Etching

- Etching Terminologies
- Etching Considerations for IC
- Wet Etching
- Reactive Ion Etching (plasma etching)

Etch Process - Figures of Merit

• Etch rate

• Etch rate uniformity

• Selectivity

• Anisotropy

Bias
$$B \equiv d_f - d_m$$

B can be > 0 or < 0.

* Complete Isotropic etching

Vertical Etching = Lateral Etching Rate

 $B = 2 \cdot h_f$

* Complete Anisotropic Etching

Lateral Etching rate = 0B = 0

(2) Degree of Anisotropy

$$A_{f} \equiv 1 - \frac{|B|}{2h_{f}}$$

$$0 \leq A_{f} \leq 1$$

$$\uparrow^{isotropic} \qquad anisotropic$$

$$\therefore |B| = 2h_{f} \qquad |B| = 0$$

Etching of Steps with a Slope

Worst-Case Design Considerations for Etching

(b) Film etching rate variation $v_{f(\min)} = v_f \left(1 - f_f\right)^{r} variation$ \therefore Worst – case etching time required to etch the film $film - \frac{h_{f(\max)}}{2} - \frac{h_f}{2} \cdot \frac{(1+d)}{2}$

$$film = \frac{f(mm)}{v_{f(min)}} = \frac{f}{v_f} \cdot \frac{1}{\left(1 - f_f\right)}$$

(c) Overetching around step

total

$$\therefore t_T = \frac{h_f (1 + \boldsymbol{d})}{v_f (1 - \boldsymbol{f}_f)} \cdot (1 + \Delta) \qquad \left(\Delta = \frac{h_1}{h_2} \right)$$

(d) With Mask Erosion

Let $V_{m\perp}$, $V_{m//}$ be vertical and lateral etching rate of the mask.

Let V_f *be the vertical etching rate of the film.*

(ignoring lateral film rate for simplicity)

$$\frac{W}{2} = \left(v_{m\perp} \cot \boldsymbol{q} + v_{m//}\right) \cdot t_T$$
$$= \left(\frac{v_{m\perp}}{v_f}\right) \cdot h_f \cdot \frac{(1+\boldsymbol{d})(1+\Delta)}{(1-\boldsymbol{f}_f)} \left[\cot \boldsymbol{q} + \frac{v_{m//}}{v_{m\perp}}\right]$$

Goal : Minimize W

Small W
$$\boldsymbol{q} \rightarrow 90^{o}$$

 $v_{f} \gg \boldsymbol{n}_{m\perp}$
 $h_{f} small$

Professor Nathan Cheung, U.C. Berkeley

EECS143 Lecture # 15

Etching Selectivity S_{fm}

$$S_{fm} \equiv \frac{V_{f\perp}}{V_{m\perp}} (vertical \ components \ only)$$

Wet Etching

 S_{fm} is controlled by: chemicals, concentration, temp.

RIE

 S_{fm} is controlled by: plasma parameters, plasma chemistry gas pressure, flow rate & temperature

 S_{fm} Selectivity is very large (~ infinity)

SiO2/Si etched by RIE (e.g. CF4)

 S_{fm} Selectivity is finite (~10)

For a given allowable W/2, what is the **minimum** selectivity required?

$$S_{fm(\min)} = \frac{h_f}{\binom{w/2}{2}} \frac{(1+d)(1+\Delta)}{(1-f_f)} \left[\cot q + \frac{v_{m//}}{v_{m\perp}}\right]$$

[Note] If $v_{m\perp}$ varies from run-to-run,

$$v_{m\perp(\max)} = v_{m\perp} (1 + f_m)$$

$$\therefore S_{fm(\min)} = \frac{h_f}{W_2} \frac{(1 + d)(1 + \Delta)(1 + f_m)}{1 - f_f} \left[\cot q + \frac{v_{m//}}{v_{m\perp}} \right]$$

$$U_{fm} = uniformity \ factor$$

Professor Nathan Cheung, U.C. Berkeley

EECS143 Lecture # 15

Wet Etching

- **1** Reactant transport to surface
- 2 Selective and controlled reaction of etchant with the film to be etched
- **3** Transport of by-products away from surface

Wet Etching (cont.)

- Wet etch processes are generally isotropic
- Wet etch processes can be highly selective
- Acids are commonly used for etching:

 $HNO_3 \ll H^+ + NO_3^ HF \ll H^+ + F^ H^+$ is a strong oxidizing agent => high reactivity of acids

Wet Etch Processes

$SiO_2 + 6HF - H_2 + SiF_6 + 2H_2O$

<u>Note</u>: HF is usually buffered with NH_4F to maintain [H⁺] at a constant level (for constant etch rate) $NH_4F \rightarrow NH_3 + HF$

Wet Etch Processes (cont.)

(2) Silicon Nitride

To etch Si_3N_4 film on SiO_2 , use

H₃PO₄

(phosphoric acid)

(180°C: ~100 A/min etch rate)

Typical selectivities:

- 10:1 for nitride over oxide
- 30:1 for nitride over Si

Wet Etch Processes (cont.)

(3) Aluminum

To etch Al film on Si or SiO₂, use $H_3PO_4 + CH_3COOH + HNO_3 + H_2O$

(nitric acid)

(phosphoric acid) (acetic acid)

(~30°C)

$6H^+ + 2A1 \longrightarrow H_2 + 2A1^{3+}$ (Al³⁺ is water-soluble)

Wet Etch Processes (cont.)

(4) Silicon

(i) Isotropic etching Use HF + HNO₃ + H₂O $3Si + 4HNO_3 \longrightarrow SiO_2 + 4NO + 2H_2O$ $3SiO_2 + 18HF \longrightarrow 3H_2SiF_6 + 6H_2O$

(ii) Anisotropic etching (e.g. KOH, EDP)

Effect of Slow {111} Etching

Mask opening aligned in <110> direction => {111} sidewalls

EECS143 Lecture # 15

[110]-Oriented Silicon

{111} planes oriented perpendicular to the (110) surface

=> possible to etch pits with vertical sidewalls!

- Bottom of pits are
 - flat ({110} plane) if KOH is used {100} etches slower than {110}
 - V-shaped ({100} planes) if EDP is used {110} etches slower than {100}

Anisotropic Si Etching: Applications

(3) Field-Emission Tips

Drawbacks of Wet Etching

- Lack of anisotropy
- Poor process control
- Excessive particulate contamination

=> Wet etching used for **noncritical** feature sizes