EE-4232 Feedback Topologies

The four basic feedback topologies: voltage-sampling series-mixing (series-shunt) topology

The four basic feedback topologies: current-sampling shunt-mixing (shunt-series) topology

The four basic feedback topologies: current-sampling series-mixing (series-series) topology

The four basic feedback topologies: voltage-sampling shunt-mixing (shunt-shunt) topology

The series-shunt feedback amplifier: (a) ideal structure; (b) equivalent circuit.

Measuring the output resistance of the feedback amplifier of Fig. (a): $R_{of} \equiv V/I$.

Derivation of the A circuit and β circuit for the series-shunt feedback amplifier. (a) Block diagram of a practical series-shunt feedback amplifier. (b) The circuit in (a) with the feedback network represented by its h parameters.

Derivation of the A circuit and β circuit for the series-shunt feedback amplifier. (c) The circuit in (b) after neglecting h_{21} .

Summary of the rules for finding the A circuit and β for the voltage-sampling series-mixing case.

The series-series feedback amplifier: (a) ideal structure; (b) equivalent circuit.

Measuring the output resistance R_{of} of the series-series feedback amplifier.

Derivation of the A circuit and β circuit for the series-series feedback amplifiers. (a) A series-series feedback amplifier. (b) The circuit of (a) with the feedback network represented by its z parameters.

Derivation of the A circuit and β circuit for the series-series feedback amplifiers. (c) A redrawing of the circuit in (b) after neglecting z_{21} .

Finding the A circuit and β for the current-sampling series-mixing (series-series) case.

Ideal structure for the shunt-shunt feedback amplifier.

Block diagram for a practical shunt-shunt feedback amplifier.

Finding the A circuit and β for the voltage-sampling shunt-mixing (shunt-shunt) case.

Ideal structure for the shunt-series feedback amplifier.

Block diagram for practical shunt-series feedback amplifier

Finding the A circuit and β for the current-sampling shunt-mixing (shunt-series) case.

Bode plot for the loop gain $A\beta$ illustrating the definitions of the gain and phase margins.

Stability analysis using Bode plot of |A|.

Frequency compensation for $\beta = 10^{-2}$. The response labeled A' is obtained by introducing an additional pole at f_D . The A" response is obtained by moving the original low-frequency pole to f_D .

References

- *Electronics* by A. Hambley
- Microelectronics Circuits by Sedra & Smith
- Other books on Electronics