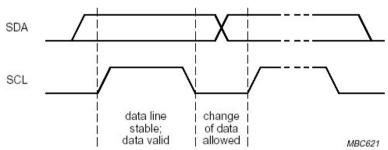
I²C bus

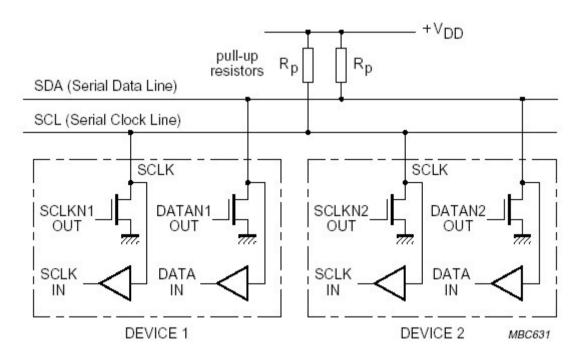
Inter Integrated Circuits bus by Philips Semiconductors

> Tomáš Matoušek tmd.havit.cz

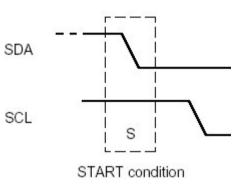

Basic Characteristics

- two-wired bus
- originally to interact within small num. of devs (radio/TV tuning, ...)
- speeds:
 - 100 kbps (standard mode)
 - 400 kbps (fast mode)
 - 3.4 Mbps (high-speed mode)
- data transfers: serial, 8-bit oriented, bi-directional
- master/slave relationships with multi-master option (arbitration)
- master can operate as transmitter or receiver
- addressing: 7bit or 10bit unique addresses
- device count limit: max. capacitance 400 pF

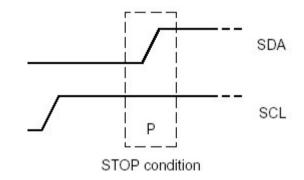
Standard Mode


Wires and Signals

- two-wired bus
 - serial data line (SDA)
 - serial clock line (SCL)
- voltage levels
 - HIGH 1
 - LOW 0
 - not fixed, depends on associated level of voltage
- bit transfer (level triggered)
 - SCL = $1 \Rightarrow$ SDA = valid data
 - one clock pulse per data bit
 - stable data during high clocks
 - data change during low clocks


Wired-AND connection

- bus is free \Rightarrow SDA and SCL are high
 - by pull-up resistors
- device output is ANDed with signal on bus

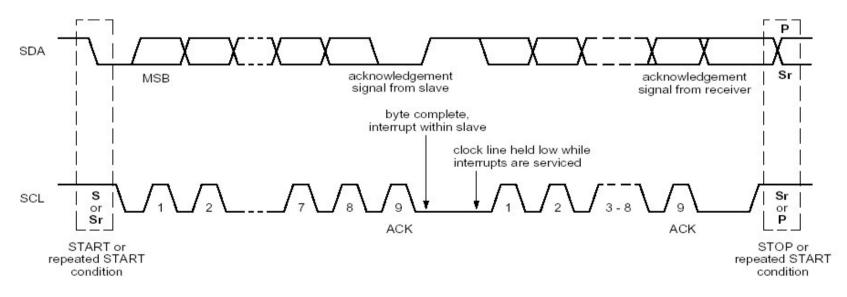


Frame

- start condition (S)
 - SDA 1 \rightarrow 0 transition when SCL = 1
- stop condition (P)
 - SDA $0 \rightarrow 1$ transition when SCL = 1

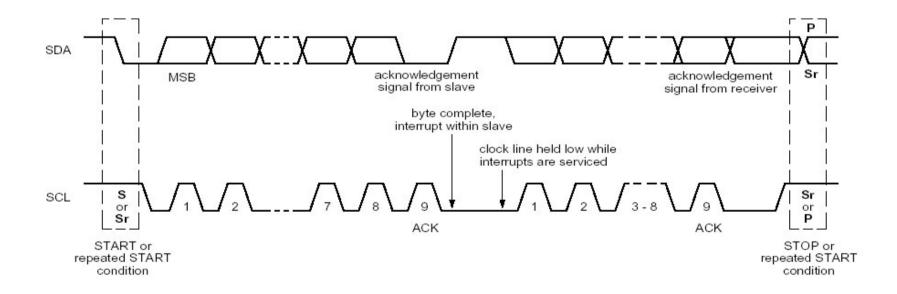
- repeated start (Sr)
 - start is generated instead of stop
- bus state
 - busy ... after S and before next P
 - free ... after P and before next S

Masters and Slaves


- Master device
 - controls the SCL
 - starts and stops data transfer
 - controls addressing of other devices
- Slave device
 - device addressed by master
- Transmitter/Receiver
 - master or slave
 - master-transmitter sends data to slave-recevier
 - master-receiver requires data from slave-transmitter

Data Transfer

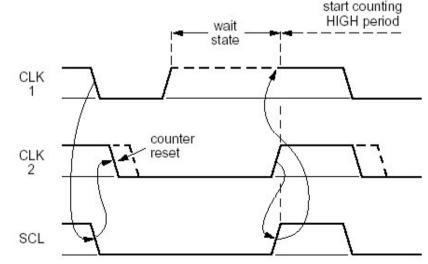
- data bits are transferred after start condition
- transmission is byte oriented
- byte = 8 bits + one acknowledge bit
- most significant bit (MSB) first
- slave address is also datum
 - first byte transferred
 - during the first byte transfer:
 - master is transmitter
 - addressed slave is receiver
 - next bytes: depends on the last bit in address byte


Data Transfer - SCL

- master sets SCL = 0 and generates pulse for each data bit
- 8 pulses for data bits are followed by one pulse for ack. bit
- after ack.
 - master tries to generate next byte's first pulse
 - slave can hold SCL low \rightarrow master switches to wait state

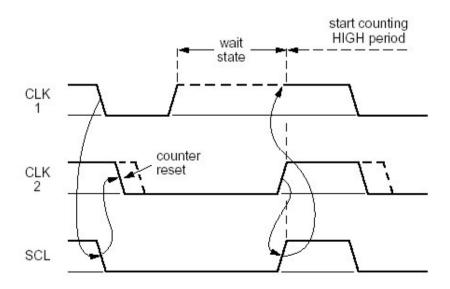
Data Transfer - SDA

- data bits are generated by transmitter as SCL pulses
- 9-th pulse:
 - transmitter releases SDA
 - receiver must hold SDA low in order to ack. received data
 - slave must release SDA after ack. bit (allows master to end frame)

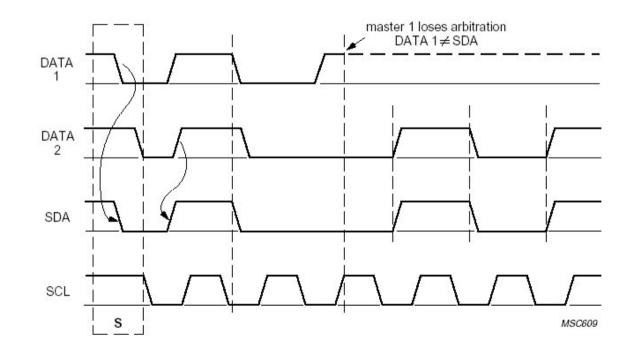


Multiple Masters

- more bus controllers can be connected
- several masters can start frame at once
- synchronization needed on SCL
- arbitration needed on SDA
- using wired-AND connection to SCL/SDA


Synchronization on SCL

- frame started \rightarrow SCL = 1
- first $1 \rightarrow 0$ transition (*)
 - involved masters restart their clocks
 - master holds 0 until its low-period is over
- master finished its low-period
 - releases SCL
 - SCL = $0 \rightarrow$ switches to wait state, waits for SCL = 1
 - SCL = 1 or waiting finished \rightarrow starts counting high-period
- first master finished its high-period
 - sets SCL = 0
 - equivalent to (*) state

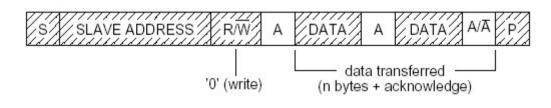

Synchronized Clocks

- low-period
 - determined by max{low-periods of involved masters}
- high-period
 - determined by min{high-periods of involved masters}

Arbitration on SDA

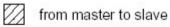
- frame started, SCL synchronized \rightarrow high periods = valid data
- each master generates its data
- master aborts if there is another level on SDA than it generates
 → it loses arbitration, releases SDA and tries again when bus is free

Notes on Arbitration


- can continue for many bits
- adresses are compared at first stage
- if the same slave is addressed in the same mode (R/W):
 - masters are transmitters \rightarrow data-bits are compared
 - masters are receivers \rightarrow acknowledge-bits are compared
- if arbitration is not over before stop or repeated start:
 - comparation not allowed: stop-data, repeated start-data, stop-repeated start
 - involved masters must generate stops/repeated starts in the same positions
- loser can generate SCL pulses for synchronization until the byte is over
- losing master which can be also a slave
 - must switch immediately to slave mode

Addressing by 7 bits

- the first byte transmitted by master:
 - 7 bits: address
 - 1 bit: direction (R/W)
 - 0 ... master writes data (W), becomes transmitter
 - 1 ... master reads data (R), becomes receiver
- data transfer terminated by stop condition
- master may generate repeated start and address another device
- each device listens to address
 - address matches its own \rightarrow device switches state according to R/W bit
- address = fixed part + programmable part
 - fixed part assigned by I²C committee


Frame Formats

master-transmitter

master-receiver (since second byte)

from slave to master

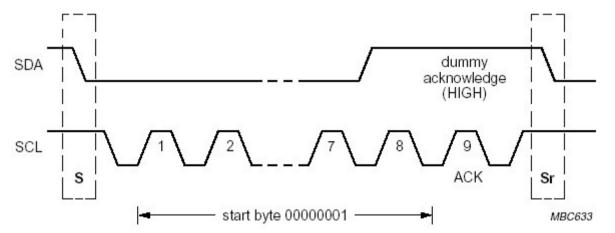
A = acknowledge (SDA LOW)

Ā = not acknowledge (SDA HIGH)

S = START condition

P = STOP condition

Special Addresses

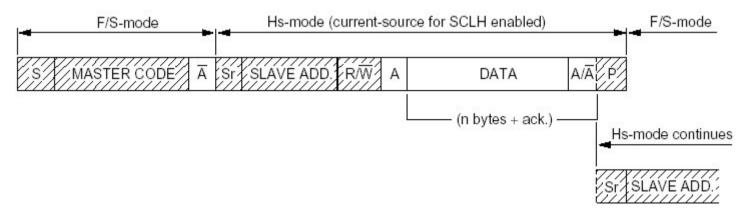

general call
 start byte
 CBUS address
 used for cooperation of I²C and CBUS
 High-speed mode master code
 10-bit slave addressing
 1111 0** | *

General Call

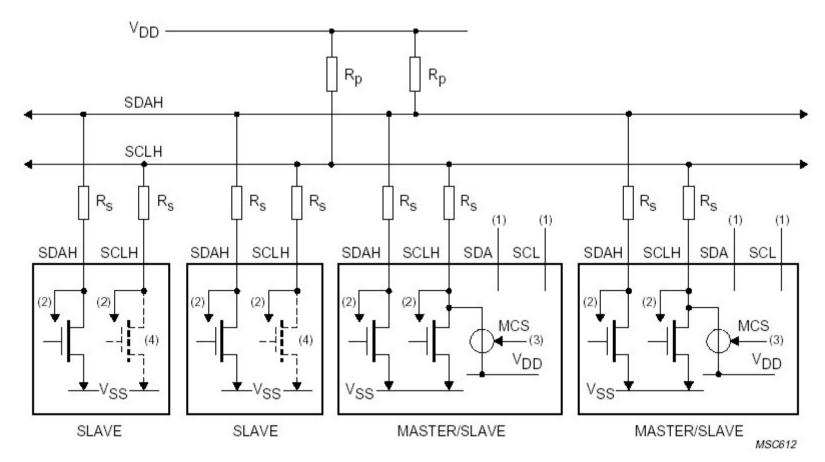
- addresses all devices
- device ignores call \rightarrow not acknowledges address
- device accepts call \rightarrow acknowledges address
- R/W = 0 (W) \rightarrow master-transmitter, slave-receiver
- command in the second byte
- LSB = 0 (least significant bit)
 - programmable part of device's address manipulation
 - resetting devices
- LSB = 1
 - master (e.g. keyboard scanner) doesn't know where to send data
 - remaining 7 bits contain master's address

Start Byte

- device connection to bus:
 - fast
 - on-chip hardware I²C bus interface
 - device interrupted by requests from bus
 - slow
 - no hardware interface
 - software bus monitoring (polling)
- longer start procedure needed
 - start condition, first byte = 0000 0001, ack., repeated start condition
 - fast device ignores, slow device can use lower sampling rate to detect frame start



Extensions


- standard mode
 - speed limit: 100 kbps, address space limit: 112 addresses
- improvements
 - fast mode (up to 400 kbps)
 - high-speed mode (up to 3.4 Mbps)
 - 10-bit addressing can be mixed with 7-bit one (special address)
- Fast mode
 - unchanged: frame format, logic levels, max. capacitance
 - faster devices must be able to synchronize at 400 kbps
 - downward-compatible, can communicate with standard mode devices
 - not compatible with CBUS
 - changed timing

High-speed mode

- downward compatible with Standard mode and Fast mode
- same frame format
- neither synchronization nor arbitration performed during data transfer
 - arbitration always finishes before data bits transfer
 - master code arbitrates (special 7-bit address: 0000 1***)
 - unique \rightarrow max. 8 masters
 - software programmable
 - master code signals HS mode data transfer
- HS devices connection to bus differs
- wires: SDAH, SCLH

HS-device Connection

- (1) SDA and SCL are not used here but may be used for other functions.
- (2) To input filter.
- (3) Only the active master can enable its current-source pull-up circuit
- (4) Dotted transistors are optional open-drain outputs which can stretch the serial clock signal SCLH.

Further Information

The I2C Bus Specification, version 2.1, January 2000 http://www.semiconductors.philips.com/buses/i2c