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The Number e and the Exponential Function
Michael Fowler, UVa

Disclaimer: these notes are not mathematically rigorous. Instead, they present quick, and, |
hope, plausible, derivations of the properties of e, e* and the natural logarithm.

The Limit lim(1+1)"=e
N—o0

Consider the following series: (1+1), (1+1)?, (1+32)°, ..., @+1)",... where n runs through the
positive integers. What happens as n gets very large?

It’s easy to find out if you use a scientific calculator having the function x*y. The first three
terms are 2, 2.25, 2.37. You can use your calculator to confirm that for n = 10, 100, 1000,

10,000, 100,000, 1,000,000 the values of (1++)" are (rounding off) 2.59, 2.70, 2.717, 2.718,
2.71827, 2.718280. These calculations strongly suggest that as n goes up to infinity, (1+%)"

goes to a definite limit. It can be proved mathematically that (1+2)" does go to a limit, and this
limiting value is called e. The value of e is 2.7182818283... .

To try to get a bit more insight into (1+1)" for large n, let us expand it using the binomial
theorem. Recall that the binomial theorem gives all the terms in (1 + x)", as follows:

n(n |—1) 2+ nin-)(n-2) ,

A+Xx)" =1+nx+ 3l X4+ X"

To use this result to find (1+1)", we obviously need to put x = 1/n, giving:

1\n _ 1 n(n_l) 112 n(n—l)(n—Z) 113
1+H)"=1+nt+ o () + 3l () +....

We are particularly interested in what happens to this series when n gets very large, because
that’s when we are approaching e. In that limit, n(n —1)/n2 tends to 1, and so does

n(n-1)(n—-2)/n. So, for large enough n, we can ignore the n-dependence of these early terms
in the series altogether!

When we do that, the series becomes just:
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And, the larger we take n, the more accurately the terms in the binomial series can be simplified
in this way, so as n goes to infinity this simple series represents the limiting value of (1++)".
Therefore, e must be just the sum of this infinite series.

(Notice that we can see immediately from this series that e is less than 3, because 1/3! is less
than 1/2%, and 1/4! is less than 1/23, and so on, so the whole series adds up to less than 1+ 1 + %
+1/22 + 122+ 12+ ... =3)

The Exponential Function &*

Taking our definition of e as the infinite n limit of (1+1)", it is clear that e* is the infinite n limit
of (1+1)™. Let us write this another way: puty = nx, so 1/n = x/y. Therefore, €" is the infinite y
limit of (1+§)y. The strategy at this point is to expand this using the binomial theorem, as
above, and get a power series for e,

(Footnote: there is one tricky technical point. The binomial expansion is only simple if the
exponent is a whole number, and for general values of x, y =nx won’t be. But remember we are
only interested in the limit of very large n, so if x is a rational number a/b, where a and b are

integers, for n any multiple of b, y will be an integer, and pretty clearly the function (1+§)y is

continuous in 'y, so we don’t need to worry. If x is an irrational number, we can approximate it
arbitrarily well by a sequence of rational numbers to get the same result.)

So, we need to do the binomial expansion of (1+§)y where y is an integer—to make this clear,
let us write y = m.

(L4 2)" =14 m. 2+ m(rg!_l) (2)2 + m(m—;)!(m—Z) (&) 4.

Notice that this has exactly the same form as the binomial expansion of (1+2)" in the paragraph

above, except that now a power of x appears in each term. Again, we are only interested in the
limiting value as m goes to infinity, and in this limit m(m — 1)/m® goes to 1, as does m(m-1)(m-
2)/m>. Thus, as we take m to infinity, the m dependence of each term disappears, leaving

x> X
e =lim@+2)" =1+ X+ —+—+...
2! 3!

Differentiating e*
d d X X X2

—e =—(+X+—+—+..) =1+ X+—+...
dx dx 2! 3l 2!



so when we differentiate €*, we just get e back. This means €” is the solution to the equation

d . d? . . .

d_y =y, and also the equation 5 y_ y, etc. More generally, replacing x by ax in the series
X X

above gives

=

2,2 3,3
e =1tax+ ol &%
2! 3!
H H H H d ax ax d2 ax 2 jax
and now differentiating the series term by term we see d—e =ae™, Fe =a‘e™, etc., so the
X X

function e®* is the solution to differential equations of the form % =ay, or of the form
X
2

d°y 2
=a“y and so on.
dx? y

Instead of differentiating term by term, we could have written

a(x+Ax) ax ax aAx _
ieax —imE— =% _iim ¢ (e 1)
dx AX—0 AX AX—0 AX

ax

=ae

where we have used (ean —1) —s aAx in the limit Ax — 0.

The Natural Logarithm

We define the natural logarithm function In x as the inverse of the exponential function, by
which we mean

y=Inx, ifx=¢

Notice that we’ve switched x and y from the paragraph above! Differentiating the exponential
function x =e” in this switched notation,

That is to say,

Therefore, In x can be written as an integral,
X
dz

z
1

Inx =



You can check that this satisfies the differential equation by taking the upper limit of the integral
to be x+ Ax, then x, subtracting the second from the first, dividing by Ax, and taking Ax very
small. But why have | taken the lower limit of the integral to be 1? In solving the differential
equation in this way, | could have set the lower limit to be any constant and it would still be a
solution—Dbut it would not be the inverse function to €’ unless | take the lower limit 1, since that
gives fgr the value x =1thaty = Inx = 0. We need this to be true to be consistent with x = ¢’,
sincee” =1.

Exercise: show from the integral form of In x, that for small x, In(1 + x) is approximately equal to
x. Check with your calculator to see how accurate this is for x = 0.1, 0.01.
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