
CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-85

Copyright ©2004
Stevens Institute of Technology

All rights reserved

CpE358/CS381

Switching Theory and
Logical Design

Class 3

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-86

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Today

• Fundamental concepts of digital systems (Mano Chapter 1)
• Binary codes, number systems, and arithmetic (Ch 1)
• Boolean algebra (Ch 2)
• Simplification of switching equations (Ch 3)
• Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
• Combinatoric logical design including LSI implementation (Chapter 4)
• Hazards, Races, and time related issues in digital design (Ch 9)
• Flip-flops and state memory elements (Ch 5)
• Sequential logic analysis and design (Ch 5)
• Synchronous vs. asynchronous design (Ch 9)
• Counters, shift register circuits (Ch 6)
• Memory and Programmable logic (Ch 7)
• Minimization of sequential systems
• Introduction to Finite Automata

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-87

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Boolean Functions in Terms of Minterms

• A logical function is TRUE if any of it’s minterms are true:

• Algebraic manipulation of the literal expression of the function is one way to
minimize it, manipulation of minterms is another

x’ • y’ • z

x • y’ • z’

x • y • z

x’
y’
z

x
y’
z’

x
y
z

F(x,y,z) = Σ(1,4,7)
= x’ • y’ • z + x • y’ • z’ + x • y • z
= m1 + m4 + m7

m7

m4

m1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-88

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Two Variable Minterm Map
• Represent Boolean functions in terms of minterms in a Karnaugh map:

m2 m3

m0 m1

xy’ xy

0 1

1

x’y’ x’y0

y

x

x

y

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-89

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Two Variable Minterm Map
• Represent Boolean functions in terms of a Karnaugh map:

• Consider the XOR function

1 2(,) ' 'F x y x y x y xy m m= ⊕ = + = +

xy’ xy

0 1

1

x’y’ x’y0

y

x

1

0 1

1

10

y

x

x

y

x

y

m2 m3

m0 m1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-90

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Two Variable Minterm Map
• Represent Boolean functions in terms of a Karnaugh map:

• Consider the XOR function

1 2(,) ' 'F x y x y x y xy m m= ⊕ = + = +

xy’ xy

0 1

1

x’y’ x’y0

y

x

1 0

0 1

1

0 10

y

x

x

y

x

y

m2 m3

m0 m1

1

0 1

1

10

y

x

x

y

Set the non-asserted
minterms to zero

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-91

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Minimizing Function of Two Variables

• Covering “adjacent” minterms with a
single region defines the variables
needed to represent the function

2 3(,) '
(')

F x y xy xy m m
x y y

x

= + = +
= +
=

xy’ xy

0 1

1

x’y’ x’y0

y

x

1 1

0 1

1

0 00

y

x

x

y

x

y

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-92

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Minimizing Function of Three Variables

xy’z’ xy’z

00 01

1

x’y’z’ x’y’z0

yz

x

xm4 m5

m0 m1

m7 m6

m3 m2

xyz xyz’

x’yz x’yz’

11 10

y

z

• Minterms are numbered in Gray code order – adjacent minterms differ in only one
variable

• If the function is asserted (i.e., TRUE) for both of these adjacent minterms, then
the terms defined by those minterms do not depend on the variable that is
changing between them

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-93

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Three Variable Map

• Consider F(x,y,z)=Σ(1,3,7)

m4 m5

m0 m1

m7 m6

m3 m2

1 3 7(, ,)
(, ,) ' ' '

' ' ' '
'(') (')

'

= + +

= + +
= + + +
= + + +
= +

F x y z m m m
F x y z x y z x yz xyz

x y z x yz x yz xyz
x y y z x x yz

x z yz

xy’z’ xy’z

00 01

1

x’y’z’ x’y’z0

yz

x

x xyz xyz’

x’yz x’yz’

11 10

y

z

0 0

00 01

1

0 10

yz

x

x 1 0

1 0

11 10

y

z yz

x’z

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-94

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Three Variable Map

• Observations:
– All minterms must be covered
– Number of variables defining a sum term

inversely proportional to number of
minterms covered

– Number of sum terms required to define
function equal to number of separate
regions

→ Maximize region size
→ Minimize number of regions

m4 m5

m0 m1

m7 m6

m3 m2

xy’z’ xy’z

00 01

1

x’y’z’ x’y’z0

yz

x

x xyz xyz’

x’yz x’yz’

11 10

y

z

0 0

00 01

1

0 10

yz

x

x 1 0

1 0

11 10

y

z yz

x’z

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-95

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Three Variable Map

• For a 3-variable map:
– Covering 4 minterms with one 4-minterm

region defines the function in terms of a
single variable

– Covering the same 4 minterms with 2 2-
minterm regions defines the function in
terms of two terms, each requiring two
variables.

0 1

00 01

1

0 10

yz

x

x 1 0

1 0

11 10

y

z

0 1

00 01

1

0 10

yz

x

x 1 0

1 0

11 10

y

z yz

y’z

z

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-96

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Three Variable Map

• “Adjacency” sometimes exists in subtle ways:

– These four minterms are obviously
adjacent to each other.

1 0

00 01

1

1 00

yz

x

x 1 1

1 1

11 10

y

z y

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-97

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Three Variable Map

• “Adjacency” sometimes exists in subtle ways:

– These four minterms are obviously
adjacent to each other.

– But so are these, if we consider the map to
wrap around on itself

1 0

00 01

1

1 00

yz

x

x 1 1

1 1

11 10

y

z y

1 0

00 01

1

1 00

yz

x

x 1 1

1 1

11 10

y

z
z’

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-98

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Four Variable Map

• The 4-variable map extends the concept of the 2- and 3-variable map

w’xy’z’ w’xy’z

00 01

01

w’x’y’z’ w’x’y’z00

yz

wx

x
w’xyz w’xyz’

w’x’yz w’x’yz’

11 10

y

z

wxy’z’ wxy’z

wx’y’z’ wx’y’z

wxyz wxyz’

wx’yz wx’yz’

m4 m5

m0 m1

m7 m6

m3 m2

m8 m9

m12 m13

m11 m10

m15 m14 11

10
w

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-99

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Minimizing Four Variable Map

• Minimize F(w,x,y,z)=Σ(0,2,3,5,7,8,10,11,13,15)
• F(w,x,y,z)=xz+x’z’+yz

0 1

00 01

01

1 000

yz

wx

x
1 0

1 1

11 10

y

z

1 0

0 1

1 1

1 011

10
w

m4 m5

m0 m1

m7 m6

m3 m2

m8 m9

m12 m13

m11 m10

m15 m14

x’z’xz yz

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-100

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Five Variable Map

• 5-variable map is extension of 4-variable map, adjacency must be considered
between pairs of 4-variable maps

m20 m21

00 01

01

m16 m1700

yz

wx

x
m23 m22

m19 m18

11 10

y

z

m24 m25

m28 m29

m27 m26

m31 m30

m4 m5

m0 m1

m7 m6

m3 m2

m8 m9

m12 m13

m11 m10

m15 m14 11

10
w

v=0 v=1

00 01

yz

wx 11 10

y

01

00

x

11

10
w

z

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-101

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Minimizing Five Variable Map

• Minimize F(v,w,x,y,z)=Σ(0,8,9,11,16,17,24,25,27,29,31)
• F(v,w,x,y,z)=wz+x’y’z’+vx’y’

0 0

00 01

01

1 100

yz

wx

x
0 0

0 0

11 10

y

z

1 1

0 1

1 0

1 0

0 0

1 0

0 0

0 0

1 1

0 1

1 0

1 0 11

10
w

v=0 v=1

00 01

yz

wx 11 10

y

01

00

x

11

10
w

z

x’y’z’
vx’y’

wz

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-102

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Six Variable Map

• Keeping track of what
minterms are adjacent
becomes tedious

• Ensuring the maximum
coverage for each term
is challenging

• 6-variable maps usable,
but perhaps the design
needs to be modularized
instead

m36 m37

00 01

01

m32 m3300

yz

wx

x
m39 m38

m35 m34

11 10

y

z

m40 m41

m44 m45

m43 m42

m47 m46

m4 m5

m0 m1

m7 m6

m3 m2

m8 m9

m12 m13

m11 m10

m15 m14 11

10 w

v=0 v=1

00 01

yz

wx 11 10

y

01

00

x
11

10 w

z

m52 m53

00 01

01

m48 m4900

yz

wx

x
m55 m54

m51 m50

11 10

y

z

m56 m57

m60 m61

m59 m58

m63 m62

m4 m5

m0 m1

m7 m6

m3 m2

m8 m9

m12 m13

m11 m10

m15 m14 11

10 w

00 01

yz

wx 11 10

y

01

00

x
11

10 w

z

u=0

u=1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-103

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Product of Sums – Covering 0’s Instead of 1’s

• A function of N variables, F(v1,v2,…,vN) , can be represented by a Karnaugh map
with 2N cells. (v1,v2,…,vN) = (0,0,…0), (0,1,…0), …, (1,1,…,1)

• F(), and it’s Karnaugh map have K minterms (1’s) and 2N-K maxterms (0’s)

• If K > 2N-K, it might be easier to cover the maxterms rather than the minterms.
E.g.:

0 0

1 1

1 1

1 0

1 0

1 1

1 1

1 1

0 1

1 1

1 1

1 0

1 0

1 1

1 1

1 1

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-104

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Product of Sums – Covering 0’s Instead of 1’s

F(v,w,x,y,z)’ has 4 terms

0 0

1 1

1 1

1 0

1 0

1 1

1 1

1 1

0 1

1 1

1 1

1 0

1 0

1 1

1 1

1 1

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

F(v,w,x,y,z) has 7 terms

0 0

1 1

1 1

1 0

1 0

1 1

1 1

1 1

0 1

1 1

1 1

1 0

1 0

1 1

1 1

1 1

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

F(v,w,x,y,z)’ = w’x’yz’ + w’xy’z’ +
vw’xy’ +wx’y’z

F(v,w,x,y,z) = w’x’y’ + yz + v’xz +
xy + wx + wy’z’ + wy

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-105

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Don’t Care Conditions
• Sometimes, not all possible output values are specified in system design, e.g.:

• Consider the horizontal line in the middle of the display (segment g):
Fg(w,x,y,z)=Σ(2,3,4,5,6,8,9), but we don’t care what happens to minterms 10,

11, 12, 13, 14, or 15, since the display will not be sent those states

Calculator,
Clock,

or
Counter
Circuit

7 segment
LCD

BCD
data

0

5

1

6

2

7

3

8

4

9

a

b

c

d

e

f

g

w=8

x=4

y=2

z=1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-106

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Don’t Care Conditions

• We are free to assign whatever values we want to for minterms 10, 11, 12, 13,
14, and 15. Assign them a value X to indicate they may be covered, or not,
whichever results in the simplest expression

1 1

0 0

0 1

1 1

1 1

X X

X X

X X

00 01 11 10

01

00

10

11

wx\yz

F(w,x,y,z) = xy + xz’ + xy’ + w

1 1

0 0

0 1

1 1

1 1

X X

X X

X X

00 01 11 10

01

00

10

11

wx\yz

F’(w,x,y,z) = w’x’y’ + xyz

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-107

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a
“Logically Complete” set of operators

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-108

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a
“Logically Complete” set of operators

2. NAND can implement AND and NOT directly:

AND =

NOT =

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-109

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a
“Logically Complete” set of operators

2. NAND can implement AND and NOT directly:

3. NAND can implement OR by DeMorgan’s Law:

→ NAND is logically complete (so is NOR)

AND =

NOT =

= =

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-110

Copyright ©2004
Stevens Institute of Technology

All rights reserved

NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:

mA

mB

mC

Σ(A,B,C)

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-111

Copyright ©2004
Stevens Institute of Technology

All rights reserved

NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:
• Add inversions at each term. This is allowed, since (x’)’=x

mA

mB

mC

Σ(A,B,C)

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-112

Copyright ©2004
Stevens Institute of Technology

All rights reserved

NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:
• Add inversions at each term. This is allowed, since (x’)’=x
• Convert output gate by DeMorgan’s Law:

mA

mB

mC

Σ(A,B,C)

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-113

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Wired-AND and Open Collector

• Typical TTL “totem-pole” output circuit:

• TTL with Open Collector output circuit

out

+V

I0

I1

out

+V

I0

I1

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-114

Copyright ©2004
Stevens Institute of Technology

All rights reserved

+V

+V

Wired-AND and Open Collector

• Each gate asserts 0-output – with no pull-up transistor, no gate can cause output
to become “1.” External “pull-up” resistor needed

• Used for wiring multiple devices together on bus, but speed is limited

+V +V

“Pull-up”
resistor

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-115

Copyright ©2004
Stevens Institute of Technology

All rights reserved

XOR Function

• XOR applications:
– Addition, parity, data scramblers, encryption, shift register sequences

Exclusive OR
(XOR)

011

100

10
x

y

⊕

' 'x y x y x y⊕ = +i i

x’ • y

x • y’

x

y

x
y

(()) () ()w x y z w x y z w x y z⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-116

Copyright ©2004
Stevens Institute of Technology

All rights reserved

N-input XOR

• These three designs are all logically equivalent (for static signals)

(()) () ()w x y z w x y z w x y z⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-117

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Hard To Minimize Functions

• Consider this map:

1 0

0 1

1 0

0 1

1 0

0 1

1 1

0 1

0 1

1 0

0 1

1 0

1 0

1 0

1 1

1 0

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

Isolated minterms
cannot be grouped

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-118

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Hard To Minimize Functions

• Consider this map:

(, , , ,) (') ' () ' ' ' 'F v w x y z wx v w x y z wx y z wx y= ⊕ ⊕ ⊕ ⊕ + +i

1 0

0 1

1 0

0 1

1 0

0 1

1 1

0 1

0 1

1 0

0 1

1 0

1 0

1 0

1 1

1 0

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

Cover part of the
map with XOR

Treat the rest
normally

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-119

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Hard To Minimize Functions

• Consider this map:

(, , , ,) (') ' () ' ' ' 'F v w x y z wx v w x y z wx y z wx y= ⊕ ⊕ ⊕ ⊕ + +i

1 0

0 1

1 0

0 1

1 0

0 1

1 1

0 1

0 1

1 0

0 1

1 0

1 0

1 0

1 1

1 0

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

Cover part of the
map with XOR

Treat the rest
normally

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-120

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Summary

• Fundamental concepts of digital systems (Mano Chapter 1)
• Binary codes, number systems, and arithmetic (Ch 1)
• Boolean algebra (Ch 2)
• Simplification of switching equations (Ch 3)
• Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
• Combinatoric logical design including LSI implementation (Chapter 4)
• Hazards, Races, and time related issues in digital design (Ch 9)
• Flip-flops and state memory elements (Ch 5)
• Sequential logic analysis and design (Ch 5)
• Synchronous vs. asynchronous design (Ch 9)
• Counters, shift register circuits (Ch 6)
• Memory and Programmable logic (Ch 7)
• Minimization of sequential systems
• Introduction to Finite Automata

CpE358/CS381
Switching Theory and Logical Design
Summer-1 2004

1-121

Copyright ©2004
Stevens Institute of Technology

All rights reserved

Homework 3 – due in Class 5

As always, show all work:
• Problems 3-5, 3-7, 3-18.
• Design a BCD to seven segment decoder for any 2 of the 6 segments (a-f) we did
not discuss in class.

