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In electronic measurements, one observes “signals,” which must be distinctly above the “noise.”
Noise induced from outside sources may be reduced by shielding and proper “grounding.” Less noise
means greater sensitivity with signal/noise as the figure of merit. However, there exist fundamental
sources of noise which no clever circuit can avoid. The intrinsic noise is a result of the thermal jitter
of the charge carriers and the quantization of charge. The purpose of this experiment is to measure
these two limiting electrical noises. From the measurements, values of the Boltzmann constant, k,
and the charge of the electron, e, will be derived.

1. PREPARATORY QUESTIONS

1. Define the following terms: Johnson noise, shot
noise, RMS voltage, thermal equilibrium, temper-
ature, Kelvin and centigrade temperature scales,
entropy, dB.

2. What is the physical basis of the Nyquist theory [1]
of Johnson noise? Give an estimate for the RMS
voltage acros a 50kΩ resistor at 100◦C with a fre-
quency range of 100 to 10,000Hz.

3. What is the mean square of the fluctuating compo-
nent of the current in a photodiode when its average
current is Iav ?

4. Your measurement of the noise at a frequency f±δf
is inaccurate at the following level: N = Nf ±2Nf .
How many additional measurements are needed to
get a result accurate to 5%.

The goals of the present experiment are:

1. To measure the properties of Johnson noise in a
variety of conductors and over a substantial range
of temperature and to compare the results with the
Nyquist theory.

2. To establish the relation between the Kelvin and
centigrade temperature scales.

3. To determine from the data, values for the Boltz-
mann constant, k, and the centigrade temperature
of absolute zero.

2. INTRODUCTION

2.1. Microscopic Quantization

“Thermal physics connects the world of
everyday objects, of astronomical objects,
and of chemical and biological processes with
the world of molecular, atomic, and electronic
systems. It unites the two parts of our world,
the microscopic and the macroscopic.”[2]

By the end of the 19th century, the accumulated ev-
idence from chemistry, crystallography, and the kinetic
theory of gases left little doubt about the validity of the
atomic theory of matter, though a few reputable scien-
tists still argued strongly against it on the grounds that
there was no “direct” evidence of the reality of atoms.
In fact there was no precise measurement yet available
of the quantitative relation between atoms and the ob-
jects of direct scientific experience such as weights, meter
sticks, clocks, and ammeters.

To illustrate the dilemma faced by physicists in 1900,
consider the highly successful kinetic theory of gases
based on the atomic hypothesis and the principles of
statistical mechanics from which one can derive the
equipartition theorem. The theory showed that the well-
measured gas constant Rg in the equation of state of a
mole of a gas at low density,

PV = RgT (1)

is related to the number of degrees of freedom of the
system, 3N , by the equation

Rg =
k(3N)

3
= kN (2)

where N is the number of molecules in one mole (Avo-
gadro’s number), and k is the Boltzmann constant de-
fined so that the mean energy per translational degree of
freedom of the molecules in a quantity of gas in thermal
equilibrium at absolute temperature T is kT/2. At the
turn of the century, nobody knew how to measure pre-
cisely either k or N . What was required was either some
delicate scheme in which the fundamental granularity of
atomic phenomena could be detected and precisely mea-
sured above the smoothness that results from the huge
number of atoms in even the tiniest directly observable
object, or a thermodynamic system with a measurable
analog of gas pressure and a countable number of degrees
of freedom.

The Millikan oil drop experiment of 1910 was a delicate
scheme by which the quantum of charge was accurately
measured. It compared the electrical and gravitational
forces on individual charged oil droplets so tiny that the
effect of a change in charge by one or a few elementary
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charges could be directly seen and measured through a
microscope. The result was a precise determination of
e which could be combined with the accurately known
values of various combinations of the atomic quantities
such as the Faraday (Ne), e/m , atomic weights, and the
gas constant (kN), to obtain precise values of N , k, and
other atomic quantities. Therefore, a current will not be
continuous in the mathematical sense, it should exhibit
a “noise” due to the granularity of charges.

Twenty years later Johnson discovered an analog of
gas pressure in an electrical system, namely, the mean
square “noise” voltage across a conductor due to ther-
mal agitation of the electrical modes of oscillation which
are coupled to the thermal environment by the charge
carriers. Nyquist showed how to relate that mean square
voltage to the countable number of degrees of freedom
of electrical oscillations in a transmission line. The only
atomic constant that occurs in Nyquist’s theoretical ex-
pression for the Johnson noise voltage is the Boltzmann
constant k. A measurement of Johnson noise therefore
yields directly an experimental determination of k.

In classical statistical mechanics, k/2 is the constant
of proportionality between the Kelvin temperature of a
system in thermal equilibrium and the average energy
per dynamical degree of freedom of the system. Its ul-
timate quantum physical significance emerged only with
the development of quantum statistics after 1920 [2]. A
summary of the modern view is given below (see refer-
ence [2], Kittel and Kroemer, for a lucid and complete
exposition).

2.2. Entropy and Temperature

A closed system of many particles exists in a number
of distinct quantum states consistent with conservation
constraints of the total energy of the system and the to-
tal number of particles. For a system with g accessible
states, the fundamental entropy σ is defined by

σ = ln g (3)

With the addition of heat, the number of states acces-
sible within the limits of energy conservation rises, and
the entropy increases. An exact enumeration of the quan-
tum states accessible to a system composed of many non-
interacting particles in a box and having some definite
energy can be derived from an analysis based on the so-
lutions of the Schrödinger equation (Ref. [2], p 77). It
shows that for one mole of a gas at standard tempera-
ture and pressure (273K, 760 mm Hg) σ is of the order
of 1025. The corresponding value of g is of the order of
the huge number e10

25
!

Suppose that the total energy U of the system is in-
creased slightly by ∆U , perhaps by the addition of heat,
while the volume V and number of particles N are held
constant. With the increase in energy more quantum
states become accessible to the system so the entropy is

increased by ∆σ. The fundamental temperature is de-
fined by

1
τ
≡

(
∂σ

∂U

)
N,V

(4)

The units of τ are evidently the same as those of energy.
Since an increase in the energy of one mole of gas by
one joule causes a very large increment in σ, the magni-
tude of τ in common circumstances like room tempera-
ture must be much less than 1. In practical thermome-
try, the Kelvin temperature T is proportional to τ , but
its scale is set by defining the Kelvin temperature of the
triple point of water to be exactly 273.16 K. This puts
the ice point of water at 273.15 K and the boiling point
100 K higher at 373.15 K. The constant of proportional-
ity between fundamental and Kelvin temperatures is the
Boltzmann constant, i.e.

τ = kT (5)

where k = 1.38066× 10−23JK−1. By a quantum statis-
tical analysis, based on the Schrödinger equation, of N
particles in a box in thermal equilibrium at temperature
T , one can then show that the mean energy per transla-
tional degree of freedom of a free particle is τ/2 so the
total energy of the particles is 3

2Nτ = 3
2NkT (see [2], p.

72).

Given the quantum statistical definition of τ , the def-
inition of T in terms of τ and the triple point of water,
one could, in principle, compute k in terms of the atomic
constants such as e, me, and h if one could solve the
Schrödinger equation for water at its triple point in all
its terrible complexity. But that is a hopeless task, so
one must turn to empirical determinations of the pro-
portionality constant based on experiments that link the
macroscopic and microscopic aspects of the world.

A link between the microscopic and macroscopic was
reported by Johnson in 1928 [3] in a paper paired in the
Physical Review with one by H. Nyquist [1] that provided
a rigorous theoretical explanation based on the princi-
ples of classical thermal physics. Johnson had demon-
strated experimentally that the mean square of the
voltage across a conductor is proportional to the
resistance and absolute temperature of the con-
ductor and does not depend on any other chemi-
cal or physical property of the conductor. At first
thought, one might expect that the magnitude of John-
son noise must depend in some way on the number and
nature of the charge carriers. In fact Nyquist’s theory
involves neither e nor N . It yields a result in agreement
with Johnson noise observations and a formula for the
mean square of the noise voltage which relates the value
of the Boltzmann constant to quantities that can be read-
ily measured by electronic methods and thermometry.
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3. NYQUIST’S THEORY OF JOHNSON NOISE

Two fundamental principles of thermal physics are
used:

1. The second law of thermodynamics, which implies
that between two bodies in thermal equilibrium at
the same temperature, in contact with one another
but isolated from outside influences, there can be
no net flow of heat;

2. The equipartition theorem of statistical mechanics
[2], which can be stated as follows:

Whenever the Hamiltonian of a sys-
tem is homogeneous of degree 2 in a
canonical momentum component, the
thermal average kinetic energy associ-
ated with that momentum is kT/2, where
T is the Kelvin temperature and k is
Boltzmann’s constant. Further, if the
Hamiltonian is homogeneous of degree 2
in a position coordinate component, the
thermal average potential energy associ-
ated with that coordinate will also be
kT/2.

If the system includes the electromagnetic field,
then the Hamiltonian includes the term (E2 +
B2)/8π in which E and B are canonical variables
corresponding to the q and p of a harmonic oscil-
lator for which (with p and q in appropriate units)
the Hamiltonian, is (q2 + p2)/2.

Nyquist’s original presentation of his theory [1] is mag-
nificent; please see the Junior Lab e-library for a copy.

Nyquist invoked the second law of thermodynamics to
replace the apparently intractable problem of adding up
the average thermal energies in the modes of the elec-
tromagnetic field around a conductor of arbitrary shape
and composition with an equivalent problem of adding
up the average thermal energies of the readily enumer-
ated modes of electrical oscillation of a transmission line
shorted at both ends. Each mode is a degree of freedom
of the dynamical system consisting of the electromagnetic
field constrained by the boundary conditions imposed by
the transmission line. According to the equipartition the-
orem, the average energy of each mode is kT , half electric
and half magnetic. The Nyquist formula for the differen-
tial contribution dV 2

j (j for Johnson) to the mean square
voltage across a resistor, R, in the frequency interval df
due to the fluctuating emfs corresponding to the energies
of the modes in that interval is

dV 2
j = 4RkTdf (6)

To measure this quantity, or rather its integral over the
frequency range of the pass band in the experiment, one
must connect the resistor to the measurement device by
means of cables that have a certain capacitance C. This

R

A

B

Differential
Amplifier

R

Vj

C Vj’

FIG. 1: Equivalent circuit of the thermal emf across a con-
ductor of resistance R connected to a measuring device with
cables having a capacitance C

shunts (short circuits) a portion of the signal, thereby re-
ducing its RMS voltage. The equivalent circuit is shown
in Figure 1. The differential contribution dV 2 to the sig-
nal presented to the input of the measuring device (in our
case the A–input of a low-noise differential preamplifier)
is a fluctuating voltage with a mean square value

dV 2 = 4RfkTdf (7)

where

Rf =
R

1 + (2πfCR)2
(8)

This equation results from AC circuit theory; see B8 in
Appendix B.

Attention was drawn earlier to an analogy between
the mean square of the Johnson noise voltage across a
conductor and the pressure of a gas on the walls of a
container. Both are proportional to kT and the num-
ber of degrees of freedom of the system. The big differ-
ence between the two situations is that the number of
translational degrees of freedom per mole of gas is the
“unknown” quantity 3N , while the number of oscillation
modes within a specified frequency interval in the trans-
mission line invoked by Nyquist in his theory is readily
calculated from the laws of classical electromagnetism.

Since the Boltzmann constant is related to the number
of accessible quantum states, one might well ask:

Where is Planck’s constant, h, which fixes the
actual number of accessible states?

The answer is that the Nyquist theorem in its original
form, like the classical Rayleigh-Jeans formula for the
spectral distribution of blackbody radiation, is valid only
in the range of frequencies where hf << kT , in other
words, at frequencies sufficiently low that the minimum
excitation energy of the oscillations is small compared to
kT . At 300K and 100 kHz, kT = 4 × 10−14 ergs (0.04
eV) and hf = 6×10−22 ergs. Thus at room temperature
kT is ∼ 108 times the minimum energy of an oscillation
mode with a frequency near 100 kHz. The exact quantum
expression for the mean energy ε of each oscillation mode,
noted by Nyquist in his paper, is

ε =
hf

ehf/kT − 1
(9)

which reduces to ε = kT for hf << kT over the range of
frequencies and temperatures encountered in this exper-
iment. An example of where this simplification does not
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hold true is in the measurement of the cosmic microwave
background. In these measurements, a radio telescope is
operated at liquid helium temperatures for measurement
of the ∼ 2.7K cosmic background radiation. The peak of
this black body spectrum is around 1011 Hz and therefore
hf is not much less than kT .

4. EXPERIMENT

In the present experiment you will actually measure
an amplified version of a portion of the Johnson noise
power spectrum. The portion is defined by the “pass
band” of the measurement chain which is determined by
a combination of the gain characteristics of the ampli-
fier and the frequency transmission characteristics of the
low-pass/high-pass filters that are included in the mea-
surement chain. The filters provide an adjustable and
sharp control of the pass band. The combined effects
of amplification and filtration on any given input signal
can be described by a function of frequency called the
effective gain and defined by

g(f) =
V0(f)
Vi(f)

(10)

where the right side is the ratio of the RMS voltage V0

out of the band-pass filter to the RMS voltage Vi of a
pure sinusoidal signal of frequency f fed into the ampli-
fier. A critical task in the present experiment is
to measure the effective gain as a function of fre-
quency of the apparatus used to measure Johnson
noise.

When the input of the measurement chain is connected
across the resistor, R, under study, the contribution dV 2

to the total mean square voltage out of the band-pass
filter in a differential frequency interval is

dV 2
meas = [g(f)]2 dV 2 (11)

We obtain an expression for the measured total mean
square voltage by integrating Equation 11 over the range
of frequencies of the pass band. Thus

V 2 = 4RkTG (12)

where the quantity G is the gain integrated over the
band-pass region and is given by

G ≡
∫ ∞

0

[g(f)]2

1 + (2πfCR)2
df (13)

The rationale behind this integration is that over any
given time interval t, the meandering function of time
that is the instantaneous noise voltage across the resis-
tor can be represented as a Fourier series consisting of a
sum of sinusoids with discrete frequencies n/2t, n=1, 2,
3 ...., each with a mean square amplitude equal to the
value specified by the equipartition theorem. When the
Fourier series is squared, the cross terms are products

of sinusoids with different frequencies, and their aver-
age values are zero. Thus the expectation value of the
squared voltage is the sum of the expectation values of
the squared amplitudes, and in the limit of closely spaced
frequencies as t→∞, the sum can be replaced by an in-
tegral.

Given the linear dependence of V 2 on T in Eq. 12, it is
evident that one can use the Johnson noise in a resistor
as a thermometer to measure absolute temperatures. A
temperature scale must be calibrated against two phe-
nomena that occur at definite and convenient tempera-
tures such as the boiling and melting points of water,
which fix the centigrade scale at 100◦ C and 0◦C, re-
spectively. In the present experiment you will take the
centigrade calibrations of the laboratory thermometers
for granted, and determine the centigrade temperature
of absolute zero as the zero-noise intercept on the nega-
tive temperature axis.

5. PROCEDURE OVERVIEW

The experiment consists of the following parts:

1. Calibration of the measurement chain and measure-
ment of g(f);

2. Measurement of V 2 = V 2
R − V 2

S , where VR = RMS
voltage at the output of the band-pass filter with
the resistor in place; and VS = RMS voltage with
the resistor shorted); for various resistors and tem-
peratures;

3. Determination of the Boltzmann constant from the
data;

4. Determination of the centigrade temperature of ab-
solute zero.

5.1. Suggested Progress Check for end of 2nd
Session

Plot the gain curve of your signal chain versus fre-
quency and perform a back of the envelope integration
to obtain a value of G. You should also have a few mea-
surements at at least one resistor value: What is your
value for k?

6. EXPERIMENTAL APPARATUS

Figure 3 depicts how you will calibrate your experi-
mental apparatus. Figure 2 is a schematic diagram of
the apparatus showing the resistor R mounted on the
terminals of the aluminum box, shielded from electri-
cal interference by an inverted metal beaker, and con-
nected through switch SW2 to the measurement chain
or the ohmmeter. Switch SW1 shorts R. The measure-
ment chain consists of a low-noise differential amplifier, a
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band-pass filter, and a digitizing oscilloscope. Sinusoidal
calibration signals are provided by a function generator.

The noise you will measure is very small, typically on
the order of microvolts. To minimize the problem of elec-
trical interference in the measurement of the low-level
noise signals it is essential that all cables be as short as
possible. The two cables that connect the resistor to the
‘A’ and ‘B’ input connectors of the differential amplifier
should be tightly twisted, as shown, to reduce the flux
linkage of stray AC magnetic fields.

The cathode ray tube display in the digital os-
cilloscope emits a variable magnetic field from its
beam-control coil which may have a devastating
effect on your measurements unless you keep it
far away (≥ 5 feet) from the noise source. Take
special care to avoid this problem when you arrange the
components of the measurement chain on the bench.
The filter we use is a Krohn-Hite 3BS8TB-1k/50kg band-
pass filter. This filter has fixed-frequency band-pass range
of 1 kHz to 50 kHz. It has 8 poles, the equivelent of 8
simple filters in series, so the dropoff outside of the cut-
off frequencies should be quite sharp. Connect the output
of the amplifier to the positive input of the Krohn-Hite
Filter. Then connect the output of the filter to the oscil-
loscope. The filter is equipped with an AC power adapter
connector; make sure this is plugged in and that the green
LED is lit indicating that the filter is receiving power.

7. DETAILED JOHNSON NOISE PROCEDURE

7.1. Calibrate the measurement chain

The digital oscilloscope can measure the RMS volt-
age of both periodic and random signals over a dynamic
range of somewhat more than 103, from several milli-
volts to several volts, whereas the Johnson Noise signal
is only microvolts. Thus, with the differential amplifier
set to a nominal gain of 1000, the microvolt noise signals
are amplified sufficiently to be measured in the millivolt
range of the oscilloscope. To determine the overall am-
plification of the amplifier/filter combination, one feeds
a sinusoidal test signal with an RMS voltage Vi in the
millivolt range to the ‘A’ AC-Coupled (through 0.1µF,
shunted to ground with 100MΩ and 25pF in parallel) of
the SRS preamplifier (with the source set to ‘A’), and
measure the RMS voltage V0 of the filter output using
the digitizing oscilloscope. The gain of the system at the
frequency of the test signal is g(f) = V0/Vi.

IMPORTANT: Turn on transients exist - set the in-
put coupling switches of the SRS preamplifier to GND
before turning on the device and before making any con-
nections to another device. Do not transfer from the
GND settings until after all connections are completed.

At the voltage preamplifier, the maximum input signal
in differential mode is 1V DC and 3VPP ≈ 1VRMS AC.
Do not exceed these values! Excessive common-mode

inputs can “turn on” low conduction paths at the input of
the preamplifier to protect the input circuits, and thereby
lower the input impedance.

The “roll-off” frequencies selectable from the front
panel indicate 3dB points in a 6 dB/octave roll off curve.
The output impedence of the preamplifier is 600Ω and
can produce a maximum of 10V pk-pk ahead of 600Ω.
Be careful about your terminations!
The SRS preamplifier has rechargable batteries which
‘trickle charge’ when the unit is plugged into the wall
(and very much slower when the unit is in the ON posi-
tion than when it is in the OFF position. You can use
this feature if you want; it may reduce extraneous noise a
bit. To operate from battery power, set the power switch
to ON, but do not plug in the line cord. Be sure to plug
in the line cord after your session is over to ensure that
the next group has a fully charged set of batteries!

Measure the variation of the test signal RMS
voltage and the gain of the measurement chain as
a function of frequency and produce a rough plot
in your lab notebook

Configure the function generator to output a sine wave
with an RMS amplitude of 20mV. Use the Kay 837 at-
tenuator with 26 dB (1/20) of attenuation to produce a
sinusoid in the millivolt range. Use a BNC tee to simul-
taneously send this signal into the digitizing oscilloscope
and into the ’A’ (AC-Coupled) input of the amplifier with
the source set to ‘A’.

The output of the amplifier should then be fed into the
band-pass filter. Before taking detailed measurements of
g(f), you’ll want to make sure that filter is behaving in
the way you expect it should. Spend a few moments vary-
ing the frequency of the function generator to observe the
behavior below 1kHz, above 50 kHz and in between.

Without touching the amplitude control of the function
generator, measure and record RMS voltages for both
Vi (out of the attenuator) and V0 (out of the band-pass
filter) over the range that will pass the filter (∼0.5kHz to
∼80kHz).

Plot [g(f)]2 against f as you go along to check the
consistency and adequacy of your data.

1. Set the oscilloscope to display both the Vi and V0 si-
nusoids. Use the oscilloscope Voltage measurement
options to measure the RMS voltage of each chan-
nel. The RMS of Vi should remain essentially con-
stant throughout the measurement of g(f). How-
ever, you will want to keep an eye on it during the
process of this measurement to ensure that this is
the case.

2. Turn on the bandwidth limit on for the channel
which is measuring Vi.

3. Make sure the inputs are set to AC coupling to elim-
inate any DC offset in the signals you are measur-
ing.
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FIG. 2: Block diagram of the electronic apparatus for measuring Johnson noise.
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FIG. 3: Block diagram of the electronic apparatus for calibrating the Johnson Noise experiment
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4. Press ‘DISPLAY’, and select ‘AVG 256’ (Note:
Later, when you take noise measurements, you
must select ‘normal’ instead of averaging since the
RMS voltage of the average of n random wave forms
approaches zero as n→∞. On the other hand, the
RMS voltage of the average of many wave forms
consisting of a constant sinusoid plus random noise
approaches the RMS voltage of the pure sinusoid.)

5. Adjust the digital scope amplitude and sweep-speed
controls so that several (∼5-10) cycles of the sinu-
soid appear on the screen.

To reduce errors of measurement and obtain an er-
ror assessment, you can make repeated measurements.
Record the Vrms and frequency displayed at the bottom
of the screen; repeat n times (e.g., n=5) at each setting.
For each setting, compute the mean Vrms, and the stan-
dard error of the mean (= σ√

n−1
).

Because the oscilloscope is in averaging mode, you will
want to wait several moments for transient signals to av-
erage out before taking a reading after changing the fre-
quency or adjusting anything on the scope. Wait until
you see that Vi and V0 have leveled off in their fluctua-
tions before pressing ’stop’ to take data.

NOTE: It is very important that you keep your mea-
surement chain in the same configuration for making
both gain curve and Johnson Noise measurements. Be
careful not to change any settings on the amplifier in be-
tween these two measurements (one helpful tip for mak-
ing sure the gain of the amplifier is consistent between
measurements taken on different days is to turn the red
’CAL’ knob all the way counter-clockwise until it clicks).

7.2. Measure V 2 for a variety of resistors

When you use the apparatus to measure the John-
son Noise across a resistor, about half the RMS volt-
age is noise generated in the amplifier itself. Interfer-
ence pickup may vary. Since all the contributions to the
measured RMS voltage are statistically uncorrelated,
they add in quadrature. To achieve accurate results
it is essential to make repeated measurements with each
resistor with the shorting switch across the conductor al-
ternately opened and closed. The measure of the mean
square Johnson noise is

V 2 = V 2
R − V 2

S (14)

where VR and VS are the RMS voltages measured with
the shorting switch open and closed, respectively.

Measure the Johnson noise at room temperature in
∼10 metal film and/or wire-wound resistors with values
from 104 to 106 ohms. Mount the resistors in the alliga-
tor clips projecting from the aluminum test box equipped
with a single-pole-single-throw (SPST) shorting switch,
a double-pole-double-throw (DPDT) routing switch, and

connections for a thermistor for use in the later temper-
ature measurement. Cover the resistor and its mounts
with a metal beaker to shield the input of the system
from electrical interference. After each noise measure-
ment measure the resistance of the resistor: plug a dig-
ital multimeter into the pin jacks on the aluminum box
and flip the DPDT switch on the sample holder to the re-
sistance measuring position. Before each noise measure-
ment, be sure to disconnect the multimeter (to avoid in-
troducing extraneous electrical noise) and flip the DPDT
switch back to the noise-measurement position.
Be thoughtful about how you are using the digitizing os-
cilloscope to measure the RMS voltages for VR and VS.
Again, you should use AC coupling to eliminate any DC
offset. Also, you will need to be intentional about both
the time and voltage scales that you choose. The range
of voltages the scope is able to digitize is the range shown
on the screen so you will want to fill the screen without
cutting the max/min off. Be sure not to choose too small
a vertical range and in the process cut off your signal!

Keep in mind, that you will want to use only one set-
ting of the voltage scale for all your measurements of VR
and VS for all resistors that you sample. To make sure
you have an appropriate setting, you might want to look
at VR for your highest value of resistance first. As for
the time axis, a setting in the range of 500µs to 5ms per
division should work well.

A good way to determine the appropriate scale for a
given resistor is to set the scope to measure Vmax, take
several readings of this value and make sure it is well
contained (≤75%) in the total range currently displayed.
You can also do this visually by looking for the smallest
scale that appears to contain all the noise fluctuations
within the first three out of the four divisions above or
below the baseline.

Values of VS should remain essentially constant over
all values of resistance. However, subtle changes in your
experimental configuration or procedure could cause VS
to fluctuate. For instance, even the orientation of one
of your cables or whether or not you are touching the
cable can yield different results in your measurements.
Strive to keep things as consistent as possible throughout
a particular series of measurements. Additionally, it is a
good idea to keep an eye on VS and record its value each
time you measure VR.

As during your calibration measurements, you will
want to repeat each measurement at least five times to
reduce random errors and obtain an error assessment for
your measurements.

According to equation 12, the value of Boltzmann’s
Constant, k, can be expressed in terms of measured quan-
tities and G, which is a function of R and C:

k =
V 2

4RTG
(15)

So in order to calculate k from your measurements of
the Johnson Noise, you will also need to measure the ca-
pacitance, C, seen by the resistor. The SRS preamplifier
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has an input capacitance of 25pF. With this knowledge
in hand, you will still need to determine the capacitance
contributed by the switching box and the cables connect-
ing it to the amplifier. Alternatively, you could simply
measure the capacitance of all these components and the
amplifier simultaneously.

A BK Precision 875A LCR Meter is provided for this
purpose. First use it to measure some known capacitance
by inserting a plain capacitor directly. Once you have
convinced yourself that the meter is functioning properly
and that you know how to read it, devise a way to mea-
sure the same capacitance that the resistor sees.
Remember, capacitance is determined by the geometry
of the conductors and dielectrics in the circuit so it is
very important to have things in the exact same configu-
ration for this measurement as you did for measurements
of the Johnson Noise. Also be aware that any cables you
use to connect the LCR meter to measurement chain will
contribute their own capacitance.

Be sure to make an assessment of the uncertainty in
your measurement of C. Calculate values of k for several
values of C based on this uncertainty. You will have
uncertainty associated with the the quantities V 2, R, and
C. You will need to propagate these errors in order to
determine your uncertainty in k.

The factor G must be recalculated by numerical inte-
gration for each new trial value of R and C. In principle,
if you use the correct value of C in your calculations of
G, then the values of k obtained from Equation 15 should
cluster around a mean value close to the value for R→ 0
and should not vary systematically with R. Using the
best values of k and C derived in this way, you can plot
experimental and theoretical curves of V 2/R against R
for comparison.
Question: What happens as R→∞?

7.3. Measure Johnson noise as a function of
temperature

Measure the Johnson noise in a resistor over a range
of temperatures from that of liquid nitrogen (77 K) to
∼ 150◦C. Clip a resistor to the alligator clips and invert
the assembly into a dewar filled with liquid nitrogen. Ask
a technical instructor for help in dispensing the nitrogen
and make sure to wear eye protection and gloves.

To make a high temperature measurement, invert the
assembly into the cylindrical oven, heated by a variac
supply set to ∼40 VAC. Note, it will take some time for
the temperature to equilabrate and stabilize within the
oven. You can take advantage of this slow process to
measure the resistance, the RMS voltages of the John-
son noise and the background as the temperature rises.
Try to disturb the setup as little as possible to prevent
the loss of heated air and a subsequent change in the
resistors temperature. Use the delicate glass immersion
thermometer (range = 0-250◦C) to monitor the temper-
ature of the air bath. Do not allow the temperature

of the oven to exceed 150◦C as this can damage
the wire insulation within the probe.

According to the Nyquist theory the points represent-
ing the measured values of V 2/4RG plotted against T
(◦C degrees) should fall on a straight line with a slope
equal to the Boltzmann constant, and an intercept on
the temperature axis at the centigrade temperature of
absolute zero. Note that if the resistance of the conduc-
tor varies significantly with temperature, then G must
be evaluated separately at each temperature, i.e. the
integral of Equation 13 must be evaluated for each sig-
nificantly different value of the resistance.

1. Make a plot of V 2/4RG against T (in ◦C degrees).

2. Derive a value and error estimate of k from the
slope of the temperature curve.

3. Derive a value and error estimate of the centigrade
temperature of absolute zero.

8. SHOT NOISE

A current source in which the passage of each charge
carrier is a statistically independent event (rather than a
steady flow of many charge carriers) necessarily delivers
a “noisy” current, i.e., a current that fluctuates about an
average value. Fluctuations of this kind are called “shot
noise”. The magnitude of such fluctuations depends on
the magnitude of the charges on the individual carriers.
Thus a measurement of the fluctuations should, in prin-
ciple, yield a measure of the magnitude of the charges.

Consider a circuit consisting of a battery, a capacitor
in the form of a photo-diode, a resistor, and an induc-
tor, connected in series as illustrated in Figure Ca. Il-
lumination of the photo-diode with an incoherent light
source causes electrons to be ejected from the negative
electrode in a random sequence of events. Each ejected
photo-electron, carrying a charge of magnitude e, is ac-
celerated to the positive electrode and, during its passage
between the electrodes it induces an increasing current in
the circuit, as shown in Figure Cb.

When the electron hits the positive plate the current
continues briefly due to the inductance of the circuit and
a damped oscillation ensues. The shape of the current
pulse depends on the initial position, speed and direc-
tion of the photo-electron as well as the electrical char-
acteristics of the circuit. The integral under the curve
is evidently the charge e. If the illumination is strong
enough so that many events occur during the duration
of any single electron pulse, then the current will appear
as in Figure 5, in which the instantaneous current I(t)
fluctuates about the long-term average current Iav.

In this part of the experiment you will measure, as
a function of Iav, the mean square voltage of the out-
put of an amplifier and a band-pass filter system whose
input is the continuously fluctuating voltage across RF .
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FIG. 4: (a) Schematic diagram of a circuit in which the cur-
rent consists of a random sequence of pulses generated by the
passage of photoelectrons between the electrodes of a photo-
diode. (b) Schematic representation of the current pulse due
to the passage of one photo-electron.

T

t

I(t)

Iav = ke

FIG. 5: Plot of a fluctuating current against time with a
straight line indicating the long-term average current.

According to the theory of shot noise, a plot of this quan-
tity against the average current should be a straight line
with a slope proportional to e. The problem is to figure
out what the proportionality factor is.

8.1. THEORY OF SHOT NOISE

The integral under the curve of current versus time
for any given pulse due to one photo-electron event is
e, the charge of the electron. If the illumination is con-
stant and the rate of photoelectric events is very large,
then the resulting current will be a superposition of many
such waveforms ik(t) initiated at random times Tk with
a “long term” average rate we will call K, resulting in
a fluctuating current with an average value Iav = Ke,
as illustrated in Figure 5. The fluctuating component
of such a current was called “shot noise” by Schottky in
1919, who likened it to the acoustic noise generated by a
hail of shot striking a target.

The fluctuating current is

I(t) = Σkik(t) (16)

and its mean square during the time interval T is

〈I2〉 =
1

T

∫ T

0
[Σkik(t)]2dt (17)

The problem is to derive the relation between the mea-
surable properties of the fluctuating current and e. Al-
though the derivation is somewhat complicated (see Ap-
pendix C), the result is remarkably simple: within the
frequency range 0 < f � Iav

e , the differential contri-
bution to the mean square of the total fluctuating cur-
rent from fluctuations in the frequency interval from f to
f + df is (see Appendix B)

d〈I2〉 = 2eIavdf (18)

Suppose the fluctuating current flows in a resistor of
resistance RF connected across the input of an amplifier-
filter combination which has a frequency-dependent gain
g(f). During the time interval T , the voltage developed
across the resistor, IRF , can be represented as a sum
of Fourier components with frequencies m/2T , where
m = 1, 2, 3, ..., plus the zero frequency (DC) component
of amplitude IavRF . Each component emerges from the
amplifier-filter with an amplitude determined by the gain
of the system for that frequency. The mean square of
the sum of Fourier components is the sum of the mean
squares of the components (because the means of the
cross terms are all zero). Thus, in the practical limit of
a Fourier sum over closely spaced frequencies, we can ex-
press the mean square voltage of the fluctuating output
signal from the amplifier-filter as the integral

V 2
0 = 2eIavR2

F

∫
0

[g(f)]2df + V 2
A (19)

where V 2
A has been added to represent the constant

contributions of the amplifier noise, and Johnson Noise
in RF , to the total mean square voltage, and where the
DC term is omitted because the DC gain of the amplifier-
filter is zero.

To get a feel for the plausibility of the shot noise for-
mula one can imagine that the current in the photo-
diode circuit is a step function representing the amount
of charge ne released in each successive equal time inter-
val of duration τ divided by τ , i.e., the mean current in
each interval neτ . The expectation value of n is 〈n〉 = Kτ .
We assume there is no statistical correlation between the
numbers of events in different intervals. According to
Poisson statistics the variance of n (mean square devia-
tion from the mean) is the mean, i.e.,

〈(n− 〈n〉)〉2 = 〈n2〉 − 〈n〉2 = 〈n〉 = Kτ (20)

It follows that the mean square value of the current over
time would be

〈I2〉 = 〈
(ne
τ

)2

〉
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=
( e
τ

)2

〈n2〉

=

(
e

τ

)2[
〈n〉+ 〈n〉2

]
=

eIav
τ

+ I2
ave (21)

which shows that the fluctuating term is proportional to
eIav as in the exact expression for the differential contri-
bution, Equation 18.

Actually the current at any given instant from an il-
luminated photo-diode is the sum of the currents due to
the photoelectrons ejected during the previous brief time
interval. Thus the currents at any two instants separated
in time by less than the duration of the individual pulses
are not statistically independent. Moreover, the simple
scheme provides no handle on the frequency spectrum of
the noise which one must take into account in evaluating
the response of the measurement chain. One approach to
a rigorous solution is presented in Appendix B. Others
are possible.

9. SHOT NOISE EXPERIMENTAL
PROCEDURE

The procedure has three parts:

1. Calibration of the gain of the measurement chain
as a function of frequency;

2. Measurement of the mean square noise voltage at
the output of the measurement chain as a function
of the average current in the diode circuit as it is
varied by changing the intensity of illumination.

3. Calculation of the charge of the photoelectrons.

9.1. CALIBRATION OF THE MEASUREMENT
CHAIN

Figure 7 is a block diagram of the electronic appara-
tus, and Figure 6 is a diagram of the diode circuit and
preamplifier. The current I(t) in the photo-diode circuit
is converted to a voltage V = IRF at the point indicated
in Figure 6 by the operational amplifier with precision
feedback resistors in the first stage of the preamplifier
inside the photodiode box. This voltage is filtered to re-
move frequencies <100 Hz and is fed to the second stage
where it is amplified by a factor of ∼10. The output
signal is further amplified by the filtering preamp, then
filtered by the 8-pole bandpass filter, before being mea-
sured by the RMS voltmeter.

There are two methods for measuring the output signal
from the photo-diode box. The first is a digital oscillo-
scope; it gives a qualitative view of the signal, useful for

debugging, and can perform signal averaging. This is use-
ful for the calibration phase, but averaging the shot noise
would be counterproductive. If you choose to measure
the noise with this method, make sure to put the oscil-
loscope trigger to “auto” and move the trigger threshold
above the signal to avoid a skewed data set. The Agilent
oscilloscopes in lab have a measurement accuracy of at
most 3 digits, which is a bit low. The second method uses
multimeters. Multimeters allow you to select the AC or
DC part of the signal. The big advantage is the number
of digits given: the Agilent multimeters have 6 1

2 digits,
giving better measurement precision. A combination of
the two methods is also useful.

The photo-diode box has a test input for calibration of
the overall gain of the measurement chain as a function of
the frequency. The typical shot noise RMS voltage across
the precision resistor RF is of the order of 10 microvolts.
Since the gain of the circuit in the photo-diode box is
∼10, a gain of 100 in the amplifier will yield a total gain
of 103 and bring the signal in the pass band of the filter
up to the ∼10 millivolt level that can be readily mea-
sured by the digitizing oscilloscope. As in the Johnson
noise calibration, you can determine the effective gain of
the amplifier-filter system as a function of frequency by
feeding a millivolt sinusoid signal of measured RMS volt-
age from the function generator into the test input of the
phototube box and measuring the RMS voltage of the
signal out of the filter.

9.1.1. Calibration

Select the sine wave output of the function generator,
set the the RMS voltage to ∼20 mV, and feed the signal
directly to the digitizing oscilloscope. Without touching
the amplitude control on the function generator, measure
the RMS voltage for several frequencies over the range of
the filter band pass and plot the result so you have a
handy data base for the subsequent gain measurements.

Measure the gain of the measurement chain as a func-
tion of frequency. Make sure the photo-diode voltage is
switched off so that it behaves as an open circuit with no
photoelectric current. Switch on the amplifier voltage on
the photo-diode box. Feed test signals of various frequen-
cies into the ‘test input’ and measure the RMS voltage at
the output of the bandpass filter. Experiment with the
scope settings to obtain higher precision results. Plot
the values of g2 as you go along to assess where you need
more or less data to define accurately the gain-squared
integral.

9.2. MEASUREMENT OF THE AVERAGE
CURRENT AND THE CURRENT NOISE

Remove the cable from the test input and cover the
input plug with the cap provided to short the input to
ground. This creates a path for current to travel from
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FIG. 6: Diagram of the photo-diode and preamplifier circuit.

To oscilloscope when measuring shot noise
To "test in" when measuring the gain versus frequency

Function
Generator

Box
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Filter

 

Photodiode

 test-in
variable
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source

Filtering
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Multimeter
(DC)

RMS AC
Measurement

FIG. 7: Block diagram of the experimental arrangement for
measuring shot noise.

ground, through the resistor, into the illuminated diode.
Set the multimeter to measure DC voltage and plug it
into the “first stage output” to measure the voltage RF I.
Leave the rest of the measurement chain just as it was
when you calibrated it.

There are two banana plug ports to measure the cur-
rent to the light bulb. It is a good idea to check the
current before you start. The current should change as
you adjust the potentiometer knob, but make sure that
the current does not exceede 300 mA to avoid damag-
ing the light bulb. If the switch is on and there isn’t a
change in current as you twist the knob, the light bulb
or the batteries are probably dead. Once you finish with
this check, it is a good idea to short the two ports to
reduce extraneous noise.

Record the RMS voltage from stage 2 and the DC volt-
age from stage 1 for various settings of the light bulb
knob. Many repeated measurements at each light inten-
sity will beat down the random errors.

10. ANALYSIS

Plot V 2
0 as a function of the combined quantity

2R2
F Iav

∫ ∞
0

g2(f)df (22)

From the slope of this line determine the charge on the
electron.

10.1. Possible Theoretical Topics

• The Nyquist theorem.

• Shot noise theory

Some useful references for this lab include [4–8].

11. EQUIPMENT LIST

Manufacturer Description URL

Agilent Oscillocope and Multimeters agilent.com

SRS SR560 Preamplifier thinksrs.com

Kron-Hite 8-Pole Band-Pass Filter kron-hite.com

Kay Precision Attenuator
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Appendix A: A Mechanical Experiment to
determine k

Before turning to a detailed consideration of the John-
son noise experiment, it is amusing to consider the pos-
sibility of a mechanical determination of k with a macro-
scopic system having one degree of freedom, namely a
delicate torsion pendulum suspended in a room in ther-
mal equilibrium (i.e. no drafts, etc.) at temperature
T . The degree of freedom is the angular position θ with
which is associated the potential energy 1

2κθ
2. Accord-

ing to the equipartition theorem (see below), the mean
thermal potential energy is

1
2
κ〈θ2〉 =

1
2
kT (A1)

where κ is the torsion constant of the suspension, and
〈θ2〉 is the mean square angular displacement of the pen-
dulum from the equilibrium orientation. Thus, in princi-
ple, by measuring 〈θ2〉 over a time long compared to the
period, one can determine k. To judge what this might
require in practice, imagine a torsion balance consisting
of a tiny mirror (for reflecting a laser beam) suspended
by a 0.5 mil tungsten wire 10 feet long. Such a suspen-
sion has a torsion constant of the order of 10−3 dyne cm
rad−1. According to Equation A1, at 300 K the value
of 〈θ2〉1/2, i.e. the RMS value of the angular deflection,
would be about 1 arc second. Such an experiment might
be possible, but would be exceedingly difficult.

Appendix B: DERIVATION OF THE RMS
THERMAL VOLTAGE AT THE TERMINALS OF

AN RC CIRCUIT

Figure B shows the circuit equivalent to the resistor
and coaxial cables that are connected to the PAR pream-
plifier for the measurement of Johnson noise. The equiv-
alent circuit consists of a voltage source of the fluctuating
thermal emf V in series with an ideal noiseless resistor of
resistance R and a capacitor of capacitance C. According
to Faraday’s Law, the integral of the electric field around
the RC loop is zero, so

V = IR+
Q

C
(B1)

According to charge conservation (from Ampere’s Law
and Gauss’ Law), the current into the capacitor equals
the rate of change of the charge on the capacitor, so

I =
dQ

dt
(B2)

We seek an expression in terms of d〈V 2〉, R, and C for
the contribution to the RMS voltage across the terminals
in a narrow frequency range, i.e.

d〈V 2〉 = d〈Q2〉/C (B3)

Consider one Fourier component of the fluctuating ther-
mal emf across the resistor, and represent it by the real
part of νJ = ν0ejωt, where j =

√
−1. The resulting

current is the real part of i = i0ejωt, the charge on the
capacitor is the real part of its integral q = −(j/ω)i, and
the desired output voltage is the real part of q

C = −( j
ωC i).

Substituting the expressions for i and q into Equation B1
and canceling the time-dependent terms, we find

ν0 = (R− j

ωC
)i0 (B4)

Solving for i0 we obtain the relation

io =
ν0

R− j
ωC

(B5)

so

ν′J =
q

C
= −(

j

ωC
)i =

−jνJ
ωRC − j

(B6)

The statistically independent contribution which this
mode gives to the measured total mean square noise volt-
age is the square of its amplitude which we find by mul-
tiplying ν′J by its complex conjugate:

〈ν′2J〉 =
〈ν2
J〉

1 + (ωRC)2
(B7)

Summing all such contributions in the differential fre-
quency range df, we obtain

〈dV 2〉 = 4RfkTdf (B8)

where

Rf =
R

1 + (2πfRC)2
(B9)
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Appendix C: DERIVATION OF THE SHOT NOISE
EQUATION

Following is an abbreviated version of the shot noise
theory given by Goldman (1948). We begin by expressing
the current in the photodiode circuit due to a single event
that occurs at time Tk, like that depicted in Figure Cb,
as a Fourier series over a long time interval from 0 to T .
Calling this current pulse i(t − Tk) we represent it as a
Fourier series:

i(t−Tk) =
a0

2
+
∞∑
n=1

(
an cos

2πnt
T

+ bn sin
2πnt
T

)
(C1)

where

a0 =
2
T
×
∫ T

0

i(t− Tk)dt =
2e
T

(C2)

an =
2
T
×
∫ T

0

i(t−Tk) cos
2πnt
T

dt =
2e
T

cos
2πnTk
T

(C3)

bn =
2
T
×
∫ T

0

i(t−Tk) sin
2πnt
T

dt =
2e
T

sin
2πnTk
T

(C4)

with i(t− Tk) = eδ(t− Tk).
The area under the curve in Figure Cb is the charge e

of one electron; it represents the “impulse” of the shot,
and is accounted for in the Fourier representation by
the lead term in the series whose coefficient is given
by Equation C2. To justify Equations C3 and C4 in
the context of the present experiment we note that the
gain of the amplifier-filter system used in this measure-
ment is different from zero only for frequencies such that
f = n/T � 1/τ . Consequently we can confine our cal-
culation of the Fourier coefficients to those for which
nτ � T . It follows that the cos and sin factors in
the integrands of equations C3 and C4 do not vary
significantly over the range of t in which i(t− Tk) differs
from 0, and that they can therefore be taken outside their
integrals with their arguments evaluated at the instant
of the event. In other words, the function representing
the current impulse of a single event acts like a delta-
function. Substituting the expressions for a0, an, and bn
from equations C2, C3, and C4 into C1 we obtain

i(t− Tk) =
e

T
+

2e
T

∞∑
n=1

cos
[2πn(t− Tk)

T

]
. (C5)

We suppose now that many such events pile up to pro-
duce the total current at any given instant. We seek a
way to add the currents due to the individual events to
obtain the differential contribution d〈I2

0 〉 in the frequency
interval df to the mean square of the sum. We use the
well known fact that the mean square of the sum of all
the Fourier components is the sum of the mean squares
of the individual components (the mean values of the

cross-frequency terms in the squared Fourier series are
all zero). The quantity d〈I2

0 〉 is therefore the sum of the
mean squares of the individual contributions in the fre-
quency range df . To evaluate it we first focus attention
on the nth Fourier component which we represent by

cn cos

(
2πnt
T
− φn

)
(C6)

to which the kth event contributes the quantity

2e
T

cos

(
2πn(t− Tk)

T

)
(C7)

The mean square value of the nth component is c2n
so our immediate problem is to evaluate the quantity c2n.
Since the events occur at random times from 0 to T , their
contributions to the nth component have random phases
which are distributed uniformly from 0 to 2π. Conse-
quently, we must add them as vectors. To do this we
first group them according to their phase. The expected
number with phases between φ and φ+ dφ is dφ

2πKT .

q =
dφ

2π
KT (C8)

Combining this with equations C6 and C7, we find that
the average value of the sum of the contributions with
phase angles in the range from φ to φ+dφ for the Fourier
component of frequency n/T is

dφ

2π
KT

2e
T

cos

(
2πnt
T
−φ

)
=
Ke

π
cos

(
2πnt
T
−φ

)
(C9)

We now represent each one of the preliminary sums
given by equation C8 by a differential vector in a two
dimensional phase diagram. Added head to tail in order
of increasing phase, these vectors form a closed circular
polygon of many sides. If instead of the exact expected
numbers of events contributing to each differential vector,
we use the actual numbers q1, q2, ....., then, in general,
the polygon will not quite close due to statistical fluctua-
tions in these numbers. The line segment that closes the
gap is the overall vector sum for this particular Fourier
component. It will have a random direction and a tiny
random length that represents the net effect of the fluctu-
ations. Its x and y components will have zero expectation
values, but finite variances (mean square values). Each
contribution to the total x component is a number of
events that obeys a Poisson distribution with a variance
equal to its expectation value. By a well known theorem
of statistics (used frequently in error analysis), the vari-
ance of the sum is the sum of variances. Thus the mean
square of the x component of the vector representation
of the nth Fourier component is

4e2

T 2
(q1 cos2 φ1 + q2 cos2 φ2 + ...) =
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=
4e2

T 2

KT

2π

∫ 2π

0

cos2 φdφ

=
2e2K
T

(C10)

The mean square of the y components has the same
value. And since the vector itself is the hypotenuse of
the right triangle formed by the x and y components,
the mean square of its length is the sum of the mean
squares of the two components. Thus

〈c2n〉 =
4e2K
T

(C11)

and it follows that the contribution of the nth Fourier
component to d〈I2

0 〉 is 〈C
2
n〉
2 = 2e2K

T . The frequency of
the nth component is f = n/T , so the number of Fourier
components corresponding to a frequency bandwidth df
is dn = Tdf . Therefore the contribution to the mean
square value of the sum of the Fourier components in the
frequency range df is

d〈I2
0 〉 =

2e2K
T

Tdf = 2e2Kdf (C12)

The average current due to the many events is Iav = Ke.
Thus the final expression for the differential contribu-
tion to the mean square of the fluctuating component of
the current from the differential frequency interval df is
just that given by Equation 18 from which follows Equa-
tion 19, the desired formula for the relation between mea-
sured quantities and e.

Appendix D: Alternative Shot Noise Explanation -
contributed by Seth Dorfman

Consider a photodiode circuit where current is pro-
duced by a light source that causes individual electrons
to be emitted from the cathode. Each photoelectron will
produce a current pulse whose area is the unit of electric
charge. Since the total current is a superposition of cur-
rents produced by discrete events, the current produced
will not be completely constant. The varying component
of this current is known as shot noise. It was first cata-
loged by W. Schottky in a 1918 paper [6].

To derive a quantitative expression that may be used to
analyze this phenomena, consider a single current pulse
Gn(t − Tn) produced by a single electron striking the
anode. The pulse has a narrow width between t = Tn
and t = Tn + ∆t. Following Goldman [6], the pulse may
be approximated as an impulse and expanded in a Fourier
series in the interval from 0 to T:

Gn(T − Tn) =
e

T
+

2e
T

∞∑
m=1

cos
2πm(t− Tn)

T
(D1)

The first term in the expansion is the DC current for a
single electron event; the series term makes up the fluc-
tuating component. The total current from many events

may also be expanded in a Fourier representation. A sin-
gle frequency component of this sum is made up of a sum
of contributions from the Gnm = 2e

T cos 2πm(t−Tn)
T term

in each Gn(t− Tn). However, since Tn may be anywhere
in the interval from 0 to T, the phases of these compo-
nents will be randomized. In other words, the compo-
nents of the total current may be though of as vectors of
the same magnitude, but with all possible phases.

A convenient analogy is unpolarized light passing
through a linear polarizer. In that case, the randomized
cos2 φ contribution to the intensity averages out such that
the final intensity is half of the initial intensity. Similarly,
the mean square of the contribution of each Gnm to the
total current at a given frequency m

T is:

〈Gnm2〉 = (
2e
T

)2〈cos2φnm〉 =
2e2

T 2
(D2)

Now, let K equal the number of pulses Gn(t− Tn) per
second. The total number of pulses in the interval from
0 to T in any given time is then KT. Thus the sum of
〈Gnm2〉 over all pulses n is 2e2

T 2 KT = 2e2K
T . This is the

mean square of the total current at a given frequency.
Since the frequency is given by F = m

T , there are T∆F
frequencies in a given frequency band. Thus the root
mean square current within a given frequency interval is
given by:

I2
RMS =

2e2

T 2
(KT )(T∆F ) = 2e2K∆F (D3)

Here eK represents the average current. This relation
will be explored further in the experiment.


