Turbines

- Water under pressure contains energy.
- Turbines convert the energy in water into rotating mechanical energy.
- Impulse turbines convert the kinetic energy of a jet of water to mechanical energy.
- Reaction turbines convert potential energy in pressurized water to mechanical energy.

Selected References

- <u>Microhydro</u> by Scott Davis
- <u>Microhydro Design Manual</u> by Adam Harvey
- Waterturbine.com for picohydro units
- BC Hydro Handbook
- Idaho National Labs

Impulse Turbines

- Tolerate sand.
- Easy to fabricate.
- Efficient at wide a range of head and flow.
- A nozzle converts pressurised water into a high-speed jet of water.

Impulse Turbir

- Pelton
 - Low Flow
 - Medium to High Head
- Turgo
 - Medium Flow
 - Medium to High Head
- Crossflow
 - High Flow
 - Low to Medium Head

Pelton Turbines

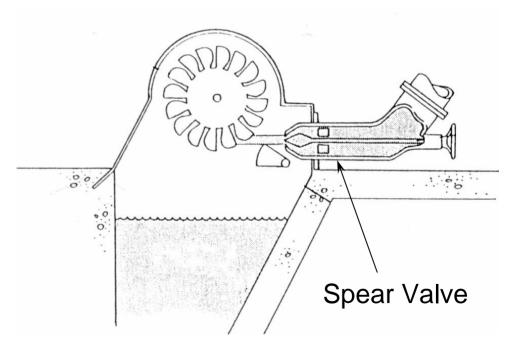
- At least one jet of water strike the buckets at atmospheric pressure.
- Maximum jet diameter about 1/3 bucket width.
- More jets increase flow and are used at low head.

Multiple Runners

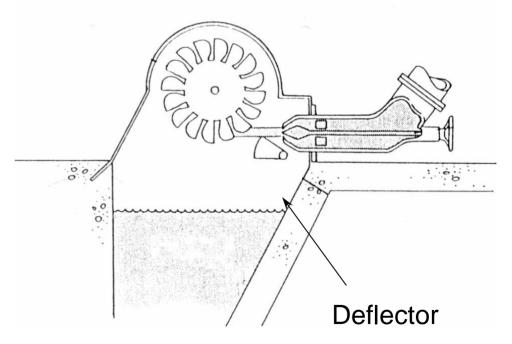
- Advantages
 Greater Flow
 Flow control
- May be placed in the same housing or separate housings.

Turgo Turbines

- Similar to Pelton runner, but a more complex blade design.
- Greater flow possible.


Multiple nozzles

- Four to six nozzles may be added before splash interference occurs.
- Power output is proportional to the number of nozzles.


Spear Valves

- A spear valve changes the nozzle size without stopping the turbine.
- Expensive.

Deflectors

- Deflectors can be used to vary flow.
- Usually used for emergency stop without causing water hammer.

Crossflow Turbines

- Banki or Mitchell turbine.
- Shaft oriented horizontally.
- Rectangular nozzle forms the jet.
- Water strikes the blades twice.
- A control vane changes jet size.

Crossflow Turbines

- A draft tube increases head.
- Longer blades increase flow and power.
- Part flow is achieved with partition vanes.

Impulse Turbine Manufacturers

- Harris Hydro Pelton
- ES&D Turgo
- Platypus Pelton
- Canyon Pelton
- Dependable Pelton, Turgo
- Tamar Designs Pty. Ltd. Pelton, Turgo
- HTS Crossflow

Reaction Turbines

- Expensive blade manufacture.
- High flow rates.
- More site specific than impulse.
- Uses pressure drop across turbine.
- Cavitation must be avoided.
- High turbine speed at low head.

Reaction

- Francis
 - Medium Head
- Propeller and Kaplan
 Low Head
- Pump as Turbine
 Medium Head

Francis

- Guide vanes may be adjusted by governor.
- Efficiency decreases as flow decreases.
- Water flow is radial from exterior to interior.
- Flow changes gradually from radial to axial.

Propeller Turbine

- Similar to ships propeller.
- Has guide vanes similar to Francis Turbine.
- A Kaplan Turbine has variable pitch blades.
- Part flow efficiency is poor.

Pump as Turbine

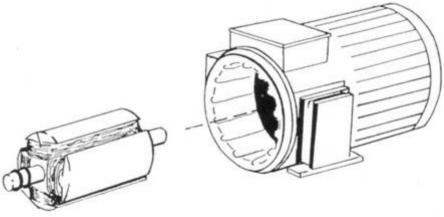
- Centrifugal pumps may be used as turbines.
- Low cost due to mass production.
- No direct correlation between pump characteristics and turbine characteristics.
- Flow is fixed for a given head.
- Some manufacturers have tested their pumps as turbines.
- Good for grid-tie with induction motors.

Turbine application

	Head (pressure)		
Turbine	High	Medium	Low
	(30m +)		(<10 m)
Impulse	Pelton	Crossflow	Crossflow
	Turgo	Pelton	
		Turgo	
Reaction	-	Francis	Propeller
		Pump	Darius

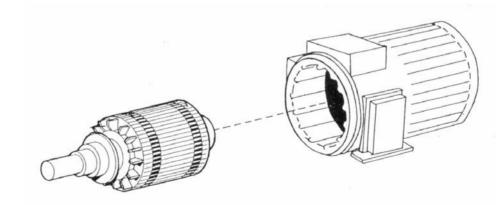
Other Turbines

- Aquair
- Gorlov Helical Turbine
- Water Wheels
 - Overshot
 - Undershot

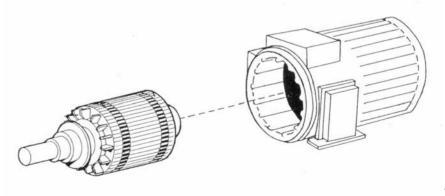


Generators

- Types of Generators
 - Synchronous
 - Induction
 - DC generators
- Characteristics of Generators
- Selecting a Generator
- Voltage Regulation
- Governing (speed and frequency)
 - Mechanical
 - Electronic


Synchronous Generator

- Used in almost all stand-alone applications.
- Single phase used up to 10 kW.
- Most three phase are smaller than equivalent single


Induction Generator

- Just an induction motor with negative slip.
- Used most often with grid-tie systems.
- Used by some for battery based systems.

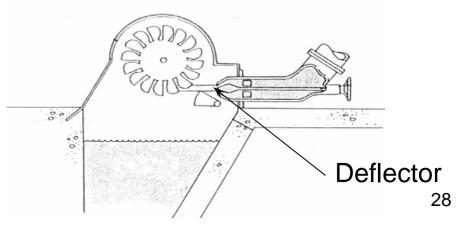
Induction Generator

- Simple and robust.
- Readily available and inexpensive.
- Requires external excitation from the grid or from capacitors.
- Control is more difficult, especially for inductive loads.
- It requires frequency controls if not tied to the grid

DC Alternator

- Produces rectified alternating current.
- Readily available.
- Easy to service.
- A rheostat controls excitation.

Selecting a Generator


- Type (synchronous, induction)
 - Stand-alone or grid-tie
- Single or Three phase
 - Loads
 - Generator size
- Voltage
 - Loads
 - Transmission
- RPM
 - Size and availability
- Size

Selecting a Generator

- A larger generator:
 - makes up for transmission losses
 - is required for reactive loads.
- An oversized generator
 - is more efficient.
 - allows for future expansion.
 - runs cooler.
- Centripetal forces during over-speed can damage generators.

Mechanical Governing

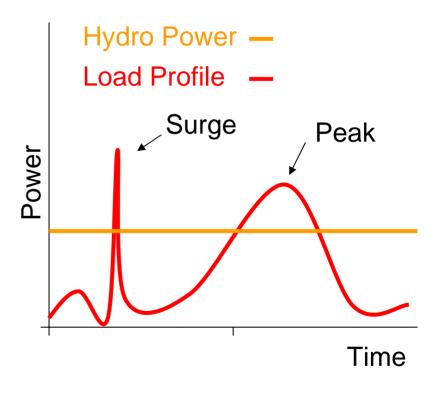
- Mechanical flow control is not common.
 - More expensive
 - Slower reacting
 - Fine for very large systems
- Mechanical deflectors are used for emergency shut down.

Electronic Governing

- Frequency governing is used for synchronous generators.
- Voltage governing is used for induction generators
- Diversion Loads
 - A load must always be present.
 - Water heating or air heating.
- Diversion loads may be useful loads.

Diversion Controllers

- Thomson and Howe Energy Systems Digital Load Control Governor for AC.
- Thyristor based.
- Does cause line noise.


Batteries and Charge Control

- Purpose of Batteries
- Storage Battery Terms
- Lead Acid Batteries
 - Battery Voltage
 - Battery Capacity
 - Battery Cycle Life and Float Life
- Battery Charge Control
 - Voltage set points
 - Three stage charging
 - Equalization
 - Temperature Compensation

Batteries Provide

- Peak capacity

 Simultaneous loads
- Surge capacity
 Motor starting

Diversion Charge Controllers

- Prevent battery overcharging.
- Manufacturers:
 - Xantrex/Trace C-60/40/35
 - Applied Power Enermaxer III
 - Solar Converters LDR.

Diversion Loads

- Heating elements
 - Water
 - Air
- Light bulbs can burn out.

Duty Ratings and Surge

- Inverters have both a Continuous rating and a Surge rating.
- Surge represents motor starting ability.
- Surge ability depends on input voltage.
- In general, a low frequency inverter has better surge characteristics.