CpE358/CS381

Switching Theory and Logical Design

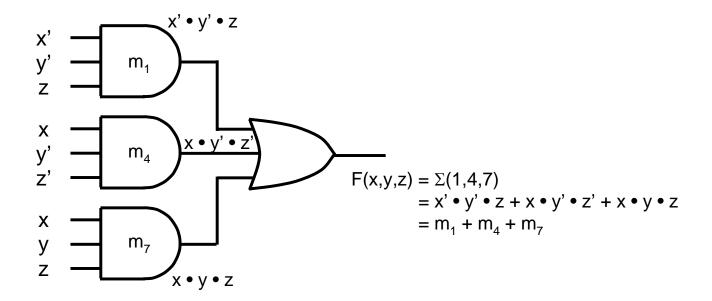
Class 3

Today

- Fundamental concepts of digital systems (Mano Chapter 1)
- Binary codes, number systems, and arithmetic (Ch 1)
- Boolean algebra (Ch 2)
- Simplification of switching equations (Ch 3)
- Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
- Combinatoric logical design including LSI implementation (Chapter 4)
- Hazards, Races, and time related issues in digital design (Ch 9)
- Flip-flops and state memory elements (Ch 5)
- Sequential logic analysis and design (Ch 5)
- Synchronous vs. asynchronous design (Ch 9)
- Counters, shift register circuits (Ch 6)
- Memory and Programmable logic (Ch 7)
- Minimization of sequential systems
- Introduction to Finite Automata

Boolean Functions in Terms of Minterms

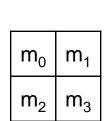
• A logical function is TRUE if any of it's minterms are true:

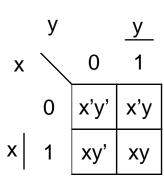


 Algebraic manipulation of the literal expression of the function is one way to minimize it, manipulation of minterms is another

Two Variable Minterm Map

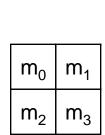
• Represent Boolean functions in terms of minterms in a Karnaugh map:

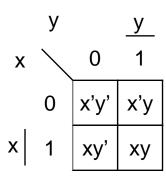




Two Variable Minterm Map

• Represent Boolean functions in terms of a Karnaugh map:



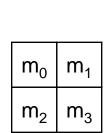


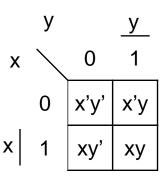
Consider the XOR function

$$F(x, y) = x \oplus y = x'y + xy' = m_1 + m_2$$

Two Variable Minterm Map

• Represent Boolean functions in terms of a Karnaugh map:





Consider the XOR function

$$F(x, y) = x \oplus y = x'y + xy' = m_1 + m_2$$

Set the non-asserted minterms to zero

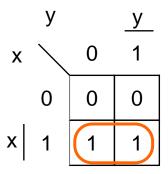
Minimizing Function of Two Variables

$$F(x, y) = xy' + xy = m_2 + m_3$$

$$= x(y' + y)$$

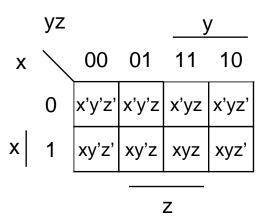
$$= x$$

 Covering "adjacent" minterms with a single region defines the variables needed to represent the function



Minimizing Function of Three Variables

m_0	m₁	m_3	m_2
m ₄	m ₅	m ₇	m_6



- Minterms are numbered in Gray code order adjacent minterms differ in only one variable
- If the function is asserted (i.e., TRUE) for <u>both</u> of these adjacent minterms, then the terms defined by those minterms do not depend on the variable that is changing between them

m_0	m ₁	m_3	m_2
m ₄	m_5	m ₇	m_6

	yz		\	<u>y</u>		
X		00	01	11	10	
	0	x'y'z'	x'y'z	x'yz	x'yz'	
x	1	xy'z'	xy'z	xyz	xyz'	

• Consider $F(x,y,z)=\Sigma(1,3,7)$

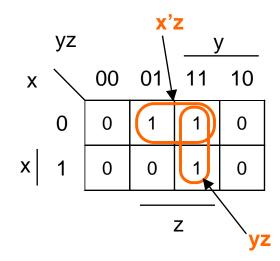
$$F(x, y, z) = m_1 + m_3 + m_7$$

$$F(x, y, z) = x'y'z + x'yz + xyz$$

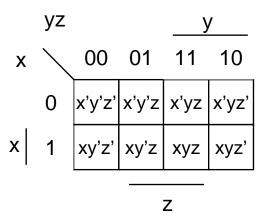
$$= x'y'z + x'yz + x'yz + xyz$$

$$= x'(y'+y)z + (x'+x)yz$$

$$= x'z + yz$$

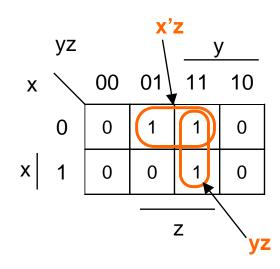


m_0	m_1	m_3	m_2
m ₄	m_5	m ₇	m_6

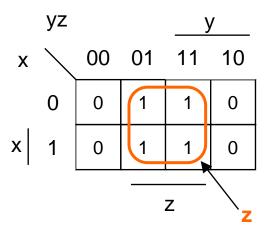


Observations:

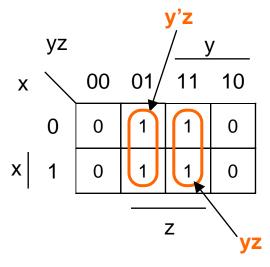
- All minterms must be covered
- Number of variables defining a sum term inversely proportional to number of minterms covered
- Number of sum terms required to define function equal to number of separate regions
 - → Maximize region size
 - → Minimize number of regions



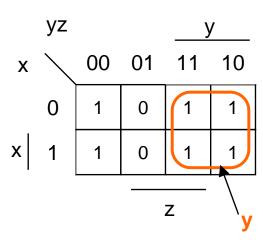
- For a 3-variable map:
 - Covering 4 minterms with one 4-minterm region defines the function in terms of a single variable



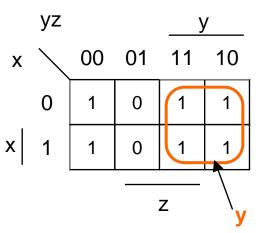
 Covering the same 4 minterms with 2 2minterm regions defines the function in terms of two terms, each requiring two variables.



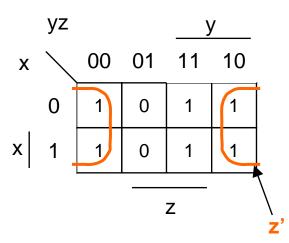
- "Adjacency" sometimes exists in subtle ways:
 - These four minterms are obviously adjacent to each other.



- "Adjacency" sometimes exists in subtle ways:
 - These four minterms are obviously adjacent to each other.

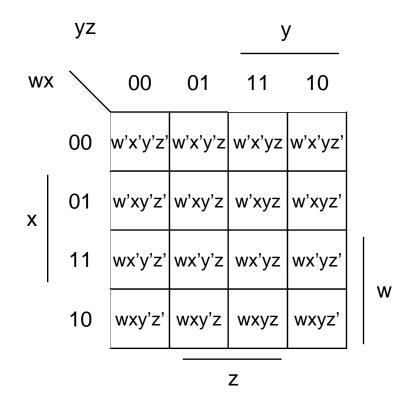


 But so are these, if we consider the map to wrap around on itself



Four Variable Map

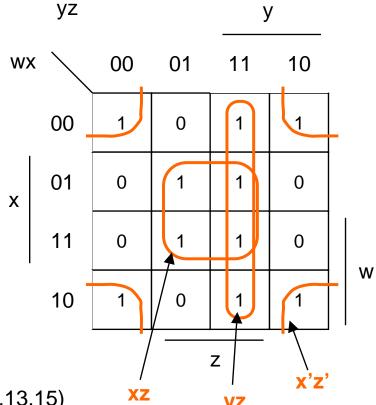
m _o	m ₁	m_3	m ₂
m ₄	m ₅	m ₇	m ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀



• The 4-variable map extends the concept of the 2- and 3-variable map

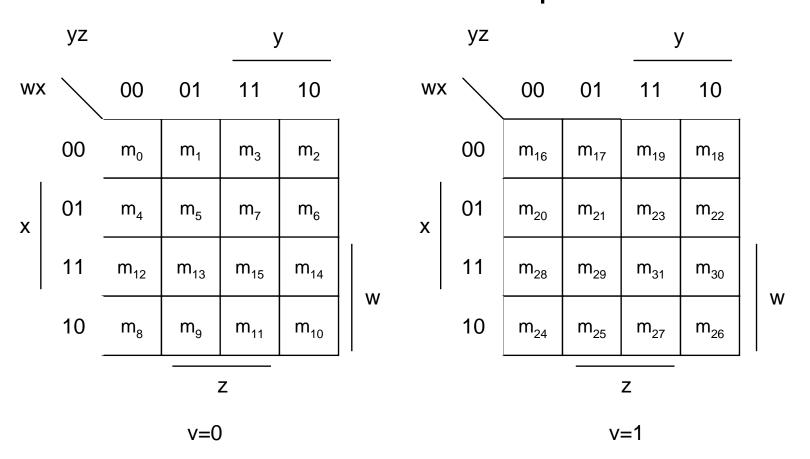
Minimizing Four Variable Map

m_0	m ₁	m_3	m_2
m ₄	$m_{\scriptscriptstyle{5}}$	m ₇	m_6
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀



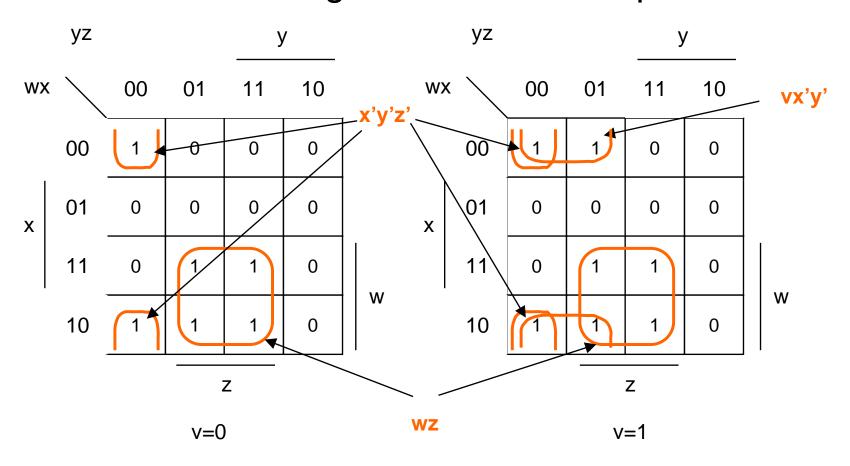
- Minimize $F(w,x,y,z)=\Sigma(0,2,3,5,7,8,10,11,13,15)$
- F(w,x,y,z)=xz+x'z'+yz

Five Variable Map



• 5-variable map is extension of 4-variable map, adjacency must be considered between pairs of 4-variable maps

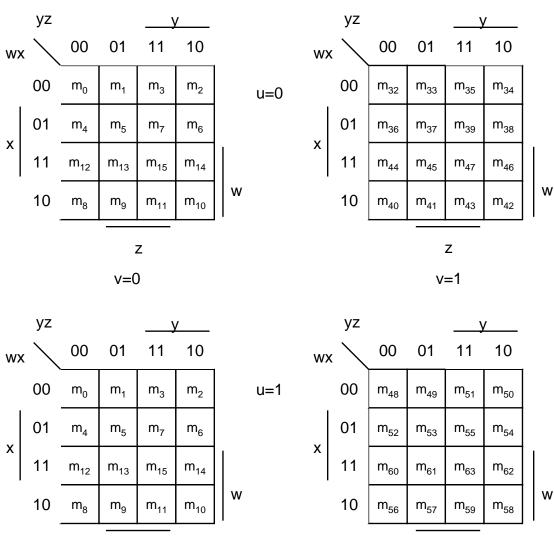
Minimizing Five Variable Map



- Minimize $F(v,w,x,y,z)=\Sigma(0,8,9,11,16,17,24,25,27,29,31)$
- F(v,w,x,y,z)=wz+x'y'z'+vx'y'

Six Variable Map

- Keeping track of what minterms are adjacent becomes tedious
- Ensuring the maximum coverage for each term is challenging
- 6-variable maps usable, but perhaps the design needs to be modularized instead



Ζ

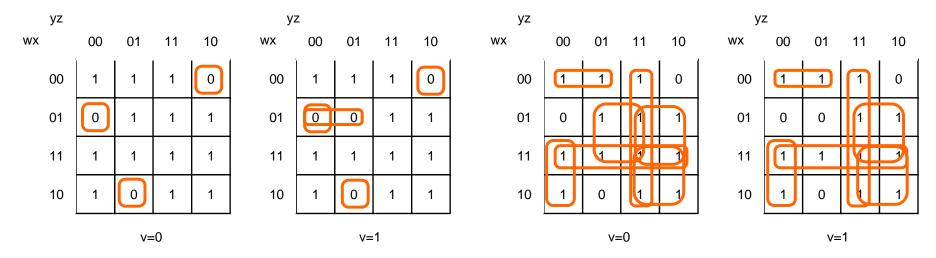
Z

Product of Sums – Covering 0's Instead of 1's

- A function of N variables, $F(v_1, v_2, ..., v_N)$, can be represented by a Karnaugh map with 2^N cells. $(v_1, v_2, ..., v_N) = (0, 0, ..., 0), (0, 1, ..., 0), ..., (1, 1, ..., 1)$
- F(), and it's Karnaugh map have K minterms (1's) and 2^N-K maxterms (0's)
- If $K > 2^N K$, it might be easier to cover the maxterms rather than the minterms. E.g.:

yz					yz	Z			
WX	00	01	11	10	wx	00	01	11	10
00	1	1	1	0	00	1	1	1	0
01	0	1	1	1	01	0	0	1	1
11	1	1	1	1	11	1	1	1	1
10	1	0	1	1	10	1	0	1	1
		V=	:0				V=	:1	

Product of Sums – Covering 0's Instead of 1's



F(v,w,x,y,z)' has 4 terms

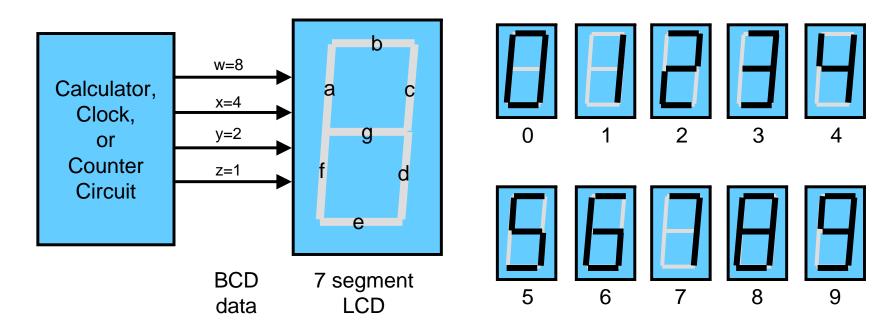
$$F(v,w,x,y,z)' = w'x'yz' + w'xy'z' + vw'xy' + wx'y'z$$

F(v,w,x,y,z) has 7 terms

$$F(v,w,x,y,z) = w'x'y' + yz + v'xz + xy + wx + wy'z' + wy$$

Don't Care Conditions

• Sometimes, not all possible output values are specified in system design, e.g.:

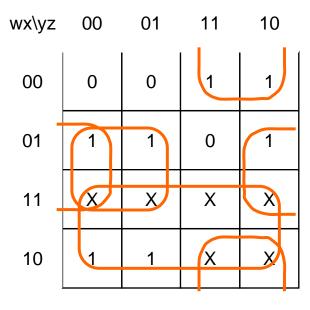


• Consider the horizontal line in the middle of the display (segment g):

E (w x y z) $= \Sigma(2.3.4.5.6.8.9)$ but we don't care what happens to minter

 $F_g(w,x,y,z)=\Sigma(2,3,4,5,6,8,9)$, but we don't care what happens to minterms 10, 11, 12, 13, 14, or 15, since the display will not be sent those states

Don't Care Conditions



$$F(w,x,y,z) = xy + xz' + xy' + w$$

wx\yz	00	01	11	10
00	0	0	1	1
01	1	1	0	1
11	X	Х	X	Х
10	1	1	Х	Х

$$F'(w,x,y,z) = w'x'y' + xyz$$

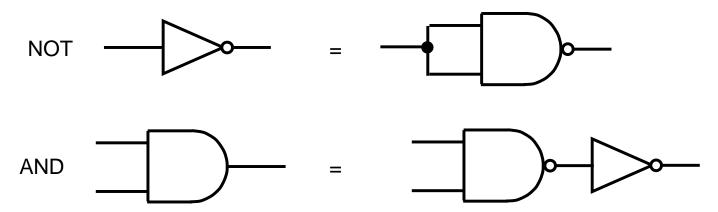
• We are free to assign whatever values we want to for minterms 10, 11, 12, 13, 14, and 15. Assign them a value X to indicate they may be covered, or not, whichever results in the simplest expression

Logical Completeness

 AND, OR, NOT can implement any Boolean function – They form a "Logically Complete" set of operators

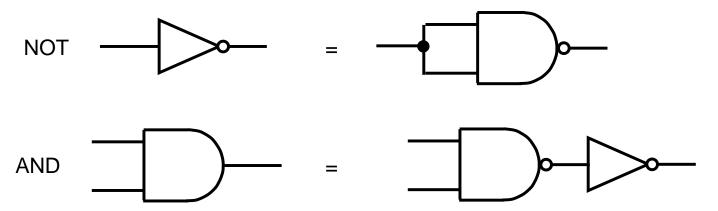
Logical Completeness

- AND, OR, NOT can implement any Boolean function They form a "Logically Complete" set of operators
- 2. NAND can implement AND and NOT directly:

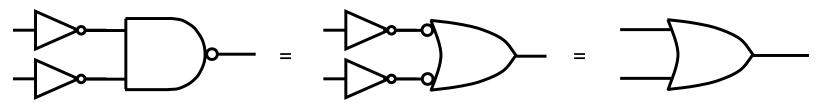


Logical Completeness

- 1. AND, OR, NOT can implement any Boolean function They form a "Logically Complete" set of operators
- 2. NAND can implement AND and NOT directly:



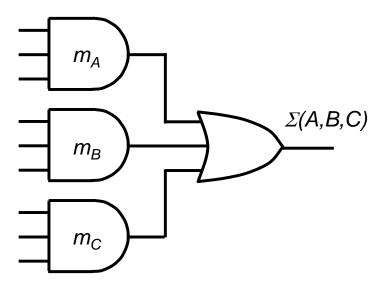
3. NAND can implement OR by DeMorgan's Law:



→ NAND is logically complete (so is NOR)

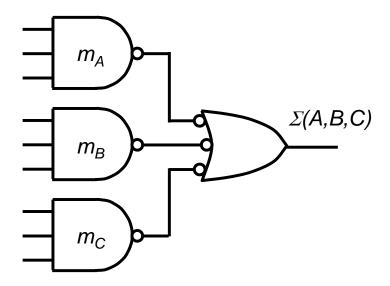
NAND Implementation of Sum of Products

Consider an arbitrary Sum of Products:



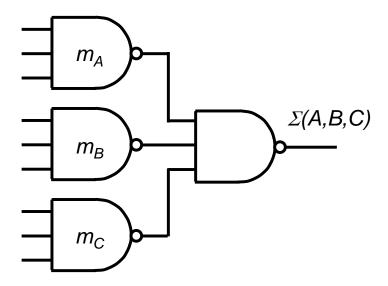
NAND Implementation of Sum of Products

- Consider an arbitrary Sum of Products:
- Add inversions at each term. This is allowed, since (x')'=x



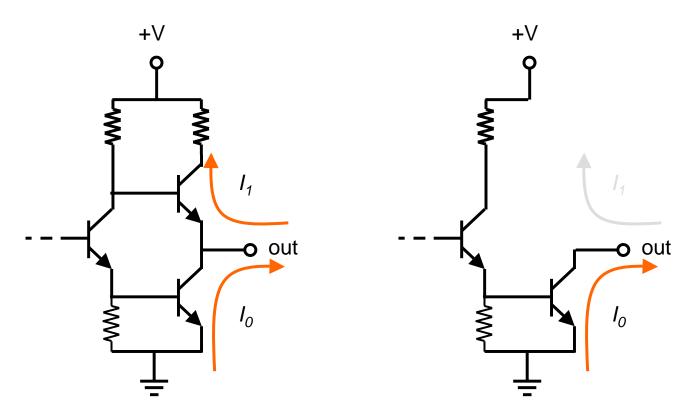
NAND Implementation of Sum of Products

- Consider an arbitrary Sum of Products:
- Add inversions at each term. This is allowed, since (x')'=x
- Convert output gate by DeMorgan's Law:



Wired-AND and Open Collector

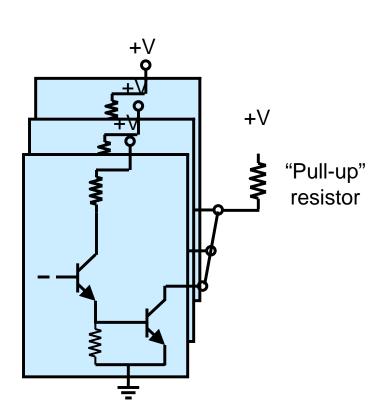
• Typical TTL "totem-pole" output circuit:

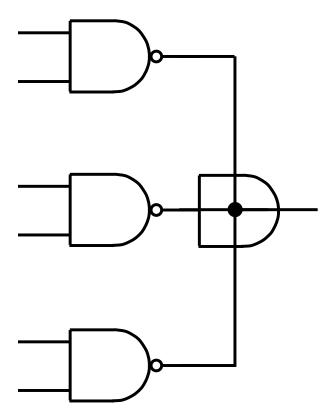


• TTL with Open Collector output circuit

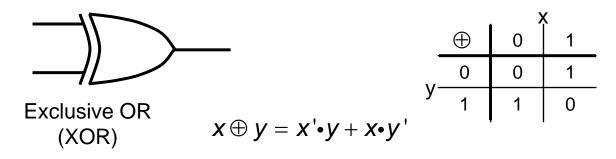
Wired-AND and Open Collector

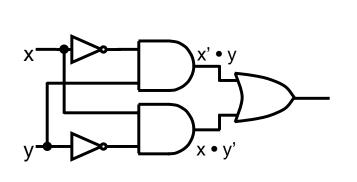
- Each gate asserts 0-output with no pull-up transistor, no gate can cause output to become "1." External "pull-up" resistor needed
- Used for wiring multiple devices together on bus, but speed is limited

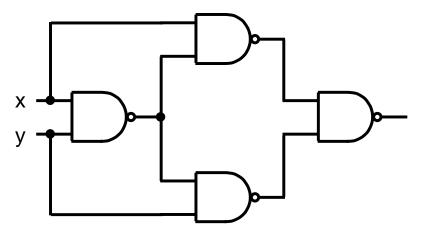




XOR Function



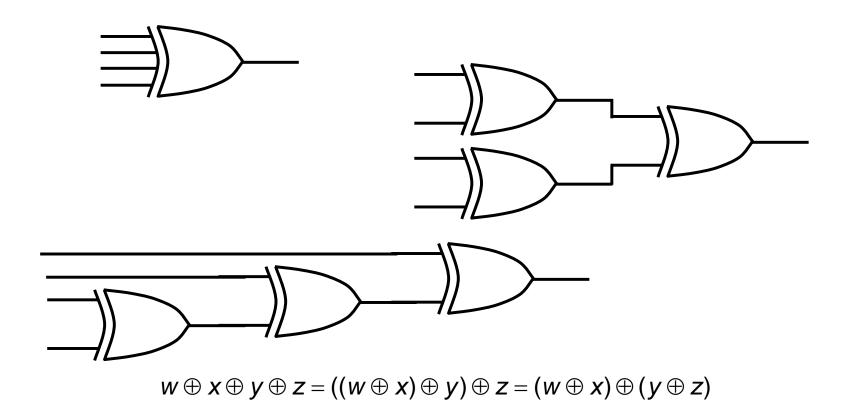




$$w \oplus x \oplus y \oplus z = ((w \oplus x) \oplus y) \oplus z = (w \oplus x) \oplus (y \oplus z)$$

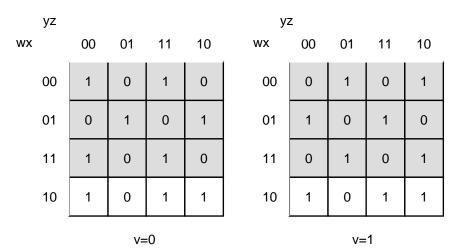
- XOR applications:
 - Addition, parity, data scramblers, encryption, shift register sequences

N-input XOR



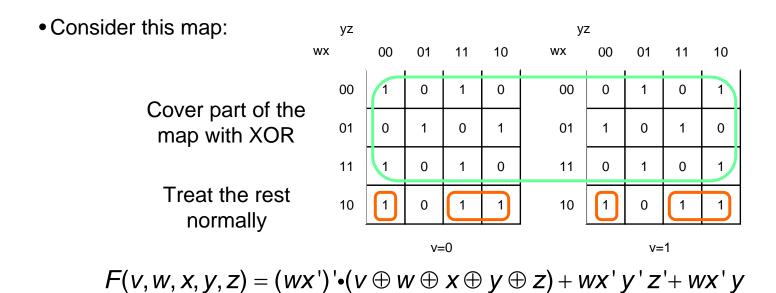
• These three designs are all logically equivalent (for <u>static</u> signals)

Hard To Minimize Functions

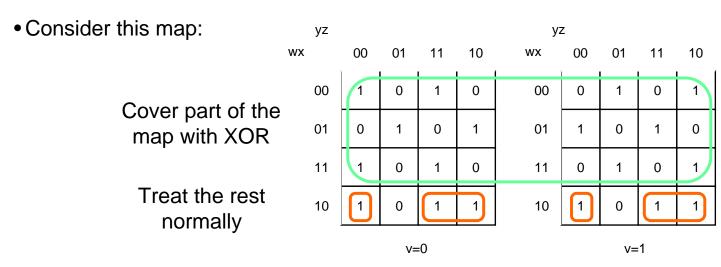


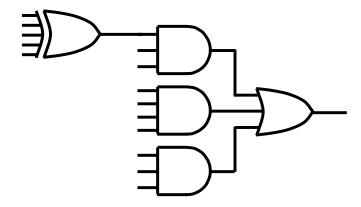
Isolated minterms cannot be grouped

Hard To Minimize Functions



Hard To Minimize Functions





Summary

- Fundamental concepts of digital systems (Mano Chapter 1)
- Binary codes, number systems, and arithmetic (Ch 1)
- Boolean algebra (Ch 2)
- Simplification of switching equations (Ch 3)
- Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
- Combinatoric logical design including LSI implementation (Chapter 4)
- Hazards, Races, and time related issues in digital design (Ch 9)
- Flip-flops and state memory elements (Ch 5)
- Sequential logic analysis and design (Ch 5)
- Synchronous vs. asynchronous design (Ch 9)
- Counters, shift register circuits (Ch 6)
- Memory and Programmable logic (Ch 7)
- Minimization of sequential systems
- Introduction to Finite Automata

Homework 3 – due in Class 5

As always, show all work:

- Problems 3-5, 3-7, 3-18.
- Design a BCD to seven segment decoder for any 2 of the 6 segments (a-f) we did not discuss in class.