The IGBT has been developed to combine the properties of both MOSFET and Bipolar devices. This overcomes some of the limitations of both enabling high voltages to be switched and high currents to be controlled with the use of relatively simple gate drive circuitry. The active component, the silicon chip, has a metal gate contact which is isolated from the underlying p-n structure by a thin oxide layer (see fig 1.)

In order to achieve the required switching characteristics, this structure requires a design in which the oxide layer is a few hundred angstroms thick. For this reason manufacturers limit the gate-emitter voltage to $\pm 20V$. If this voltage is exceeded there is a danger that the chip will be destroyed and its control action lost due to the gate-emitter structure becoming degraded. As well as the possibility of such voltages occurring in the circuit they can result from the accumulation of electrostatic charge. Precautions must therefore be taken to avoid such damage.

IGBT products shipped from the Dynex Semiconductor factory have a physical conducting material connecting the gate to emitter and/or are packed in anti static conducting material. It is important that the terminals are not touched by hand unless the individual handling them is in an anti-static surface and /or is grounded by an earthing wrist strap. Modules should only be handled by their base. If it is necessary to touch the terminals the individual should take the precaution of discharging themselves to earth via a high value resistor (typically 2 to 4MΩ) or preferably be earthed via a wrist strap. The conductive link between the gate and emitter should be retained in place and only removed immediately prior to wiring.

Care should be taken to ensure that any tools used, particularly soldering irons, have a low resistance to earth. Note 1: For further detail regarding the protection of electrostatic sensitive devices the reader is recommended to consult British Standard BS CECC 00015 entitled Basic Specification: Protection of Electrostatic Sensitive Devices.

This documentation is available from:
BSI Customer Services,
BSI Standards,
389 Chiswick High Road,
London. W4 4AL.
United Kingdom.
Tel: + 44 (0) 208 996 7000
Fax: + 44 (0)208 996 7001

Fig. 1 Device silicon cross section
POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACS).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.