# 7. FERROMAGNETIC MATERIALS

### 7.1 What are ferromagnets?

Earlier, in Section 6.2, we considered the following visualization of atomic dipoles in a material in a uniform applied **B** field:

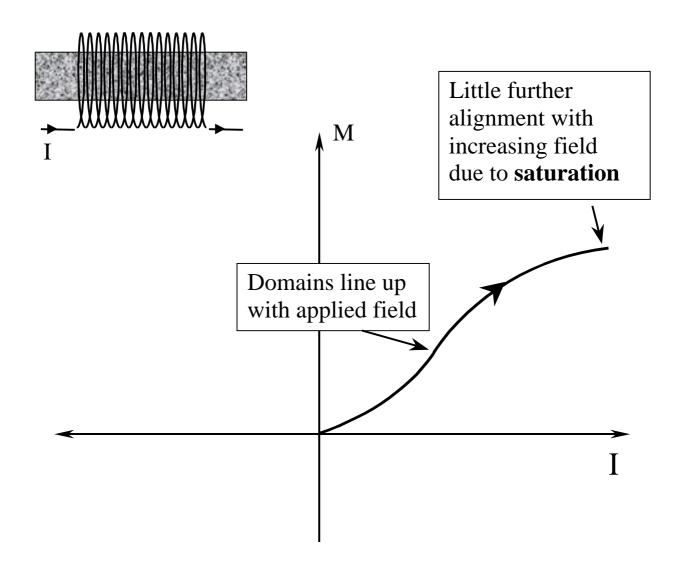


# 7.2 Domain structure

In ferromagnetic materials, small regions with a particular overall spin orientation are termed **domains.** 

This strong (large) spin alignment leads to huge permeabilities:

| Material                                                | Relative Permeability $\mu_r$  |
|---------------------------------------------------------|--------------------------------|
| Nickel<br>Cobalt<br>Iron (pure)<br>Mumetal <sup>†</sup> | 250<br>600<br>4,000<br>100,000 |
|                                                         |                                |

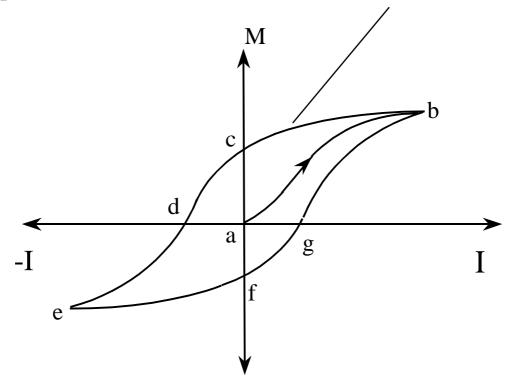

compare to paramagnetic metal: Aluminium  $\approx 1$   $(\mu_r = \mu/\mu_0 = 1 + \chi_m)$ 

† mumetal (aka  $\mu$ -metal) is an alloy of iron (~25%) and nickel (~75%) + small % of other elements. It is sold under various commercial names for transformer cores, magnetic shielding, memory storage devices etc. e.g. 'Nilomag': 83% Ni, 16% Fe + Cu, Mo

# 7.3 Hysteresis

Ferromagnetic materials exhibit a history-dependent behaviour called hysteresis (from the Greek *to lag behind*).

We magnetize an iron rod by placing it in a solenoid and turning up the current:




As the current in the coil is increased, initially large numbers of domains align with the externally applied field: there is a torque on the dipoles of unaligned domains.

Once most domains are aligned there can be little further increase in  $\mathbf{M}$  – this is called **saturation**.

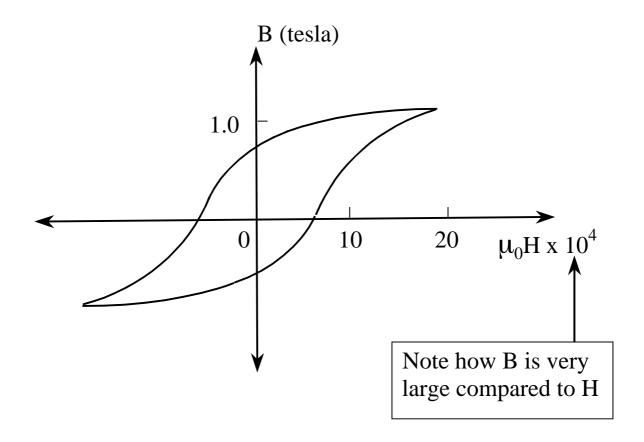
If the current is now wound back to zero, the magnetization does not follow the original curve – it lags behind: this is **hysteresis**. Follow the magnetization – demagnetization path shown below:

The loop b-c-e-f-b traced out is called a hysteresis loop



a-b : initial magnetization, saturation at b

- b-c : demagnetization but  $M \neq 0$  again when I = 0 again
- c-d : current direction reversed,  $M \neq 0$  at d, some -ve I
- d-e : saturation with all dipoles in reverse direction

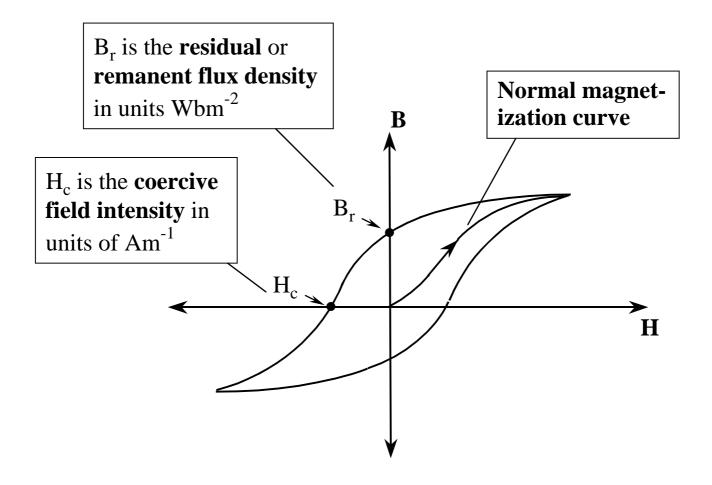

At <u>c and f</u> the rod has a **permanent magnetization** even with I = 0

**By convention**, we plot the hysteresis curve **B** against **H** (not I vs. M as shown above).

H = nI

and

 $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$ . Since  $\mathbf{M} >>> \mathbf{H}$  we have  $\mathbf{B} \alpha \mathbf{M}$ 



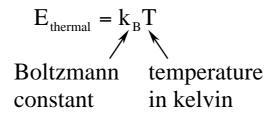

### 7.4 Why is the magnetization cycle hysteretic?

An applied field shifts and rotates the domains in a ferromagnetic material such that the volume of domains aligned with the applied field grows. If only small fields are applied, the domain-wall movements and hence the magnetization process is reversible. For higher applied fields, the movement of domains is irreversible – domains do not shift back to their initial position upon decreasing the applied field.

We can see that the magnetization of ferromagnetic materials is a **non-linear** process. Ferromagnetics are thus known as **non-linear media**.

# 7.5 Ferromagnetics terminology




Note: we know that

#### $\mathbf{B} = \mu \mathbf{H}$

but the **B**-**H** curve is clearly non-linear (diagram directly above) – the permeability  $\mu$  is a function of **H**. Permeability  $\mu$  is also 'history dependent'. Locally (around a particular value of **H**) we can talk about the incremental permeability for small applied alternating fields.

#### 7.6 Curie temperature

The very significant dipole alignment in ferromagnetic materials is a magnetic ordering due to quantum effects. (Remember that the spin we've been talking about is a quantum property of the atom!!) Spin ordering is disrupted by thermal energy



Above a critical temperature called the **Curie temperature**,  $T_c$  ferromagnetic ordering is destroyed and the material behaves

*paramagnetically.* Above  $T_c$  the spontaneous magnetization due to ferromagnetic ordering is lost.

Curie temperatures:

Fe: 
$$T_c = 1043 \text{ K}$$
 (770°C)  
Ni:  $T_c = 627 \text{ K}$  (354°C)  
Co:  $T_c = 1388 \text{ K}$  (1115°C)