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The Number e and the Exponential Function 
Michael Fowler,  UVa 
 
Disclaimer: these notes are not mathematically rigorous.  Instead, they present quick, and, I 
hope, plausible, derivations of the properties of e, ex and the natural logarithm. 

The Limit  1lim(1 )n
nn

e
→∞

+ =  

Consider the following series: 2 31 1 1
2 3(1 1),  (1+ ) ,  (1 ) ,  ..., (1 ) ,...n

n+ + +  where n runs through the 
positive integers. What happens as n gets very large?  
 
It’s easy to find out if you use a scientific calculator having the function x^y.  The first three 
terms are 2, 2.25, 2.37.  You can use your calculator to confirm that for n = 10, 100, 1000, 
10,000, 100,000, 1,000,000 the values of 1(1 )n

n+  are (rounding off) 2.59, 2.70, 2.717, 2.718, 
2.71827, 2.718280.  These calculations strongly suggest that as n goes up to infinity, 1(1 )n

n+  
goes to a definite limit.  It can be proved mathematically that 1(1 )n

n+  does go to a limit, and this 
limiting value is called e.  The value of e is 2.7182818283… . 
 
To try to get a bit more insight into 1(1 )n

n+  for large n, let us expand it using the binomial 
theorem. Recall that the binomial theorem gives all the terms in (1 + x)n, as follows: 
 

2 3( 1) ( 1)( 2)(1 ) 1 ...
2! 3!

n nn n n n nx nx x x x− − −
+ = + + + + +  

 
To use this result to find 1(1 )n

n+ , we obviously need to put x = 1/n, giving:  
 

2 31 1 1 1( 1) ( 1)( 2)(1 ) 1 . ( ) ( ) ...
2! 3!

n
n n n n

n n n n nn − − −
+ = + + + + . 

 
We are particularly interested in what happens to this series when n gets very large, because 
that’s when we are approaching e.  In that limit, ( ) 21 /n n n−  tends to 1, and so does 

.  So, for large enough n, we can ignore the n-dependence of these early terms 
in the series altogether!   
( )( ) 31 2 /n n n n− −

 
When we do that, the series becomes just: 
 

1 1 11 1 ...
2! 3! 4!

+ + + + +  
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And, the larger we take n, the more accurately the terms in the binomial series can be simplified 
in this way, so as n goes to infinity this simple series represents the limiting value of 1(1 )n

n+ . 
Therefore, e must be just the sum of this infinite series.  
 
(Notice that we can see immediately from this series that e is less than 3,  because 1/3! is less 
than 1/22, and 1/4! is less than 1/23, and so on, so the whole series adds up to less than  1 + 1 + ½ 
+ 1/22  + 1/23 + 1/24 + … = 3.)   
 

The Exponential Function ex  
Taking our definition of e as the infinite n limit of 1(1 )n

n+ , it is clear that ex is the infinite n limit 
of 1(1 )nx

n+ .  Let us write this another way: put y = nx, so 1/n = x/y.  Therefore, ex is the infinite y 
limit of (1 ) yx

y+ .  The strategy at this point is to expand this using the binomial theorem, as 
above, and get a power series for ex.   
 
(Footnote: there is one tricky technical point.  The binomial expansion is only simple if the 
exponent is a whole number, and for general values of x,  y = nx won’t be.  But remember we are 
only interested in the limit of very large n, so if x is a rational number a/b, where a and b are 
integers, for n any multiple of b,  y will be an integer, and pretty clearly the function (1 ) yx

y+  is 
continuous in y, so we don’t need to worry.  If x is an irrational number, we can approximate it 
arbitrarily well by a sequence of rational numbers to get the same result.) 
 
So, we need to do the binomial expansion of (1 ) yx

y+  where y is an integer—to make this clear, 
let us write y = m.  
 

2 3( 1) ( 1)( 2)(1 ) 1 . ( ) ( ) ...
2! 3!

mx x x x
m m m m

m m m m mm − − −
+ = + + + +  

 
Notice that this has exactly the same form as the binomial expansion of 1(1 )n

n+  in the paragraph 
above, except that now a power of x appears in each term.  Again, we are only interested in the 
limiting value as m goes to infinity, and in this limit m(m – 1)/m2 goes to 1, as does m(m-1)(m-
2)/m3.  Thus, as we take m to infinity, the m dependence of each term disappears, leaving 
 

2 3

lim(1 ) 1 ...
2! 3!

x mx
mm

x xe x
→∞

= + = + + + +  

Differentiating ex 
2 3 2

(1 ...) 1 ...
2! 3! 2!

xd d x x xe x x
dx dx

= + + + + = + + +  
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so when we differentiate ex, we just get ex back. This means ex is the solution to the equation 
dy y
dx

= , and also the equation 
2

2

d y y
dx

= , etc.  More generally, replacing x by ax in the series 

above gives 
 

2 2 3 3

1 ...
2! 3!

ax a x a xe ax= + + + +  

 

and now differentiating the series term by term we see ax axd e ae
dx

= ,  
2

2
2

ax axd e a e
dx

= , etc., so the 

function eax  is the solution to differential equations of the form dy ay
dx

= , or of the form 

2
2

2

d y a y
dx

=  and so on. 

 
Instead of differentiating term by term, we could have written 
 

( ) ( )
0 0

1
lim lim

ax a xa x x ax
ax ax

x x

e ed e ee a
dx x x

Δ+Δ

Δ → Δ →

−−
= =

Δ Δ
e=

a x

 

 
where we have used ( )  in the limit 1a xe Δ − → Δ 0.xΔ →  

The Natural Logarithm 
We define the natural logarithm function ln x as the inverse of the exponential function, by 
which we mean 
 

y = ln x,  if x = ey 
 
Notice that we’ve switched x and y from the paragraph above!  Differentiating the exponential 
function yx e=  in this switched notation,  
 

ydx e
dy

x= = ,  so 1dy
dx x

= . 

 
That is to say, 

1lnd x
dx x

=  

 
Therefore, ln x can be written as an integral, 

1

ln
x

dzx
z

= ∫ . 
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You can check that this satisfies the differential equation by taking the upper limit of the integral 
to be ,x x+ Δ  then x, subtracting the second from the first, dividing by xΔ , and taking xΔ very 
small.  But why have I taken the lower limit of the integral to be 1?  In solving the differential 
equation in this way, I could have set the lower limit to be any constant and it would still be a 
solution—but it would not be the inverse function to ey unless I take the lower limit 1, since that 
gives for the value x = 1 that y = ln x = 0.   We need this to be true to be consistent with x = ey, 
since e0 = 1.  
 
Exercise: show from the integral form of ln x, that for small x, ln(1 + x) is approximately equal to 
x. Check with your calculator to see how accurate this is for x = 0.1, 0.01.  
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