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Today

• Fundamental concepts of digital systems (Mano Chapter 1)
• Binary codes, number systems, and arithmetic (Ch 1)
• Boolean algebra (Ch 2)
• Simplification of switching equations (Ch 3)
• Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
• Combinatoric logical design including LSI implementation (Chapter 4)
• Hazards, Races, and time related issues in digital design (Ch 9)
• Flip-flops and state memory elements (Ch 5)
• Sequential logic analysis and design (Ch 5)
• Synchronous vs. asynchronous design (Ch 9)
• Counters, shift register circuits (Ch 6)
• Memory and Programmable logic (Ch 7)
• Minimization of sequential systems 
• Introduction to Finite Automata
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Boolean Functions in Terms of Minterms

• A logical function is TRUE if any of it’s minterms are true:

• Algebraic manipulation of the literal expression of the function is one way to 
minimize it, manipulation of minterms is another
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Two Variable Minterm Map
• Represent Boolean functions in terms of minterms in a Karnaugh map:
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Two Variable Minterm Map
• Represent Boolean functions in terms of a Karnaugh map:

• Consider the XOR function
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Two Variable Minterm Map
• Represent Boolean functions in terms of a Karnaugh map:

• Consider the XOR function
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Minimizing Function of Two Variables

• Covering “adjacent” minterms with a 
single region defines the variables 
needed to represent the function
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Minimizing Function of Three Variables

xy’z’ xy’z

00 01

1

x’y’z’ x’y’z0

yz

x

xm4 m5

m0 m1

m7 m6

m3 m2

xyz xyz’

x’yz x’yz’

11 10

y

z

• Minterms are numbered in Gray code order – adjacent minterms differ in only one 
variable

• If the function is asserted (i.e., TRUE) for both of these adjacent minterms, then 
the terms defined by those minterms do not depend on the variable that is 
changing between them
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Three Variable Map

• Consider F(x,y,z)=Σ(1,3,7)
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Three Variable Map

• Observations:
– All minterms must be covered
– Number of variables defining a sum term 

inversely proportional to number of 
minterms covered

– Number of sum terms required to define 
function equal to number of separate 
regions

→ Maximize region size
→ Minimize number of regions
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Three Variable Map

• For a 3-variable map:
– Covering 4 minterms with one 4-minterm

region defines the function in terms of a 
single variable 

– Covering the same 4 minterms with 2 2-
minterm regions defines the function in 
terms of two terms, each requiring two 
variables.
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Three Variable Map

• “Adjacency” sometimes exists in subtle ways:

– These four minterms are obviously 
adjacent to each other.
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Three Variable Map

• “Adjacency” sometimes exists in subtle ways:

– These four minterms are obviously 
adjacent to each other.

– But so are these, if we consider the map to 
wrap around on itself
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Four Variable Map

• The 4-variable map extends the concept of the 2- and 3-variable map
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Minimizing Four Variable Map

• Minimize F(w,x,y,z)=Σ(0,2,3,5,7,8,10,11,13,15)
• F(w,x,y,z)=xz+x’z’+yz
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Five Variable Map

• 5-variable map is extension of 4-variable map, adjacency must be considered 
between pairs of 4-variable maps
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Minimizing Five Variable Map

• Minimize F(v,w,x,y,z)=Σ(0,8,9,11,16,17,24,25,27,29,31)
• F(v,w,x,y,z)=wz+x’y’z’+vx’y’
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Six Variable Map

• Keeping track of what 
minterms are adjacent 
becomes tedious

• Ensuring the maximum 
coverage for each term 
is challenging

• 6-variable maps usable, 
but perhaps the design 
needs to be modularized 
instead
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Product of Sums – Covering 0’s Instead of 1’s

• A function of N variables, F(v1,v2,…,vN) , can be represented by a Karnaugh map 
with 2N cells.  (v1,v2,…,vN) = (0,0,…0), (0,1,…0), …, (1,1,…,1)

• F( ), and it’s Karnaugh map have K minterms (1’s) and 2N-K maxterms (0’s)

• If K > 2N-K, it might be easier to cover the maxterms rather than the minterms.  
E.g.:
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Product of Sums – Covering 0’s Instead of 1’s

F(v,w,x,y,z)’ has 4 terms

0 0

1 1

1 1

1 0

1 0

1 1

1 1

1 1

0 1

1 1

1 1

1 0

1 0

1 1

1 1

1 1

00 01 11 10 00 01 11 10

01

00

10

11

01

00

10

11

wx
yz

wx
yz

v=0 v=1

F(v,w,x,y,z) has 7 terms
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Don’t Care Conditions
• Sometimes, not all possible output values are specified in system design, e.g.:

• Consider the horizontal line in the middle of the display (segment g):
Fg(w,x,y,z)=Σ(2,3,4,5,6,8,9), but we don’t care what happens to minterms 10, 

11, 12, 13, 14, or 15, since the display will not be sent those states
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Don’t Care Conditions

• We are free to assign whatever values we want to for minterms 10, 11, 12, 13, 
14, and 15.  Assign them a value X to indicate they may be covered, or not, 
whichever results in the simplest expression
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Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a 
“Logically Complete” set of operators
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Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a 
“Logically Complete” set of operators

2. NAND can implement AND and NOT directly:

AND =

NOT =
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Logical Completeness

1. AND, OR, NOT can implement any Boolean function – They form a 
“Logically Complete” set of operators

2. NAND can implement AND and NOT directly:

3. NAND can implement OR by DeMorgan’s Law:

→ NAND is logically complete  (so is NOR)

AND =

NOT =

= =
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NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:

mA

mB

mC

Σ(A,B,C)
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NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:
• Add inversions at each term.  This is allowed, since (x’)’=x

mA

mB

mC

Σ(A,B,C)
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NAND Implementation of Sum of Products

• Consider an arbitrary Sum of Products:
• Add inversions at each term.  This is allowed, since (x’)’=x
• Convert output gate by DeMorgan’s Law:

mA

mB

mC

Σ(A,B,C)
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Wired-AND and Open Collector

• Typical TTL “totem-pole” output circuit:

• TTL with Open Collector output circuit

out

+V

I0

I1

out

+V

I0
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+V

+V

Wired-AND and Open Collector

• Each gate asserts 0-output – with no pull-up transistor, no gate can cause output 
to become “1.”  External “pull-up” resistor needed

• Used for wiring multiple devices together on bus, but speed is limited

+V +V

“Pull-up”
resistor
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XOR Function

• XOR applications:
– Addition, parity, data scramblers, encryption, shift register sequences

Exclusive OR
(XOR)
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N-input XOR

• These three designs are all logically equivalent (for static signals)

(( ) ) ( ) ( )w x y z w x y z w x y z⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕
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Hard To Minimize Functions

• Consider this map:
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Hard To Minimize Functions

• Consider this map:
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Hard To Minimize Functions

• Consider this map:
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Summary

• Fundamental concepts of digital systems (Mano Chapter 1)
• Binary codes, number systems, and arithmetic (Ch 1)
• Boolean algebra (Ch 2)
• Simplification of switching equations (Ch 3)
• Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch 10)
• Combinatoric logical design including LSI implementation (Chapter 4)
• Hazards, Races, and time related issues in digital design (Ch 9)
• Flip-flops and state memory elements (Ch 5)
• Sequential logic analysis and design (Ch 5)
• Synchronous vs. asynchronous design (Ch 9)
• Counters, shift register circuits (Ch 6)
• Memory and Programmable logic (Ch 7)
• Minimization of sequential systems 
• Introduction to Finite Automata
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Homework 3 – due in Class 5

As always, show all work:
• Problems 3-5, 3-7, 3-18.  
• Design a BCD to seven segment decoder for any 2 of the 6 segments (a-f) we did 
not discuss in class.


