	10 ⁻³ - 10 ⁻⁷	10 ⁻¹ - 10 ⁻⁵
Ultra high (UHV)	< 10 ⁻⁷	<10 ⁻⁵
Extreme high (XHV)	<10 ⁻¹⁰ /10 ⁻¹¹	<10 ⁻⁸ / 10 ⁻⁹

Flow Regimes

n, λ , and *J* at various *P* for N₂ at 293 K

P (mbar)	<i>n</i> (m ⁻³)	λ	J (cm ⁻² s ⁻¹)
10 ³ = 1 atm	2.5 x 10 ²⁵	6.6 x 10 ⁻⁶ cm	2.9 x 10 ²³
1	2.5 x 10 ²²	6.6 x 10 ⁻³ cm	2.9 x 10 ²⁰
10 ⁻³	2.5 x 10 ¹⁹	6.6 cm	2.9 x 10 ¹⁷
10 ⁻⁶ HV	2.5 x 10 ¹⁶	66 m	2.9 x 10 ¹⁴
10 ⁻¹⁰ UHV	2.5 x 10 ¹²	660 km	2.9 x 10 ¹⁰

Kn<<1, λ <<d molecule-molecule collisions dominate

Kn>>1, λ>>d molecule-surface collisions dominate

Continuum and molecular states

Knudsen number
$$Kn = \frac{\lambda}{d}$$

d here is a typical dimension (NOT molecular diameter)

Kn < 0.01</th>Continuum state0.01 < Kn < 1</td>Transitional stateKn > 1Molecular state

Flow Regimes and Types

Reynolds Number

Primary controlling parameter in the viscous behaviour of Newtonian fluids

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Conductance

Definition:
$$C = \frac{Q}{P_u - P_d}$$

Conductance = 1/Resistance

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Net Speed of a Pump

Pumping speed can be combined with a conductance in the same way as conductances in series

Note: In molecular flow we need to introduce concept of transmission probability

Speed, Pressure Ratio, Conductance

From the definition of conductance

K is (zero flow) compression ratio

$$Q = P_d S = (P_u - P_d)C$$

: $C = \frac{S}{K-1}$ or $K = 1 + \frac{S}{C}$

Chamber Exhaust

Mechanical pump types (> 1 m³/h)

Primary pumps – exhaust to atmosphere

Secondary pump – exhaust to a backing (primary pump)

Max speeds shown exponent of maximum pump speed 10^{n} (m³/h or l/s)

Wet pumps			
 Oil sealed rotary vane: 	Primary	n = 0 to 3 (m ³ /h)	
– Piston:	Primary	n = 0 to 2 (m ³ /h)	
 Liquid Ring: 	Primary	$n = 1 \text{ to } 3 (m^3/h)$	
Dry Pumps			
 Northey-claw: 	Primary	n = 1 to 3 (m ³ /h)	
– Roots:	Primary or Secondary	n = 2 to 5 (m³/h)	
– Scroll	Primary	n = 1 to 3 (m ³ /h)	
– Screw	Primary	n = 1 to 3 (m ³ /h)	
 Regenerative 	Primary	n = 1 to 3 (m ³ /h)	
– Piston	Primary	n = 1 to 2 (m ³ /h)	
 Diaphragm 	Primary	n = 0 to 2 (m ³ /h)	
– Drag	Primary or Secondary	n = 0 to 2 (l/s)	
- Turbomolecular	Secondary	n= 1 to 4 (l/s)	

Operating principle

- All rely on principle of positive displacement of gas (or vapour)
-Except
 - Drag pumps: which utilise molecular drag
 - Turbomolecular pumps: capture technique (exploits molecular flow phenomena)

Globally >> 500 000 made per annum

Choice of mechanical pump type....

	Wet Pumps	Dry Pumps
Capital Cost	Low	High
Oil Loss	Can be high at > 1 mbar	Very Low
System Contamination	Backstream at < 0.1 mbar (1 part in 15 at ult)	Very Low (1 part in 10000 at
Add on Costs	Oil return/filtration	Not necessary
Aggressive Process	Not suitable	Resistant
Purge	Sometimes	Almost always

Excellent detailed and in-depth of coverage in General Literature and Manufacturers' websites etc.

Choice of pump type

Pump type comparison

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Oil Sealed Rotary Vane Pumps

Oil Sealed Rotary Vane Pumps

- Oil sealed rotary vane pumps were first developed in the early 1900s
- Today, the two commonly used oil sealed pumps are rotary vane and rotary piston pumps
 - Oil sealed rotary vane often used for low inlet pressures and light gas loads
 - Oil sealed rotary piston pumps are often large and are most often found in high gas load, high inlet pressure industrial applications

Basic OSRV Schematic

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

The Pumping Cycle

- 1 Inlet exposed
- 2 Trapped volume
- 3 Compression
- 4 Exhaust

Rotary vane animation.swf

Functions of Oil

- Seals
 - Oil surface tension seals the duo-seal
 - Fills gaps between the vanes, rotors & stators
- Lubricates
 - Bearing areas and blade contact surfaces
- Cools
 - Moves heat from rotors & stators to the oil box
- Protects parts from rust and corrosion
 - Coats surfaces to protect from aggressive gas

Single versus Dual Stage Pumps

- A single stage pump has one rotor and one set of vanes (approx. 10⁻² mbar)
 - Lower cost where strong ultimate vacuum is not required
 - Used for higher inlet pressures or high gas loads due to lower compression
- A dual stage pump is simply two single stage pumps in series (approx. 10⁻³ mbar)
 - Higher compression ratio gives better ultimate vacuum

Dual Stage Pump Cutaway

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Rotary Pump Speed Curves

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

OSRV Pump Cutaway View

OSRV 2 stage 5 m³/h Speed Curves

Speed Curve ~ RV5 60Hz, All Modes

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Rotary Pump Gas Loads

- Pumped gas may contain both permanent gases and vapors
 - Vapors can condense when compressed
 - Condensed vapors may include liquid H₂O and solvents which can mix with pump oil to form an emulsion
- Condensed vapors can reduce the ultimate vacuum, cause corrosion, and possibly lead to pump seizure

Gas Ballast – allows vapour pumping without condensation

vapours to condense

Dry Pumps – Clearance mechanisms Ult. 0.001 mbar

₩

Claw pump.swf

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Clearance mechanism

Dry pump speed curve

Clearance mechanism

BOC Edwards iH80

Andrew D Chew - Mechanical Pumps

"Vacuum in Accelerators" CERN Accelerator School May 2006

Diaphragm Pumps ult. 0.1 mbar

Crankshaft rotates and the connecting rod pulls diaphragm down, creating a vacuum in the chamber. This opens the inlet valve and closes the exhaust valve. The chamber fills with gas. As the crankshaft continues to rotate, the connecting rod forces the diaphragm to the top of the chamber. This compresses the gas, opens the outlet valve and closes the inlet valve. The valves on the inlet and outlet to the chamber are flapper types, which are operated by pressure.

Scroll pumps ult. 0.01 mbar

Scroll pumps ult. 0.01 mbar

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Diaphragm Pumps ult. 0.1 mbar

a.c. variant

Vacuubrand MD series

'hew - Mechanical Pumps'CERN Accelerator School May 2006

Dry piston

Dry Piston Pump Mechanism

As the crankshaft rotates, it moves the piston vertically through the cylinder, which traps, compresses, and exhausts the gas from the pump.

A coating around the outside of the piston creates the seal between the piston and the cylinder wall.

Roots/Booster Ult. < 0.0001 mbar

The lobed (2 or 3) rotors trap a volume of air against the stator body and sweep it around, exhausting the air 180° from the inlet.

Tight clearances between the rotors and the stator are critical to trap and moved through the pump body.

Booster ΔP (outlet/inlet) limitations

- Normally booster displacement is > backing pump speed therefore large ∆P's are generated at high inlet pressure.
- Unless the ∆P is limited, power demand increases rapidly
- Limiting methods include hydrokinetic drive, inverter motor control, pressure relief valves (outlet to inlet)

Mechanical boosters

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Mechanical boosters

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Series/parallel boosters

To achieve speed, ultimate or pump-down requirements, more than one booster may be used.

- In parallel
 - limited to approx one decade improvement in ultimate
 - modest improvement in pumping speed at high pressure
 - high pumping speed at low pressure
- In series
 - lower ultimate limited by outgassing
 - higher pumping speed at high pressure
 - limits pumping speed at lower pressures

Speed

Turbomolecular pumps

Full bladed

Compound turbo/drag

Principle of Operation

1. The direction of the arrow indicates the direction of travel of the molecule.

2. The length of the arrow indicates the 'probability' that the molecule will depart in that direction - Knudsen

Molecular collisions with surfaces

Consider (a) text book collision and (b) reality

(a) (b) High rotational speeds (>1000Hz) tip velocity = molecular thermal velocities Andrew D Chew - Mechanical Pumps

"Vacuum in Accelerators" CERN Accelerator School May 2006

Molecules leaving a surface

Blade speed needs to be of same order as molecular velocity to influence motion

In the position shown, there is a higher probability that the molecules will leave the blade in a downward direction.

Molecules leaving Rotors/Stators

Stators help reduce sideways movement of the molecules

Open blade structure

- The blades at the top of the pump have an open blade structure.
- This gives a high pumping speed and low compression ratio.

Closed blade structure

- The blades at the bottom of the pump have a closed blade structure.
- This gives a low pumping speed and high compression ratio.

Compound pumping technologies

GAEDE

Gas flows from turbo stages into collection channel and then into the first Gaede stage

- Spinning discs
- Stationary "fingers" (supported by envelope)

Gaede 1912

HOLWECK

For ease of explanation mechanism is shown with spinning helix. Most pumps use spinning wall and stationary helix.

- Spinning Helix
- Stationary wall (pump envelope)

Andrew D Chew - Mechanical Pumps

"Vacuum in Accelerators" CERN Accelerator School May 2006

'Conventional' bearing mechanisms

Grease

Ceramic/permanent magnet

Magnetic bearings

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Magnetic levitation

- Rotor suspended by a system of magnets
- No contact nothing to wear out and high reliability
- Permanently low vibration characteristic
 - Conventional bearing vibration characteristics drifts with time
- No hydrocarbon lubricants present pump is hydrocarbon free
- Can be mounted in any orientation
- Designed to work with semiconductor process gases/radiation environments

Speed curves ISO100

Pfeiffer TMU261P

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Magnetic pump example

Split flow pumps – Mass Spectrometry

With Cast Envelope

The Interior

Drag pump

Adixen MDP 40 mbar exhaust pressure

Regenerative/drag mechanism

Regenerative mechanism

Exhausts to atmosphere

Holweck drag mechanism to <10⁻⁶ mbar

Drag Stator

Drag Rotor

• Each Holweck stage has parallel helical grooves forming a set of parallel pumping channels.

Utilizes two configurations:

Plane cylinder rotor with stationary helical grooves
Helical grooves in rotor and stationary plane cylinder

EPX500 speed curve

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Speed Measurement

Recommended test dome (P < 10⁻⁶ mbar)

Speed testing for < 10⁻⁶ mbar

Problem can't accurately measure flow rate at low flows -

e.g. pump of 100 l/s at 10^{-9} mbar (10^{-7} mbarl/s):

Q = 0.0006 sccm (e.g. MFC of 0.1 sccm has 0.0001 sccm - approx 10^{-6} mbar l/s resolution)

Continuity: use $Q = SP_2 = C(P_1 - P_2)$

$$S = C \left(\frac{P_1}{P_2} - 1 \right)$$

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

ISO versus AVS

- In old AVS standard dome gauge position is closer to pump mouth and hence due to molecular flow/cosine distribution variations older AVS speed is 10 to 15% higher than the ISO speed
- Current AVS and ISO standards are same
- But some manufacturers still quote speeds to old AVS standard

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006

Selected reading

- High Vacuum technology A Practical Guide MH Hablanian
- Foundations of Vacuum Science and Technology ed J M lafferty
- Theory and Practice of Vacuum Technology M Wutz, H Adam and W Walcher
- Handbook of Vacuum Science and Technology D M Hoffman, B Singh and JH Thomas

Specific recent articles....

- **A D Chew**, M Galtry, RG Livesey and I Stones, '*Towards the Single Pump Solution Recent Development in High Speed Machines for Dry Vacuum Pumping.*' Published in *Journal of Vacuum Science and Technology A* **23 (5)**, 1314 (2005)
- **A D Chew**, A Cameron, D Goodwin, J Hamilton, T Hawley-Jones, P Meares, J Pumfrey, J Ramsden and D Steele 'Considerations for Primary Vacuum Pumping in Mass Spectrometry Systems.' Published in Spectroscopy **20 (1)**, 2005

Andrew D Chew - Mechanical Pumps "Vacuum in Accelerators" CERN Accelerator School May 2006