EE 560 MOS TRANSISTOR THEORY PART 1

1

ENERGY BAND DIAGRAM FOR p - TYPE SUBSTRATE

ENERGY BAND DIAGRAMS FOR COMPONENTS OF MOS STRUCTURE

MOS SYSTEM WITH EXTERNAL BIAS

Kenneth R. Laker, University of Pennsylvania

MOS SYSTEM WITH EXTERNAL BIAS

N-CHANNEL ENHANCEMENT-TYPE MOSFET

Kenneth R. Laker, University of Pennsylvania

MOS Capacitance $C_{GC} = WLC_{ox}$, $C_{ox} = \frac{ox}{t_{ox}}$ $\begin{bmatrix} t_{ox} -> TOX \text{ in SPICE} \end{bmatrix}^{15}$ $\begin{bmatrix} C_{ox} -> COX \text{ in SPICE} \end{bmatrix}$ $t_{ox} = 50 \text{ nm}, \quad x = 0.34 \text{ pF/cm} \implies C_{ox} = 6.8 \text{ x } 10^{-8} \text{ F/cm}^2$ W x L = 50 μ m x 50 μ m => C_{CC} = 170 fF Depletion Capacitance $C_{BC} = WLC_j$, $C_j = \frac{Si}{X_J}$ $x_{d} = \sqrt{\frac{2\epsilon_{Si} |\phi_{F} - V_{SB}|}{qNA} - N_{SUB}}$ [N_{SUB} -> NSUB in SPICE] (p - substrate) $_{Fp} = \frac{kT}{\alpha} \ln \frac{n_i}{N}$ $N_A = 3 \times 10^{17} \text{ cm}^{-3}, n_i = 1.45 \times 10^{10} \text{ cm}^{-3} \implies P_F = -0.438 \text{ V}$ (recall that at room temp or $27^{\circ}C kT/q = 26 mV$) $V_{SB} = 0 V$, $S_{i} = 1.06 \text{ pF/cm}$, $q = 1.6 \text{ x } 10^{-19} \text{ C}$, N_{A} , $F_{E} = X_{d} = 6.22 \text{ } \mu\text{m}$ $x_{d} = C_i = 0.17 \text{ x } 10^{-8} \text{ F/cm}^2$ W x L = 50 μ m x 50 μ m => C_{BC} = 42.5 fF

Threshold Voltage for MOS Transistors

n-channel enhancement

For $V_{SB} = 0$, the threshold voltage is denoted as V_{T0} or $V_{T0n,p}$ T0 -> VT0 in SPICE]

Threshold Voltage factors:

- -> Gate conductor material;
- -> Gate oxide material & thickness;
- -> Channel doping;
- -> Impurities in Si-oxide interface;
- -> Source-bulk voltage V_{sb};

-> Temperature.

$$V_{T0} = {}_{GC} - 2 {}_{F} - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

(+ for nMOS and - for pMOS)

 $\begin{bmatrix} 2 \\ F \end{bmatrix} = PHI in SPICE$

$$Q_{B0} = -\sqrt{2qN_A \epsilon_{Si} |2\phi_F|}$$
 [N_A = NSUB in SPICE]

$$_{GC} = _{F}(substrate) - _{M} metal gate$$

$$_{GC} = _{F}(substrate) - _{F}(gate) polysilicon gate$$

$$[Q_{ox} = qNSS in SPICE]$$

16

Threshold Voltage for MOS Transistors

n-channel enhancement

For $V_{SB} \neq 0$: the threshold voltage is denoted as V_T or $V_{Tn.p}$

$$Q_{B} = -\sqrt{2qN_{A}\epsilon_{Si}|2\phi_{F} - V_{SB}|}$$

$$V_{T} = {}_{GC} -2 {}_{F} - \frac{Q_{B}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

$$= {}_{GC} -2 {}_{F} - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}} + \frac{Q_{B} - Q_{B0}}{C_{ox}}$$
where
$$\frac{V_{T0}}{C_{ox}} = \sqrt{\frac{2qN_{A}\epsilon_{Si}}{C_{ox}}} \left(\sqrt{|2\phi_{F} - V_{SB}|} - \sqrt{|2\phi_{F}|}\right)$$

$$(= Body-effect coefficient) [= GAMMA in SPICE]$$

$$V_{Tn} = V_{T0n} + \gamma \left(\sqrt{|2\phi_{F} - V_{SB}|} - \sqrt{|2\phi_{F}|}\right)$$

Threshold Voltage for MOS Transistors n-channel -> p-channel

****BE CAREFULL*** WITH SIGNS

Fis negative in nMOS, positive in pMOS
Q_{B0}, Q_B are negtive in nMOS, positive in pMOS
is positive in nMOS, negative in pMOS
V_{SB} is negative in nMOS, positive in pMOS

NOTE:
$$\frac{C_{BC}}{C_{GC}}$$

Threshold Voltage for MOS Transistors

Kenneth R. Laker, University of Pennsylvania

EXAMPLE 3.2 Calculate the threshold voltage V_{T0} at $V_{BS} = 0$, for ²⁰ a polysilicon gate n-channel MOS transistor with the following parameters:

substrate doping density $N_A = 10^{16} \text{ cm}^{-3}$, polysilicon doping density $N_D = 2 \times 10^{20} \text{ cm}^{-3}$, gate oxide thickness $t_{ox} = 500 \text{ Angstroms}$, oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10} \text{ cm}^{-2}$.

$$V_{T0} = {}_{GC} - 2 {}_{F(sub)} - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}} \checkmark$$

$$F(sub)' \quad GC' \quad GC = {}_{F(sub)} - {}_{F(gate)}$$

$$F(sub) = \frac{kT}{q} \ln \frac{n_i}{N_A} = 0.026 \text{ V} \ln \frac{1.45 \text{ x} 10^0}{10^{16}} = -0.35 \text{ V}$$

$$F(gate) = \frac{kT}{q} \ln \frac{N_D}{n_i} = 0.026 \text{ V} \ln \frac{2 \text{ x} 10^{20}}{1.45 \text{ x} 10^0} = 0.60 \text{ V}$$

$$GC = {}_{F(sub)} - {}_{F(gate)} = -0.35 \text{ V} - 0.60 \text{ V} = -0.95 \text{ V}$$

EXAMPLE 3-2 CONT.
$$V_{T0} = {}_{GC} - 2 {}_{F(sub)} - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$
²¹
 Q_{B0} :
 $Q_{B0} = -\sqrt{2qN_{A^{\epsilon}}s_{i}|2\phi_{F(sub)}|}$
 $= -\sqrt{2(1.6x10^{-19} \text{ C})(10^{16} \text{ cm}^{-3})(1.06x10^{-12} \text{ Fcm}^{-1})|2x0.35 \text{ V}|}$
 $= -4.87 \text{ x } 10^{-8} \text{ C/cm}^{2}$
 C_{ox} :
 $C_{ox} = \frac{ox}{t_{ox}} = \frac{0.34 \text{ x} 10^{-12} \text{ Fcm}^{-1}}{500 \text{ x} 10^{-8} \text{ cm}} = 6.8 \text{ x } 10^{8} \text{ F/cm}^{2}$
 $\frac{Q_{ox}}{C_{ox}}$:
 $Q_{ox} = qN_{ox} = (1.6x10^{-19} \text{ C})(4 \text{ x} 10^{10} \text{ cm}^{-2}) = 6.4 \text{ x} 10^{-9} \text{ C/cm}^{2}$
 $\frac{Q_{B0}}{C_{ox}} = \frac{-4.87 \text{ x} 10^{8} \text{ C/cm}^{2}}{6.8 \text{ x} 10^{8} \text{ F/cm}^{2}} = -0.716 \text{ V}$ $\frac{Q_{ox}}{C_{ox}} = \frac{6.4 \text{ x} 10^{-9} \text{ C/cm}^{2}}{6.8 \text{ x} 10^{8} \text{ F/cm}^{2}} = 0.094 \text{ V}$
 $V_{T0} = -0.95 \text{ V} - (-0.70 \text{ V}) - (-0.72 \text{ V}) - (0.09 \text{ V}) = 0.38 \text{ V}$

EXAMPLE 3.3 Consider the n-channel MOS transistor with the ²¹ following process parameters:

substrate doping density $N_A = 10^{16} \text{ cm}^{-3}$, polysilicon doping density $N_D = 2 \times 10^{20} \text{ cm}^{-3}$, gate oxide thickness $t_{ox} = 500 \text{ Angstroms}$, oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10} \text{ cm}^{-2}$.

In digital circuit design, the condition $V_{SB} = 0$ can not always be quaranteed for all transistors. Plot the threshold voltage V_T as a function of V_{SB} .

$$\rightarrow$$
 $V_T = V_{T0} + \gamma \left(\sqrt{|2\phi_F - V_{SB}|} - \sqrt{|2\phi_F|} \right)$

- Body-effect coefficient:

 $\mathbf{F} = \mathbf{C}/\mathbf{V}$

$$= \frac{\sqrt{2 q N_A e_{Si}}}{C_{ox}} = \frac{\sqrt{2(1.6 x 10^{-19} \text{ C})(10^{16} \text{ cm}^{-3})(1.06 x 10^{-12} \text{ Fcm}^{-1})}}{6.8 x 10^8 \text{ F/cm}^2}$$
$$= \frac{5.824 x 10^{-8} \text{ C/V}^{-1/2} \text{ cm}^2}{6.8 x 10^8 \text{ C/Vcm}^2} = 0.85 \text{ V}^{1/2}$$

EXAMPLE 3-3 CONT.

Where

$$V_{T} = V_{T0} + \gamma \left(\sqrt{|2\phi_{F} - V_{SB}|} - \sqrt{|2\phi_{F}|} \right)$$

 $V_{T0} = 0.38V$ (from EX 3-2)
 $= 0.85V^{1/2}$
1.60
1.40
1.20

Kenneth R. Laker, University of Pennsylvania