
Harmonic Effects of Space Vector Modulation
on Induction Motor Performance

Jennifer Vining

Dept. of Electrical and Computer Engineering
1415 Engineering Drive

Madison, WI 53706

 Abstract – This project explores the impact of applying a
variety of space vector modulated voltage waveforms – a type of
pulse width modulation – to the stator of a squirrel-cage
induction machine with a focus on the frequency spectra of the
resulting voltage, current, and torque waveforms. Four
different space vector modulation (SVM) algorithms are
investigated: conventional continuous SVM with the active
vectors centered in each half-carrier cycle, and 30º, 60º, and
120º discontinuous SVM. The effects on the squirrel-cage
machine are studied for both rated operation and
overmodulation.

I. INTRODUCTION

 The problem posed is to find the ripple and harmonic
frequency content of squirrel-cage induction machine
characteristics (i.e. current, torque, rotor speed, and voltage)
when various space vector modulation (SVM) algorithms are
applied to the stator voltage. The 30º, 60º, and 120º
discontinuous modulation techniques as well as continuous
SVM with active pulses centered in each half-carrier cycle
were implemented using basic SVM theory from [1]. The
theory is described in Section II. Matlab and Simulink
provided the programming environment to develop these four
SVM algorithms, and all the documented Matlab code and
Simulink simulation material may be found in the appendix.

II. SPACE VECTOR MODULATION IMPLEMENTATION

 This project instigates four space vector modulation
algorithms – conventional with active vectors placed in the
middle of the half-cycle of the carrier and the 30º, 60º, and
120º discontinuous modulation algorithms. Theory telss us to
expect the conventional SVM to outperform the
discontinuous modulation algorithms with respect to
unwanted harmonic content and ripple. One may question
the use of discontinuous modulation when faced with this
fact. The reason to use discontinuous modulation is to
decrease the switching losses through the transistors by
periodically clamping one of the three phases to a rail to
produce a zero vector. The decrease in switching losses
associated with discontinuous modulation allows the system
to utilize a higher carrier / switching frequency. However,
this analysis only uses one carrier frequency, fc = 15 kHz.
The carrier frequency governs the period in which
modulation / switching of the inverter gates occurs.

 We want the amplitude of our stator voltage, Vs, to be
460*sqrt(2/3) Vln on each phase for rated operation. This
means by virtue of the inverter circuit in Fig. 1 and space
vector modulation theory that the DC input to the inverter
must be

)3πsin(
1

2
3

sin VV = , (1)

assuming that the magnitude of each space vector is (2/3)Vin.
This relation is due to the limit of averaging the two nearest
space vectors at phases

∑
=

+=
6

1
k 3

π
6
πθ

k

k . (2)

With the input voltage as defined in (1), the peak inverter
output voltage at each phase θk cannot exceed 460*sqrt(2/3).
 The voltage source inverter is modeled with ideal switches
(e.g. Ta1, Ta2, Tb1, Tb2, Tc1, Tc2) and an infinitely stiff voltage
source at the inverter input terminals. Ideal switch operation
assumes no conduction or switching losses in the transistors,
and the stiff input voltage requires the capacitance, Cin, across
the inverter input terminals to be infinite. The inverter is
pictured in Fig. 1 below.

+

−
inv inC asv bsv csv

1aT

2aT 2bT

1bT 1cT

2cT

Fig. 1. Ideal three phase inverter

 The underlying theory behind space vector modulation is
to apply space vectors as illustrated in Fig. 2 for varying time
periods in a pattern based on the SVM algorithm. Six space
vectors can be obtained in a three phase system through six
different combinations of open and closed switches in the
inverter shown in Fig. 1. Only one switch may be closed per
phase leg in order to prevent a short circuit. The space
vectors represent the complex d-q voltage applied to the
stator.

Fig.2. Space vector d,q-axis locations and their

corresponding closed switches

A. Summary of how to apply active vectors

 The method of choosing active vectors is the same
regardless of which SVM algorithm is used. Basically, a
command voltage with the desired magnitude and phase is
compared to all the space vectors – in this project, the
magnitude and phase of the command voltage were sampled
at the beginning of each carrier half-cycle. Two space
vectors with phases closest to the phase of the command
voltage are chosen. Application of a combination of these
space vectors and the zero vector represent the command
voltage. The active vectors are applied for a prescribed time
period within each half cycle of the carrier based on an
averaging effect that effectively yields the correct voltage
phase and magnitude. The active times for each space vector
are derived in [1] using a geometric relation which places a
limit on the output voltage. This limit is based on the fact
that the combined active times of each space vector may not
exceed half of the carrier period. Manipulation of this
relation yields the following equations for the space vector
active times within the carrier half-cycle with a command
voltage . cmdcmdV θ∠

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

=

3
πsin2

θ
3
πsin

)(

inc

cmdcmd

nSV
Vf

V
t (3)

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=+

3
πsin2

3
πsin

)1(

inc

cmd

nSV

Vf

V
t (4)

The first time, , corresponds to the space vector whose
phase angle is smaller.

)(nSVt

 Once the active times are identified, the only part left is to
identify the placement of the zero vectors. The position of
the zero vectors in the carrier half-cycle will influence the
harmonic content of the voltage waveform which in turn will

affect machine performance. Each of the four SVM
algorithms implemented uses a different zero vector
arrangement.

d-axis

q-axis

SV4 = Ta2Tb1Tc1

SV3 = Ta2Tb1Tc2

SV5 = Ta2Tb2Tc1 SV6 = Ta1Tb2Tc1

SV1 = Ta1Tb2Tc2

SV2 = Ta1Tb1Tc2

SV0 = Ta2Tb2Tc2
SV7 = Ta1Tb1Tc1

B. Summary of modulation techniques chosen

 All of the discontinuous modulation strategies work by
eliminating one of the zero vectors, causing the active space
vectors in two successive half carrier intervals to join
together. The 120º discontinuous modulation algorithm is the
most basic of the discontinuous modulation strategies. This
algorithm operates by sequentially clamping one phase leg to
the upper or lower DC rail for one-third of the fundamental
cycle. If the upper DC rail is chosen as the clamp, the SV0
vector is eliminated, but if the lower DC rail is used to clamp,
the SV7 vector is eliminated from the SVM algorithm. Since
the effect of either method is similar, this project only
implements the 120º discontinuous modulation which clamps
to the lower DC rail.
 Both the 30º and 60º discontinuous modulation strategies
work by alternately eliminating the zero space vectors SV0
and SV7. There is only one type of 30º discontinuous
modulation which is essentially a variant of 60º discontinuous
modulation. These methods clamp all the phase legs to the
opposite DC rails in each 60º segment so as to switch
between the SV0 and SV7 zero vectors in each 60º segment.
Clamping occurs in the 60º intervals between voltage peaks.

There are three different ways of realizing 60º
discontinuous modulation: 30º lagging clamp, 30º leading
clamp, and 0º clamp. The clamp phase offset relates to where
the non-switching periods of each phase leg are positioned
relative to the fundamental (command) voltage waveform
peaks. Each method calls for a successive inverter phase leg
to be unmodulated for 60º of the fundamental, alternating
between clamping to the lower (SV0) or upper (SV7) DC rail
of the inverter. The 30º lagging, 60º discontinuous
modulation strategy was chosen because it is best suited for a
system with a lagging power factor of 0.866, which is close
to that of our induction machine.

The pulse width modulation technique is regularly sampled
since the voltages are implemented as discrete time
waveforms. As mentioned previously, the command voltage
magnitude and phase is sampled at the beginning of each
half-carrier cycle. A look-up table is developed to store the
active times for the two space vectors in any one of the six
60º segments. This is applied to each of the four space vector
modulation algorithms which were implemented as discretely
sampled waveforms using Matlab. The code to develop these
waveforms is included in the appendix.

()

()

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

qr

dr

qs

ds

B

qr

dr

qs

ds

lr

m

lr

rB
r

lrls

mrB

r
lr

m

lr

rB

lrls

mrB

lrls

msB

ls

m

ls

sB

lrls

msB

ls

m

ls

sB

qr

dr

qs

ds

v
v
v
v

X
X

X
r

XX
Xr

X
X

X
r

XX
Xr

XX
Xr

X
X

X
r

XX
Xr

X
X

X
r

ω

ψ
ψ
ψ
ψ

1ωωωω0

ωω1ω0ω

ω01ωω

0ωω1ω

ψ
ψ
ψ
ψ

**

**

**

**

&

&

&

&

 (5)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

qr

dr

qs

ds

lr

m

lrlrls

m

lr

m

lrlrls

m

lrls

m

ls

m

ls

lrls

m

ls

m

ls

qr

dr

qs

ds

X
X

XXX
X

X
X

XXX
X

XX
X

X
X

X

XX
X

X
X

X

i
i
i
i

ψ
ψ
ψ
ψ

1100

0110

0110

0011

**

**

**

**

 (6)

(dsqsqsdse iiPT λλ
4

3
−=) (7)

(Ler TT)
J

P
−=

2
ω& (8)

III. INDUCTION MACHINE MODEL

 A squirrel-cage induction motor whose equivalent circuit is
pictured in Fig. 3 is used in this simulation. The state space
model represented in (5) and the accompanying equations (6)
– (8) were used to simulate the performance of such a motor.
Table II defines the variables used in these equations. Values
of the machine parameters can be found in the appendix
along with a Simulink model of the induction machine. All
calculations were carried out in the stator / stationary
reference frame using flux voltages as the state variable.
 The Simulink model imports the SVM voltage waveforms
from Matlab’s workspace since the voltage waveforms were
created by the Matlab script listed in the appendix rather than
in the Simulink model itself.

Fig. 3. The d,q equivalent three phase squirrel-cage

induction machine circuit

TABLE I

MACHINE VARIABLE DEFINITIONS

Machine Variables

mlrls XXX ,, Stator, rotor, and magnetizing machine
impedances (Ω)

()mlrlsm XXXX =* Parallel combination of impedances (Ω)

rs rr , Stator and rotor resistances (Ω)

Le TT , Electromechanical and load torque (N·m)

P Number of machine poles

J Machine inertia (kg·m2 = N·m·s2)

dsqsqds jλλλ −= Stator d,q flux (V·s)

dsqsqds jiii −= Stator d,q current (A)

dsqsqds
jψψψ −= Stator d,q flux voltage, []λωψ B= , (V)

dsqsqds jvvv −= Stator d,q voltage (V)

ω,ω,ω Br Rotor, base (rated), and reference frame
frequency (rad/s)

IV. RESULTS

 The following two sub-sections describe the ripple and
harmonic effects of space vector modulation (SVM) on
several machine parameters such as the torque, current, and
voltage. The first sub-section deals with effects at rated
operation while the second evaluates the effects of
overmodulated operation.

sr rr−++− lsL lrL
() qdrr λω-ωqdsi qdriqdsλω

+

−
qdsv 0=

+

−
qdrvmL

A. Rated operation

 Table II below lists the steady-state torque, rotor speed,
and stator phase a current and voltage in the synchronous
reference frame. These values were calculated from the
machine equations in Section II with a pure 60 Hz sinusoidal
voltage applied to the stator. It is assumed that the stator
voltage peak is aligned with the q-axis of the synchronous
reference frame. The steady state solution in Table II occurs
at rated operation and provides us with a basis for comparison
between the SVM methods. The appendix contains
documented Matlab code used to evaluate the steady state
solution.

TABLE II
RATED STEADY-STATE VALUES WITH PURE 60 Hz SINUSOIDAL EXCITATION

 The following two figures illustrate continuous SVM on
stator phase a in the stationary reference frame as compared
to a purely sinusoidal voltage waveform at 60 Hz. Fig. 4
includes one full 60 Hz cycle whereas Fig. 5 is a close-up
segment of Fig. 4 to illustrate the switching effects of
continuous SVM. All of the graphs appearing in this paper
were generated using the Matlab scripts in the appendix.

0 0.005 0.01 0.015

-1

-0.5

0

0.5

1

Phase a stator voltage in the stator frame, V sas

Time (sec)

V
ol

ta
ge

 (
pu

)

Continuous SVM
Pure Sinusoid

Fig. 4. One cycle of phase a stator voltage in the stationary reference frame

5.2 5.4 5.6 5.8 6

x 10
-3

-1

-0.5

0

0.5

Phase a stator voltage in the stator frame, V sas

Time (sec)

V
ol

ta
ge

 (
pu

)

Continuous SVM
Pure Sinusoid

Steady State
Value

Stator
e
asi e

asv eT

Fig. 5. Zoom-in view of phase a stator voltage

 The subsequent figures depict the torque, rotor speed, and
stator phase a current and voltage waveforms in the
synchronous reference frame. Each of the graphs provides a
comparison between operation with a 60 Hz sinusoid and the
SVM voltages. Fig. 6 presents a key for each of the graphs.

30o Discontinuous SVM

60o Discontinuous SVM

120o Discontinuous SVM
Continuous SVM
Pure Sinusoid

Fig. 6. Waveform key for Figs. 7 - 10 and 17 - 19

5 10 15

x 10
-3

0

0.2

0.4

0.6

0.8

1

Phase a stator voltage in the synchronous frame, V e
as

Over one 60 Hz cycle

V
ol

ta
ge

 (
pu

)

Time (sec)

Fig. 7. Phase a stator voltage in the synchronous reference frame

Voltage
(pu)

rω
(pu) (pu) (pu)

60 Hz Sinusoid 1.05 0.954 1.07 1.0

 Notice that the sinusoidal voltage in the synchronous
reference frame is constant, but the SVM waveforms have
large instantaneous voltage spikes. These spikes are what
cause unwanted harmonics. The stator current pictured in
Fig. 8 attenuates these spikes due to the nature of the
induction machine’s lowpass filtering properties (i.e.

∫= dt
L
vi). Thanks to this filtering by the machine

inductances, the rotor speed and torque of Figs. 9 and 10 are
smoothed despite the voltage spikes. In the presence of
harmonic losses within the machine, however, the rotor speed
is lower for SVM operation than sinusoidal in order to supply
the rated torque.

0.01 0.02 0.03 0.04 0.05 0.06
0.8

0.9

1

1.1

1.2

1.3

1.4

Phase a stator current in synchronous frame, i e
as

Over four 60 Hz cycles

C
ur

re
nt

 (
pu

)

Time (sec)

Fig. 8. Phase a stator current in the stationary reference frame

0.02 0.04 0.06

0.951

0.9515

0.952

0.9525

0.953

0.9535

Rotor speed, ωr
Over four 60 Hz cycles

R
ot

or
 S

pe
ed

 (
pu

)

Time (sec)
Fig. 9. Rotor speed

0.01 0.02 0.03 0.04 0.05 0.06

0.8

0.9

1

1.1

1.2

1.3

Generated machine torque, Te
Over four 60 Hz cycles

To
rq

ue
 (

pu
)

Time (sec)
Fig. 10. Torque

 The following table compares the ripple in the torque, rotor
speed, stator phase a current and voltage waveforms in the
synchronous reference frame for all SVM algorithms. A
trivial but important result is that the voltage ripple for each
algorithm is identical since every SVM scheme relies on
switching between the same space vectors. Comparing the
SVM performance depends on whether performance is rated
in terms of torque ripple or rotor speed ripple. If we rate
based on rotor speed ripple, continuous SVM outperforms the
others as one would expect. But if we choose torque ripple,
60º discontinuous SVM performs the best contrary to what
one would predict. This is due to the fact that the 60º
discontinuous SVM method chosen is suited for an inductive
load which decreases the current ripple and in turn decreases
the torque ripple.

TABLE III
RIPPLE VALUES FOR ALL SVM ALGORITHMS

Ripple
Variable

SVM
e
asi e

asv eT

Algorithm
(pu)

rω
(rad/s) (pu) (pu)

30º discontinuous
modulation 0.4626 0.4399 0.527 1.1547

60º discontinuous
modulation 0.4229 0.4347 0.4886 1.1547

120º
discontinuous

modulation
0.5197 0.4369 0.5858 1.1547

Continuous
modulation with
centered active

vectors

0.4877 0.2639 0.5752 1.1547

 Table IV contains the value of ripple as a percentage of the
sinusoidally-excited steady state value. This gives an idea of
how much the modulation technique causes the machine
characteristics to deviate from the rated value. Overall, the
rotor speed does not deviate much, but the torque and current
fluctuate substantially from the rated steady-state value.

TABLE IV

RIPPLE AS A PERCENTAGE OF THE STEADY STATE VALUE

 The baseband, carrier, and sideband harmonics of the stator
voltage, current, and machine torque were compared from
each voltage excitation method. Equations (9) and (10)
define these harmonic components, where f(t) is a waveform
from which we are extracting the harmonic components and
fe is the electrical frequency whose period is Te. All harmonic
content was calculated using the Matlab code in the appendix.
Since the sideband harmonics were negligible, they are not
included in the analysis.

∫=
e

e

T
tfjn

e

th dtetf
T

HarmonicBasebandn
0

)π2()(1 (9)

∫=
c

c

T
tfjm

c

th dtetf
T

HarmonicCarrierm
0

)π2()(1 (10)

 The ensuing three figures depict the torque and stator
phase a current and voltage harmonics from the stationary
reference frame. Each of the graphs provides a comparison
between operation with a 60 Hz sinusoid and the SVM
voltages. Fig. 11 acts as a key for the graphs.
 Although the harmonic content of the voltage and current
resulting from sinusoidal excitation only contains the
fundamental component, it is included as a baseline
comparison for the SVM techniques. Interestingly, the
baseband harmonic content of every one of the space vector
modulated stator voltages and currents, as seen in Figs. 12
and 13, is quite similar with different SVM algorithms

performing better at different harmonic frequencies. In all
but the stator voltage, the carrier harmonics of the SVM
algorithms follow the harmonics of the sinusoid, leading the
observer to conclude that these are artifacts of digital
processing. With a lower carrier frequency or higher
electrical frequency, we might expect the differences in the
harmonics to be more exaggerated, but with the carrier
frequency at 15 kHz, the baseband harmonics of each of the
algorithms do not distinguish any SVM method as superior
over another. Ripple %

Variable
SVM

e
asi e

asv eT
(%)

rω
(%)

30o Discontinuous SVM

60o Discontinuous SVM

120o Discontinuous SVM
Continuous SVM
Pure Sinusoid

(%)
Algorithm

(%)

30º discontinuous
modulation 44.05 0.1223 49.26 1.1547

60º discontinuous
modulation 40.28 0.1209 45.65 1.1547

120º
discontinuous

modulation
49.5 0.1215 54.74 1.1547

Continuous
modulation with
centered active

vectors

46.45 0.0734 53.75 1.1547

Fig. 11. Key for the graphs in Figs. 12 - 14 and 20 - 22

0 5 10 15
10

-4

10
-3

10
-2

10
-1

10
0

Fundamental Component and Baseband
Harmonics of V sas

M
ag

ni
tu

de
 o

f V
ol

ta
ge

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 60 Hz)

0 5 10 15
10

-4

10
-3

10
-2

Carrier Harmonics of V sas

M
ag

ni
tu

de
 o

f V
ol

ta
ge

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Carrier (f carrier = 15 kHz)

Fig. 12. Harmonics of the stator voltage in the stator reference frame

0 5 10 15
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fundamental Component and Baseband
Harmonics of i sas

M
ag

ni
tu

de
 o

f C
ur

re
nt

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 60 Hz)

0 5 10 15
10

-5

10
-4

10
-3

10
-2

Carrier Harmonics of i sas

M
ag

ni
tu

de
 o

f C
ur

re
nt

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Carrier (f carrier = 15 kHz)

0 5 10 15
10

-5

10
-4

10
-3

10
-2

10
-1

Fundamental Component and Baseband
Harmonics of Te

M
ag

ni
tu

de
 o

f T
or

qu
e

H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 60 Hz)

0 5 10 15
10

-5

10
-4

10
-3

10
-2

Carrier Harmonics of Te

M
ag

ni
tu

de
 o

f T
or

qu
e

H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Carrier (f carrier = 15 kHz)
Fig. 13. Harmonics of the stator current in the stator reference frame

B. Overmodulation
 Overmodulation causes the voltage amplitude on each
phase to saturate at the maximum input voltage. This in turn
causes the magnitude of the stator d-q voltage to vary over
time rather than remain constant as is the case with regular
inverter operation such as the rated operation just presented.
The following questions arise when dealing with
overmodulated operation:

1) Does the machine current and torque ripple
increase relative to rated operation?

2) Does the harmonic response of the space vector
modulation algorithms degrade substantially from
rated operation?

3) Do any of the methods yield better overmodulation
performance as compared with each other?

 In the overmodulation regime, the inverter output voltage
magnitude is limited by the input voltage, but the frequency
may still increase beyond the rated value. Because of this,

Fig. 14. Harmonics of the torque

constant V/Hz operation may not be achieved, and we expect
the torque to decrease accordingly. A good visualization of
this effect comes from the fact that the stator and rotor flux
voltage amplitudes do not reach 1.0 p.u. at the higher
electrical frequencies with limited voltage. Induction
machine theory predicts that the steady state torque will be
0.7 p.u., according to the relation (11) where ωe is 2πfe.

()Be

Rated
e

TT
ωω

= (11)

For this analysis, both the excitation frequency and command
voltage on the stator are increased by a factor of 1.5 from
rated operation. The load torque is scaled to match (11), and
the base electrical frequency is held at 60 Hz. The voltage
amplitude on each phase is increased according to constant
V/Hz operation but clipped at the maximum voltage value, as
seen in Fig. 15, according to the limits of the inverter.

0 0.005 0.01

-1.5

-1

-0.5

0

0.5

1

1.5

Phase a stator voltage in the stator frame, V sas

Time (sec)

V
ol

ta
ge

 (
pu

)

Continuous SVM
Pure Sinusoid

Fig. 15. One cycle of phase a stator voltage in the stationary reference frame

 The subsequent figures depict the torque, rotor speed, and
stator phase a current and voltage waveforms in the
synchronous reference frame. Each of the graphs provides a
comparison between operation with the sinusoid pictured in
Fig. 15 and the SVM voltages. The same key from Fig. 6 in
the previous section applies to Figs. 16 - 19.

2 4 6 8 10

x 10
-3

0

0.5

1

1.5

Phase a stator voltage in the synchronous frame, V e
as

Over one 90 Hz cycle

V
ol

ta
ge

 (
pu

)

Time (sec)
Fig. 16. Phase a stator voltage in the synchronous reference frame

 The first thing that the reader should notice is that the
stator voltage in the synchronous frame is no longer constant
because the amplitude of each phase voltage is clipped,
analogous to the command voltage for the SVM algorithms.
The performance difference between each of the algorithms is
more pronounced now, and we can easily see that the
continuous SVM algorithm outperforms the others with
respect to torque and rotor speed ripple. As before, the SVM

algorithms yield lower rotor speed than the sinusoidal input,
and the torque and current ripple centers around the
sinusoidal steady state value which now fluctuates slightly.
 There are two resounding conclusions to be made from the
graphs in Figs. 17 - 19. The first is that the ripple associated
with the continuous SVM algorithm decreases from rated
operation, but the most interesting result of all is that the 60º
discontinuous SVM scheme performs the poorest of all even
though it was one of the best for rated operation.

0.01 0.02 0.03 0.04

0.7

0.8

0.9

1

1.1

1.2

1.3

Phase a stator current in synchronous frame, i e
as

Over four 90 Hz cycles

C
ur

re
nt

 (
pu

)

Time (sec)
Fig. 17. Phase a stator current in the stationary reference frame

0.01 0.02 0.03 0.04
1.446

1.4465

1.447

1.4475

1.448

1.4485

1.449

1.4495

Rotor speed, ωr
Over four 90 Hz cycles

R
ot

or
 S

pe
ed

 (
pu

)

Time (sec)
Fig. 18. Rotor speed

0.01 0.02 0.03 0.04

0.5

0.6

0.7

0.8

0.9

Generated machine torque, Te
Over four 90 Hz cycles

To
rq

ue
 (

pu
)

Time (sec)
Fig. 19. Torque

 Since all the voltage waveforms applied to the stator are
distorted due to clipping of the voltage amplitude, the fast
fourier transform was taken to compare against the harmonic
content. As was expected, the only significant frequency
response occurs at the baseband harmonics. Because of this,
analysis of the carrier harmonics is omitted.
 The harmonic response of the machine to the
overmodulated stator voltage is pictured in Figs. 20 - 22. Fig.
11 in the previous section may be used as a key for these
graphs. We can see that the baseband harmonics are two
orders of magnitude smaller than the fundamental component
at 90 Hz, but no SVM algorithm is clearly superior to
another. In this case, the ripple parameters give a more
apparent indication of which algorithm performs better.

0 5 10 15
10

-15

10
-10

10
-5

10
0

Fundamental Component and Baseband
Harmonics of V sas

M
ag

ni
tu

de
 o

f V
ol

ta
ge

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 90 Hz)

Fig. 20. Harmonics of the stator voltage in the stator reference frame

0 5 10 15
10

-8

10
-6

10
-4

10
-2

10
0

Fundamental Component and Baseband
Harmonics of i sas

M
ag

ni
tu

de
 o

f C
ur

re
nt

 H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 90 Hz)

Fig. 21. Harmonics of the stator current in the stator reference frame

0 5 10 15
10

-8

10
-6

10
-4

10
-2

10
0

Fundamental Component and Baseband
Harmonics of Te

M
ag

ni
tu

de
 o

f T
or

qu
e

H
ar

m
on

ic
s

(p
u)

Harmonic Number of the Fundamental (f fund = 90 Hz)

Fig. 22. Harmonics of the torque

IV. CONCLUSION

 Four different space vector modulation (SVM) algorithms
were investigated: conventional continuous SVM with the
active vectors centered in each half-carrier cycle, and 30º,
60º, and 120º discontinuous SVM. The impact of these four
types of SVM voltage waveforms on a squirrel-cage
induction machine were compared with each other and with a
sinusoid. The resulting voltage, current, and torque ripple
and harmonic content were used for this comparison at both
rated operation and overmodulation. It was found that both
the 60º discontinuous SVM and continuous SVM methods
yielded the best results at rated operation even though the 60º
discontinuous SVM performed the worst in overmodulation.

For overmodulated operation, the continuous SVM algorithm
offered the best performance. If any of the SVM algorithms
were to be used in a real machine, lowpass filtering the SVM

voltage waveform would be necessary to decrease the large
torque, current, and rotor speed ripple.

APPENDIX

Matlab code for space vector modulation generation and analysis

% Project
% ECE 711
%
% Space Vector Modulation Algorithm
%

%% Induction Machine parameters %%
%
Poles = 4; % Number of poles in machine
Pbase = 37.285e3; % 3-phase Base power [W]
Vload_rms = 460/sqrt(3); % Voltage across stator and load [V line-to-neutral]
Vbase = Vload_rms*sqrt(2); % Base voltage is peak value [V line-to-neutral]
Ibase = 66.2; % Base current is peak value [A]
Tbase = 197.9; % Base torque [Nm]
s_rated = 0.0463; % Rated slip of machine
fe = 1.5 * 60; % Electrical frequency [Hz]
we = 2*pi*fe; % Electrical speed [elec rad/s]
w_base = 2*pi*60; % Base electrical speed @ 60Hz [elec rad/s]
w_ref = 0; % Reference frame speed [rad/s] -- stator frame
Flux_base = Vbase / w_base; % Base flux is peak value [V s]
%% assume pf is lagging b/c induction machine
pf_rated = 0.894; % Rated power factor at stator (cos Theta_rated)
Is_rated_pu = 1.2; % Rated current [pu]
Zbase = 5.67; % Base impedence [ohms]
Rs = 0.087; % Stator resistance [ohms]
Rs_pu = 0.0153; % Stator resistance [pu]
Rr = 0.228; % Rotor resistance [ohms]
Rr_pu = 0.0402; % Rotor resistance [pu]
Xls = 0.302; % Stator leakage impedence [ohms]
Xls_pu = 0.0532; % Stator leakage impedence [pu]
Xlr = Xls; % Rotor leakage impedence [ohms]
Xlr_pu = Xls_pu; % Rotor leakage impedence [pu]
Xm = 13.08; % Magnetizing impedence [ohms]
Xm_pu = 2.31; % Magnetizing impedence [pu]
Xs = Xls + Xm; % Stator impedence [ohms]
Xs_pu = Xls_pu + Xm_pu; % Stator impedence [pu]
Xr = Xlr + Xm; % Rotor impedence [ohms]
Xr_pu = Xlr_pu + Xm_pu; % Rotor impedence [pu]
Lm = Xm / w_base; % Magnetizing inductance [H]
Lr = Xr / w_base; % Rotor inductance [H]
Ls = Xs / w_base; % Stator inductance [H]
Llr = Xlr / w_base; % Rotor leakage inductance [H]
Lls = Xls / w_base; % Stator leakage inductance [H]
Lm_pu = Lm * (w_base/Zbase); % Magnetizing inductance [pu]
Lr_pu = Lr * (w_base/Zbase); % Rotor inductance [pu]
Ls_pu = Ls * (w_base/Zbase); % Stator inductance [pu]
Llr_pu = Llr * (w_base/Zbase); % Rotor leakage inductance [pu]
Lls_pu = Lls * (w_base/Zbase); % Stator leakage inductance [pu]
Xm_star = ((1/Xm)+(1/Xls)+(1/Xlr))^-1; % Shorted machine impedence [ohms]
Xm_star_pu = Xm_star / Zbase; % Shorted machine impedence [pu]
M = 1.5; % Inertial time constant [sec]

%% Calculate machine inertia %%
%
J = M * (Poles/2)^2 * Pbase / (w_base^2); % [Ns]

%% Calculate the rated angle between stator voltage and current %%
%
pf_angle_rated = acos(pf_rated); % [rad]

%% Calculate rated rotor speed %%
%%
wr = -1 * [(s_rated * we) - we]; % [rad/s]

%% Calculate load torque constant %%
%
% Tload = k*wr
%
% use steady state: Te_ss - Tload_ss = 0
% k = Tload_ss / wr_ss
Te_ss_pu = 1.0500612722482; % [pu]
Te_ss = Te_ss_pu * Tbase; % [Nm]
k = Te_ss / wr; % [Nms]
k_pu = Te_ss_pu / (wr/w_base); % [pu]

%% PWM parameters %%
%
Fc = 15e3; % Carrier frequency is 15kHz [Hz]
Tc = 1/Fc; % Period of carrier signal [sec]
t_Tc = 0:(Tc/2):1/fe-(Tc/2); % Time vector of fundamental
 % with half cycle time steps [sec]

%% Command voltage vector %%
%
Vmag = Vbase * (we/w_base); % Command voltage magnitude for
 % constant V/Hz operation [V]
% Note: maximum phase voltage = Vin/sqrt(3) if the magnitude of each
% space vector is (2/3)*Vin
%
% Vmax,phase = sin(pi/3) * Vmag,SV = (sqrt(3)/2) * Vmag,SV
Vphase = we.*t_Tc; % Phase of command voltage at
 % each half cycle of the carrier [rad]
 % Vqds is aligned with q-axis at t=0
 % NOTE: phase is sampled at the
 % beginning of the half cycle!!!!
% Vcommand = Vmag .*exp(j.*Vphase); % Command voltage in dq coordinates [V]
 % Cannot use this method if we want
 % to clip the voltage phase
 % magnitudes
a = exp(j*2*pi/3);
% Calculate individual phase voltages so we can clip the
% phase voltages at the maximum inverter voltage
Vas = Vmag * cos(Vphase);
Iover = find(Vas > Vbase);
Vas(Iover) = Vbase;
Iunder = find(Vas < -Vbase);
Vas(Iunder) = -Vbase;
Vbs = Vmag * cos(Vphase-(2*pi/3));
Iover = find(Vbs > Vbase);
Vbs(Iover) = Vbase;
Iunder = find(Vbs < -Vbase);
Vbs(Iunder) = -Vbase;
Vcs = Vmag * cos(Vphase+(2*pi/3));
Iover = find(Vcs > Vbase);
Vcs(Iover) = Vbase;
Iunder = find(Vcs < -Vbase);
Vcs(Iunder) = -Vbase;
Vcommand = (2/3)*(Vas+a*Vbs+a^2*Vcs); % Command voltage in dq coordinates [V]

%% Define space vectors %%
%
% first define the magnitude of each space vector to be able to attain Vmag
SVmag = Vmag / sin(pi/3);
%
% space vectors 0-7
SV1 = SVmag * exp(j*0);
SV2 = SVmag * exp(j*pi/3);
SV3 = SVmag * exp(j*2*pi/3);
SV4 = SVmag * exp(j*pi);

SV5 = SVmag * exp(j*4*pi/3);
SV6 = SVmag * exp(j*5*pi/3);
SV0 = 0;
SV7 = 0;

SV = [SV1 SV2 SV3 SV4 SV5 SV6 SV7];

%% Calculate active times for the two space vectors in each 60deg segment %%
%
% p261
% Note: the phase of Space Vector T1 < the phase of Space Vector T2
%%% ex. T1 corresponds to SV1
%%% T2 corresponds to SV2
PHASE = 0:pi/300:pi/3; % define T1 & T2 with many phases so
 % we can interpolate to Vphase [rad]
Vas = Vmag * cos(PHASE);
Iover = find(Vas > Vbase);
Vas(Iover) = Vbase;
Iunder = find(Vas < -Vbase);
Vas(Iunder) = -Vbase;
Vbs = Vmag * cos(PHASE-(2*pi/3));
Iover = find(Vbs > Vbase);
Vbs(Iover) = Vbase;
Iunder = find(Vbs < -Vbase);
Vbs(Iunder) = -Vbase;
Vcs = Vmag * cos(PHASE+(2*pi/3));
Iover = find(Vcs > Vbase);
Vcs(Iover) = Vbase;
Iunder = find(Vcs < -Vbase);
Vcs(Iunder) = -Vbase;
Vcmd = (2/3)*(Vas+a*Vbs+a^2*Vcs); % Command voltage in dq coordinates [V]
T1_segment = abs(Vcmd).*sin((pi/3)-PHASE)*(Tc/2)/(SVmag*sin(pi/3)); % [sec]
T2_segment = abs(Vcmd).*sin(PHASE)*(Tc/2)/(SVmag*sin(pi/3)); % [sec]
%
% interpolate for all 60deg segments (0-360deg) from the above 60deg segment
Vphase_mod = mod(Vphase,pi/3); % [rad], vector with a sample for each half cycle period
T1 = interp1(PHASE, T1_segment, Vphase_mod); % [sec], vector with a sample for each half cycle period
T2 = interp1(PHASE, T2_segment, Vphase_mod); % [sec], vector with a sample for each half cycle period

%% Calculate space vector modulated voltage waveforms %%
%
samplesPerTc = 80; % number of samples in one carrier cycle
timeStep = Tc/samplesPerTc; % amount of time per sample [sec]
 % for best results, should be
 % multiple of Tc
t = 0:timeStep:1/fe-timeStep; % time vector for SVM [sec]
NumT1 = floor(T1/timeStep); % number of samples corresponding to T1
 % in each half carrier cycle (Tc/2)
NumT2 = floor(T2/timeStep); % [samples]
NumZero = (samplesPerTc/2)-(NumT1+NumT2); % number of samples for the
 % zero vector

%% Continuous and (30, 60, 120 degree) Discontinuous Modulated SVM %%
%
% Continuous SVM: The best harmonic performance occurs by placing
% active vectors in the middle of the half cycle, Tc/2
%
% 30, 60 degree Discontinuous SVM: Alternately eliminate zero space
% vectors SV0 and SV7 for successive 30, 60 degree segments
%
% 120 degree Discontinuous SVM: Each phase leg in turn is continuously
% locked to the upper or lower DC rail for one-third of the
% fundamental cycle (120 deg)
%
% Therefore, need to split the number of zero vectors to be before and
% after the active vectors
NumZero_begin = floor(NumZero/2); % first half of zero vectors
NumZero_end = ceil(NumZero/2); % second half of zero vectors
%
% Figure out which active space vectors should be used

%
% Define space vectors by 60deg segment and their corresponding active times
% T1 | T2
% ---------------------
% Segment 1: SV1 SV2
% Segment 2: SV2 SV3
% Segment 3: SV3 SV4
% Segment 4: SV4 SV5
% Segment 5: SV5 SV6
% Segment 6: SV6 SV1
%
Vphase(1) = Vphase(1)+0.0000001; % choose segment for 0deg phase
Segment = ceil(Vphase/(pi/3)); % calculate segment
ContinuousSVM_Vqds_s = zeros(1,length(t));
discontinuous30_SVM_Vqds_s = zeros(1,length(t));
discontinuous60_SVM_Vqds_s = zeros(1,length(t));
discontinuous120_SVM_Vqds_s = zeros(1,length(t));
%
% Chose clamping reference for the 30, 60 degree discontinuous SVM algorithms
deg30_Sequence = [0 7 7 0 0 7 7 0 0 7 7 0]; % Choose rail (SV0 or SV7) for each
 % 30 deg. segment
I_30degClamp = floor(Vphase / (pi/6)) + 1; % Identify the 30 deg. segment at
 % each half cycle of the carrier
deg30_Clamp = deg30_Sequence(I_30degClamp); % Assign the clamping rail for each
 % half cycle of the carrier
 % Implement the 30 deg. lagging clamp for 60deg discontinuous SVM
deg60_Sequence = [7 0 7 0 7 0]; % Choose rail (SV0 or SV7) for each
 % 60 deg. segment
I_60degClamp = floor(Vphase / (pi/3)) + 1; % Identify the 60 deg. segment at
 % each half cycle of the carrier
deg60_Clamp = deg60_Sequence(I_60degClamp); % Assign the clamping rail for each
 % half cycle of the carrier
for halfCycle=1:length(t_Tc)
 Vec1 = Segment(halfCycle);
 Vec2 = mod(Segment(halfCycle),6)+1;
 Ibegin = ((halfCycle-1)*samplesPerTc/2)+1; % index of beginning of this
 % half cycle of the carrier
 Iend = halfCycle*samplesPerTc/2; % index of ending of this
 % half cycle of the carrier
 ContinuousSVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero_begin(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero_end(halfCycle))];

 if (mod(halfCycle,2) == 1) % in first half of carrier period
 if (deg30_Clamp(halfCycle) == 0) % 30deg discont. SVM: tied to lower dc rail, SV0
 discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle))];
 else % 30deg discont. SVM: tied to upper dc rail, SV7
 discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero(halfCycle))];
 end

 if (deg60_Clamp(halfCycle) == 0) % 60deg discont. SVM: tied to lower dc rail, SV0
 discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle))];
 else % 60deg discont. SVM: tied to upper dc rail, SV7
 discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero(halfCycle))];
 end

 % Lower DC rail is the clamping reference: SV0 at beginning of half cycle
 discontinuous120_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle))];

 else % in second half of carrier period
 if (deg30_Clamp(halfCycle) == 0) % 30deg discont. SVM: tied to lower dc rail, SV0
 discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero(halfCycle))];
 else % 30deg discont. SVM: tied to upper dc rail, SV7
 discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle))];
 end

 if (deg60_Clamp(halfCycle) == 0) % 60deg discont. SVM: tied to lower dc rail, SV0
 discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero(halfCycle))];
 else % 60deg discont. SVM: tied to upper dc rail, SV7
 discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV0*ones(1,NumZero(halfCycle)) ...
 SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle))];
 end

 % Lower DC rail is the clamping reference: SV0 at end of half cycle
 discontinuous120_SVM_Vqds_s(Ibegin:Iend) = ...
 [SV(Vec1)*ones(1,NumT1(halfCycle)) ...
 SV(Vec2)*ones(1,NumT2(halfCycle)) ...
 SV0*ones(1,NumZero(halfCycle))];
 end
end
% clear SV* Ibegin Iend Vec1 Vec2 Num* deg* I_* T1* T2* Segment ...
% halfCycle Vphase* PHASE timeStep samplesPerTc;

% Confirm correct waveform!
%figure, plot(t, real(Vqds_s)), hold on, plot(t_Tc, real(Vcommand), 'r'), hold off

%% Place in format for use in Simulink %%
%
numCycles = 200; % want 200 cycles of fundamental waveform
%% for some reason, I defined Vqds_s as negative sequence... just reverse signal
continuousSVM.signals.values = repmat(ContinuousSVM_Vqds_s(end:-1:1)', [numCycles, 1]);
continuousSVM.time = zeros(numCycles*length(t), 1);
continuousSVM.time(1:length(t)) = t';
continuousSVM.signals.dimensions = 1;

discontinuous30_SVM.signals.values = repmat(discontinuous30_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);
discontinuous30_SVM.time = zeros(numCycles*length(t), 1);
discontinuous30_SVM.time(1:length(t)) = t';
discontinuous30_SVM.signals.dimensions = 1;

discontinuous60_SVM.signals.values = repmat(discontinuous60_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);
discontinuous60_SVM.time = zeros(numCycles*length(t), 1);
discontinuous60_SVM.time(1:length(t)) = t';
discontinuous60_SVM.signals.dimensions = 1;

discontinuous120_SVM.signals.values = repmat(discontinuous120_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);
discontinuous120_SVM.time = zeros(numCycles*length(t), 1);
discontinuous120_SVM.time(1:length(t)) = t';
discontinuous120_SVM.signals.dimensions = 1;

for i=2:numCycles
 Ibegin = ((i-1)*length(t))+1; % index of beginning of this

 % fundamental cycle
 Iend = i*length(t); % index of ending of this
 % fundamental cycle
 continuousSVM.time(Ibegin:Iend) = continuousSVM.time(Ibegin-1) + t';
 discontinuous30_SVM.time(Ibegin:Iend) = discontinuous30_SVM.time(Ibegin-1) + t';
 discontinuous60_SVM.time(Ibegin:Iend) = discontinuous60_SVM.time(Ibegin-1) + t';
 discontinuous120_SVM.time(Ibegin:Iend) = discontinuous120_SVM.time(Ibegin-1) + t';
end
clear Ibegin Iend numCycles i;

nullSVM.time = 0;
nullSVM.signals.values = 1+j;
nullSVM.signals.dimensions = 1;

% Graph one cycle of continuous SVM
Vas1 = Vmag * cos(we.*t);
Iover = find(Vas1 > Vbase);
Vas1(Iover) = Vbase;
Iunder = find(Vas1 < -Vbase);
Vas1(Iunder)= -Vbase;
figure('Units', 'inches', 'Position', [4,4,3.45,3.45]), ...
 plot(t, real(ContinuousSVM_Vqds_s)./Vbase, 'k-.'), hold on, ...
 plot(t, Vas1/Vbase, 'c-', 'LineWidth', 2), ...
 title('Phase a stator voltage in the stator frame, V ^s_a_s'), ...
 xlabel('Time (sec)'), ylabel('Voltage (pu)'), axis tight, grid, ...
 legend('Continuous SVM', 'Pure Sinusoid', 'Location', 'BestInside'), hold off;

%% steady state matrix: induction machine %%
%
% use variables from PWM_SVM.m
%
% steady state values with w_ref=2*pi*60 Hz
% sinusoidal voltage input Vbase
%
w_ref = we;
disp('w_ref = 120*pi')

SSmatrix = [Rs -(w_ref*Ls) 0 -(w_ref*Lm);
 w_ref*Ls Rs w_ref*Lm 0;
 0 (wr-w_ref)*Lm Rr (wr-w_ref)*Lr;
 (w_ref-wr)*Lm 0 (w_ref-wr)*Lr Rr];
InVector = [0;
 Vbase;
 0;
 0]; %% assume Vqds is aligned with the q-axis in the sync. ref. frame

CurrentVector = SSmatrix^-1 * InVector;
 Ids = CurrentVector(1); Ids_pu = Ids/Ibase;
 Iqs = CurrentVector(2); Iqs_pu = Iqs/Ibase;
 Idr = CurrentVector(3); Idr_pu = Idr/Ibase;
 Iqr = CurrentVector(4); Iqr_pu = Iqr/Ibase;

Te = (3/2)*(Poles/2)*Lm*(-Ids*Iqr + Iqs*Idr);
Te_pu = Te/Tbase;
flux_dr = Lr*Idr + Lm*Ids; flux_dr_pu = flux_dr/Flux_base;
flux_qr = Lr*Iqr + Lm*Iqs; flux_qr_pu = flux_qr/Flux_base;
flux_r = sqrt(flux_dr^2 + flux_qr^2);
flux_r_pu = flux_r/Flux_base;

function [FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] = ...
 GetHarmonics(signalAmplitude, signalTime, w_fund, w_carrier, numHarmonics)
%
%function [FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] =

% GetHarmonics(signalAmplitude, signalTime, numHarmonics)
%
% Compute harmonics of signals created in the Simulink program
% should directly contain all 60Hz harmonics
%
% INPUT:
% signalAmplitude = amplitude of the signal
% signalTime = time in seconds corresponding to the signal
% w_fund = fundamental component freq [rad/s]
% w_carrier = carrier freq [rad/s]
% numHarmonics = number of harmonics to calculate
%
% OUTPUT:
% FundCompHarmonics = harmonics 1-numHarmonics of the fundamental in signalAmplitude
% CarrierHarmonics = harmonics 1-numHarmonics of the carrier in signalAmplitude
% SidebandHarmonics = harmonics that are both multiples of the carrier
% and fundamental in signalAmplitude
% (rows == fund. harmonics)
% (columns == carrier harmonics)
%

FundCompHarmonics = zeros(1,numHarmonics);
CarrierHarmonics = zeros(1,numHarmonics);
SidebandHarmonics = zeros(2*numHarmonics,numHarmonics);

%% Calculating the harmonics %%
%
for n=1:numHarmonics
 FundCompHarmonics(n) = (1/length(signalAmplitude)) * sum(signalAmplitude .* exp(j*n*w_fund.*signalTime));
 CarrierHarmonics(n) = (1/length(signalAmplitude)) * sum(signalAmplitude .* exp(j*n*w_carrier.*signalTime));

 %% Sideband Harmonics are negligible
% i=1;
% for m=[-numHarmonics:-1 1:numHarmonics]
% SidebandHarmonics(i,n) = (1/length(signalAmplitude)) * ...
% sum(signalAmplitude .* exp(j*(n*w_carrier + m*w_fund).*signalTime));
% i = i+1;
% end
end

function [signal_power, f] = TakeFFT(signalAmplitude, signalTime)
%
%function [signal_power, f] = TakeFFT(signalAmplitude, signalTime)
%
% Compute FFT of signals created in the Simulink program
% FFT should directly contain all 60Hz harmonics
%

Fs = 2^14; %Hz
% interpolate signalAmplitude to ensure consistent sampling period
signalAmplitude = interp1(signalTime, signalAmplitude, 0:1/Fs:1);

fft_length = 2^14; % fft is fastest for powers of 2
signal_fft = fft(signalAmplitude, fft_length);
signal_power = signal_fft .* conj(signal_fft) / fft_length;
f = Fs*(-(fft_length/2):(fft_length/2)-1)/fft_length;
signal_power = fftshift(signal_power);

function saveVars(Name, Notes)
%
% Save important variables from Simulink simulation, all in pu
%

% INPUT:
% Name = name of .mat file to save to
% Notes = optional variable to describe simulation

Idr_s = SIM_Idr_s;
Ids_s = SIM_Ids_s;
Iqr_s = SIM_Iqr_s;
Iqs_s = SIM_Iqs_s;
Te = SIM_Te;
Tload = SIM_Tload_pu;
Vds_s = SIM_Vds_s;
Vflux_dr = SIM_Vflux_dr_pu;
Vflux_ds = SIM_Vflux_ds_pu;
Vflux_qr = SIM_Vflux_qr_pu;
Vflux_qs = SIM_Vflux_qs_pu;
Vqs_s = SIM_Vqs_s;
wr = SIM_wr_pu;

% if nargin < 2
% Notes = {'All variables in pu'};
% end

eval(['save ''C:\Documents and Settings\Jennifer Vining\Desktop\JennStuff\ECE711\Project\' Name '.mat'' ' ...
 'Idr_s Ids_s Iqr_s Iqs_s Te Tload Vds_s Vflux_dr Vflux_ds Vflux_qr Vflux_qs Vqs_s wr Notes']);

%
% Compute FFT of voltage, current, and torque from the
% continuous and discontinuous SVM algorithms developed in Simulink
% simulation 'Project.mdl'
%
% FFT should directly contain all 60Hz harmonics
%

% Choose an operating regime and input the correct excitation frequency
%OperatingRegime = 'SteadyState'; f_scale = 1;
OperatingRegime = 'Overmod'; f_scale = 1.5;
f_fund = f_scale*60; % fundamental component frequency [Hz]
w_fund = 2*pi*f_fund; % fundamental component frequency [rad/s]
f_carrier = 15e3; % carrier frequency [Hz]
w_carrier = 2*pi*f_carrier; % carrier frequency [rad/s]
numHarmonics = 15; % number of harmonics to compute

VoltageMethod = {'30^o Discontinuous SVM', ...
 '60^o Discontinuous SVM', '120^o Discontinuous SVM', ...
 'Continuous SVM', 'Pure Sinusoid'};
signalPrefix = {'discont30', 'discont60', 'discont120', 'cont', 'sinusoid'};
FileName = {'30degDiscontinuousSVM', '60degDiscontinuousSVM', '120degDiscontinuousSVM', ...
 'continuousSVM', 'sinusoid'};
signals = {'Iqs_s', 'Iqr_s', 'Vqs_s', 'Te', 'wr'};
signals2 = {'Ids_s', 'Idr_s', 'Vds_s', 'Te', 'wr'};
titles = [[{'Phase a stator current in synchronous frame, i ^e_a_s'}, {'i ^s_a_s'}],
 [{'Phase a rotor current in the synchronous frame, i ^e_a_r'}, {'i ^s_a_r'}],
 [{'Phase a stator voltage in the synchronous frame, V ^e_a_s'}, {'V ^s_a_s'}],
 [{'Generated machine torque, T_e', 'T_e'}],
 [{'Rotor speed, \omega_r', '\omega_r'}]];
titles2 = [{['Over four ' num2str(f_fund) ' Hz cycles']},
 {['Over four ' num2str(f_fund) ' Hz cycles']},
 {['Over one ' num2str(f_fund) ' Hz cycle']},
 {['Over four ' num2str(f_fund) ' Hz cycles']},
 {['Over four ' num2str(f_fund) ' Hz cycles']}];
ylabels = {'Current (pu)', 'Current (pu)', 'Voltage (pu)', 'Torque (pu)', 'Rotor Speed (pu)'};
ylabels2 = {'Current', 'Current', 'Voltage', 'Torque', 'Rotor Speed'};

lines = {'''b-''', '''r--''', '''m:''', '''k-.''', '''c-'', ''LineWidth'', 2'};
markers = {'b.', 'rd', 'mx', 'ko', 'cs'};

%% Construct figure for the plot of each VoltageMethod, signals combination %%
%

% for i=1:length(VoltageMethod)
% for k=1:length(signals)
% figure('Units', 'inches', 'Position', [4,4,3.45,3.45]);
% end
% end

%% Construct figure for FFT and harmonic plots of all VoltageMethods for each signal %%
%
for k=1:length(signals)
 eval([signals{k} ' = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']);
 title({ titles{k,1}, titles2{k} }),
 eval(['ylabel(''' ylabels{k} '''),']);
 xlabel('Time (sec)'), grid on, box on;

 eval([signals{k} '_fft = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,5.15]);']);
 eval(['title({''Frequency Spectrum of ' titles{k,1} ''', ''' titles{k,2} '''}),']);
 eval(['ylabel(''Magnitude of ' ylabels{k} '''),']);
 xlabel('Frequency (Hz)'), grid on, set(gca, 'YScale', 'log');

 eval([signals{k} '_fundHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']);
 title({'Fundamental Component and Baseband', ['Harmonics of ' titles{k,2}] }),
 eval(['ylabel(''Magnitude of ' ylabels2{k} ' Harmonics (pu)''),']);
 xlabel(['Harmonic Number of the Fundamental (f _f_u_n_d = ' num2str(f_fund) ' Hz)']), ...
 grid on, set(gca, 'YScale', 'log');

 eval([signals{k} '_carrierHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']);
 eval(['title({''Carrier Harmonics of ' titles{k,2} '''}),']);
 eval(['ylabel(''Magnitude of ' ylabels2{k} ' Harmonics (pu)''),']);
 xlabel(['Harmonic Number of the Carrier (f _c_a_r_r_i_e_r = ' num2str(f_carrier/1000) ' kHz)']), ...
 grid on, set(gca, 'YScale', 'log');

 eval([signals{k} '_harmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,6.86]);']);
 subplot(2,1,1), title({'Fundamental Component and Baseband', ['Harmonics of ' titles{k,2}] }),
 ylabel(['Magnitude of ' ylabels2{k} ' Harmonics (pu)']),
 xlabel(['Harmonic Number of the Fundamental (f _f_u_n_d = ' num2str(f_fund) ' Hz)']), ...
 grid on, box on, set(gca, 'YScale', 'log');
 subplot(2,1,2), title(['Carrier Harmonics of ' titles{k,2}]),
 ylabel(['Magnitude of ' ylabels2{k} ' Harmonics (pu)']),
 xlabel(['Harmonic Number of the Carrier (f _c_a_r_r_i_e_r = ' num2str(f_carrier/1000) ' kHz)']), ...
 grid on, box on, set(gca, 'YScale', 'log')

 %% Sideband Harmonics are negligible
% eval([signals{k} '_sideHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,5.15]);']);
% eval(['title({''Sideband Harmonics of ' titles{k,1} ''', ''' titles{k,2} '''}),']);
% eval(['zlabel(''Magnitude of ' ylabels{k} '''),']);
% xlabel(['Harmonic Number of the Fundamental (f_f_u_n_d = ' num2str(f_fund) ' Hz)']),
% ylabel(['Harmonic Number of the Carrier (f_c_a_r_r_i_e_r = ' num2str(f_carrier) ' Hz)']),
% grid on, set(gca, 'ZScale', 'log');
end

for i=1:length(VoltageMethod)
 for k=1:length(signals)
 eval([signalPrefix{i} ' = load(''C:\Documents and Settings\Jennifer Vining\Desktop\' ...
 'JennStuff\ECE711\Project\' OperatingRegime '_' FileName{i} '.mat'', ''' signals{k} ''');']);

% figure(k + length(signals)*(i-1)), hold on, eval(['plot(' signalPrefix{i} '.' signals{k} ...
% '.time, ' signalPrefix{i} '.' signals{k} '.signals.values),']), hold off;
% eval(['title({''' VoltageMethod{i} ': ' titles{k,1} ''', ''' titles{k,2} ...
% '''}),']);
% eval(['ylabel(''' ylabels{k} '''),']);
% xlabel('Time (sec)'), grid on;

 if k~=3 % plot four f_fund cycles for i, Te and wr
 endTime = 0.5 + 4/f_fund;
 else
 endTime = 0.5 + 1/f_fund;
 end
 %endTime = 1.0; % expand the end time for ripple analysis
 eval(['Itime = find(' signalPrefix{i} '.' signals{k} '.time >= 0.5 & ' ...
 signalPrefix{i} '.' signals{k} '.time <= endTime);']);

 % Calculate ripple of each signal
 eval(['ripple = max(' signalPrefix{i} '.' signals{k} '.signals.values(Itime))' ...
 '-min(' signalPrefix{i} '.' signals{k} '.signals.values(Itime));']);
 disp([signalPrefix{i} '.' signals{k} ' ripple = ' num2str(ripple)]);

 if k<=3 % move current and voltage into the synchronous frame
 eval(['f_ds = load(''C:\Documents and Settings\Jennifer Vining\Desktop\' ...
 'JennStuff\ECE711\Project\' OperatingRegime '_' FileName{i} '.mat'', ''' signals2{k} ''');']);

 eval(['f_qd_e= (' signalPrefix{i} '.' signals{k} ...
 '.signals.values - j*f_ds.' signals2{k} '.signals.values) .* exp(-j*w_fund.*' ...
 signalPrefix{i} '.' signals{k} '.time);']);
 eval(['figure(' signals{k} '), hold on']);
 eval(['plot(' signalPrefix{i} '.' signals{k} ...
 '.time(Itime)-0.5, real(f_qd_e(Itime)), ' lines{i} '),']), axis tight, hold off;

 % Calculate ripple of each signal
 ripple = max(real(f_qd_e(Itime)))-min(real(f_qd_e(Itime)));
 disp([signalPrefix{i} '.' signals{k} ' SYNC REF FRAME ripple = ' num2str(ripple)]);
 else
 eval(['figure(' signals{k} '), hold on']);
 eval(['plot(' signalPrefix{i} '.' signals{k} '.time(Itime)-0.5, ' signalPrefix{i} ...
 '.' signals{k} '.signals.values(Itime), ' lines{i} '),']), axis tight, hold off;
 end

 %% Take the FFT of signals
 eval(['[signal_power, f] = TakeFFT(' signalPrefix{i} '.' signals{k} ...
 '.signals.values, ' signalPrefix{i} '.' signals{k} '.time);']);
 eval(['figure(' signals{k} '_fft), hold on']);
 eval(['plot(f, signal_power, ' lines{i} '), hold off;']);

 %% Get the harmonic content
 % if i ~= 5 % do not take harmonic content of pure sinusoid, trivial soln
 eval(['[FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] = ' ...
 'GetHarmonics(' signalPrefix{i} '.' signals{k} ...
 '.signals.values(Itime), ' signalPrefix{i} '.' signals{k} '.time(Itime), ' ...
 'w_fund, w_carrier, numHarmonics);']);

 eval(['figure(' signals{k} '_fundHarmonics)']), hold on,
 plot(1:numHarmonics, abs(FundCompHarmonics), markers{i}, 'LineWidth', 1), hold off;

 eval(['figure(' signals{k} '_carrierHarmonics)']), hold on,
 plot(1:numHarmonics, abs(CarrierHarmonics), markers{i}, 'LineWidth', 1), hold off;

 eval(['figure(' signals{k} '_harmonics)']), hold on,
 subplot(2,1,1), hold on, plot(1:numHarmonics, abs(FundCompHarmonics), markers{i}, 'LineWidth', 1), hold off;
 subplot(2,1,2), hold on, plot(1:numHarmonics, abs(CarrierHarmonics), markers{i}, 'LineWidth', 1), hold off;
 %% Sideband Harmonics are negligible
% eval(['figure(' signals{k} '_sideHarmonics)']), hold on;
% x = [-numHarmonics:-1 1:numHarmonics];
% y = ones(1,2*numHarmonics);
% for n=1:numHarmonics
% plot3(x, n*y, abs(SidebandHarmonics(1:2*numHarmonics, n)), markers{i}, ...
% 'LineWidth', 1);
% end
% hold off;
 % end
 end
end

for k=1:length(signals)
 eval(['figure(' signals{k} ');']);
 legend(VoltageMethod, 'Location', 'SouthOutside');

 eval(['figure(' signals{k} '_fft);']);
 legend(VoltageMethod, 'Location', 'SouthOutside');

 eval(['figure(' signals{k} '_fundHarmonics);']);

 legend(VoltageMethod(1:5), 'Location', 'SouthOutside');

 eval(['figure(' signals{k} '_carrierHarmonics);']);
 legend(VoltageMethod(1:5), 'Location', 'SouthOutside');

 %% Sideband Harmonics are negligible
 eval(['figure(' signals{k} '_sideHarmonics);']);
 legend(VoltageMethod(1:4), 'Location', 'SouthOutside');
end

Simulink machine model

Id
s_

s
sc

op
e

T
e_

pu
sc

op
e

Iq
s_

s
sc

op
e

Id
s_

pu
Te

_p
u

Tl
oa

d_
pu

w
r

w
r_

ra
d_

s

w
r

[ra
d/

s]
sc

op
e

w
r

[p
u]

sc
op

e

u1
 if

t >
=

1.
5+

(5
/6

0)
 s

ec

u1
 (T

ov
er

lo
ad

) i
f

t >
=

1.
5

se
c

V
qs

_s
sc

op
e

V
qs

_p
u

V
ds

_p
u

V
qd

s_
pu

si
nu

so
id

al
 w

av
ef

or
m

V
qs

_p
u

V
ds

_p
u

V
qd

s_
pu

S
V

M
 v

ol
ta

ge
 w

av
ef

or
m

0

V
qd

r =
 0

V
flu

x_
qs

_p
u

sc
op

e

V
flu

x_
qr

_p
u

sc
op

e

Vd
s_

pu

Vq
s_

pu

Vf
lu

x_
m

d_
pu

Vf
lu

x_
m

q_
pu

V
fl

ux
_d

s_
pu

V
fl

ux
_q

s_
pu

V
flu

x_
qd

s_
pu

Vd
r_

pu

Vq
r_

pu

wr
 [

ra
d/

s]

Vf
lu

x_
m

d_
pu

Vf
lu

x_
m

q_
pu

V
flu

x_
dr

_p
u

V
flu

x_
qr

_p
u

V
flu

x_
qd

r_
pu

V
fl

ux
_d

s_
pu

V
fl

ux
_d

r_
pu

V
fl

ux
_q

s_
pu

V
fl

ux
_q

r_
pu

Vf
lu

x_
m

d_
pu

Vf
lu

x_
m

q_
pu

V
flu

x_
m

qd
_p

u

V
flu

x_
ds

_p
u

sc
op

e

V
flu

x_
dr

_p
u

sc
op

e

V
ds

_s
sc

op
e

1.
05

00
61

27
22

48
2*

(w
_b

as
e/

w
e)

T
lo

ad
_p

u
R

A
T

E
D

2.
5

T
lo

ad
_p

u
O

V
E

R
LO

A
D

T
lo

ad
 [

pu
]

sc
op

e

Iq
s_

pu

V
fl

ux
_d

s_
pu

Id
s_

pu

V
fl

ux
_q

s_
pu

Te
_p

u

T
e_

pu

M
an

ua
l S

w
itc

h
V

qs
_p

u

M
an

ua
l S

w
itc

h
V

ds
_p

u

Iq
r_

s
sc

op
e

V
fl

ux
_q

s_
pu

V
fl

ux
_m

q_
pu

V
fl

ux
_d

s_
pu

V
fl

ux
_m

d_
pu

Iq
s_

pu

Id
s_

pu

Iq
ds

V
fl

ux
_q

r_
pu

V
fl

ux
_m

q_
pu

V
fl

ux
_d

r_
pu

V
fl

ux
_m

d_
pu

Iq
r_

pu

Id
r_

pu

Iq
dr

Id
r_

s
sc

op
e

1/
w

_b
as

e

G
ai

n

C
lo

ck

Iq
s_

pu

Iq
s_

pu

V
fl

ux
_q

s_
pu

V
fl

ux
_d

s_
pu

wr

[ra
d/

s]

Te
_p

u

V
fl

ux
_m

d_
pu

Vf
lu

x_
m

d_
pu

V
fl

ux
_m

d_
pu

V
fl

ux
_m

d_
pu

V
fl

ux
_m

d_
pu

Vd
s_

pu

Vq
s_

pu

Simulink module Vqds_pu sinusoidal waveform

make negative
(d component is neg)

2
Vds_pu

1
Vqs_pu

1

phase C: cos Wave

This lower block is for
clipping the input voltage
when in overmodulation

phase B: cos Wave

phase A: cos Wave

eu

exp(j*we*t)

Saturation2

Saturation1

Saturation

Manual Switch

2*a^2/3

Gain4

2*a/3

Gain3

2/3

Gain2

j*we

Gain1

-1

Re(u)
Im(u)

Complex to
Real-Imag

Clock

Add

Ov ermodulation:
note that this works f or regular operation as well

Regular operation

Simulink module wr_rad_s

Tload [pu]

1
wr

w_base

w_base
(change to rad/s)

wr

rated wr

Te - Tload

Manual Switch:
Choose load characteristic

Manual Switch:
Choose between const. and

dynamic rotor speed

k_pu

Load Torque const

1
s

Integrator

1/M

1/M

2
Tload_pu

1
Te_pu

Te [pu]
wr [pu]d(wr_pu)/dtTe_pu - Tload_pu

Tload [pu]

Simulink module Te_pu

1
Te_puIqs*Vflux_ds

- Ids*Vflux_qs

Iqs*Vflux_ds

Ids*Vflux_qs
4

Vflux_qs_pu

3
Ids_pu

2
Vflux_ds_pu

1
Iqs_pu

Vf lux_qs_pu

Vf lux_ds_pu

Iqs_pu

Ids_pu

Te_pu

Simulink module Vqds_pu SVM waveform

change to pu,
also make negative

Control Input = 1

Control Input = 2

Control Input = 3

Control Input = 4

2
Vds_pu

1
Vqs_pu

Multiport Switch:
If the control input is 1, then the first data input is

passed through to the output. If the control input is 2,
then the second data input is passed through to the output, etc.

-1/Vbase

4

Control Input

Re(u)
Im(u)

Complex to
Real-Imag

1/Vbase

Change to pu

continuousSVM

(From Workspace)
Continuous SVM

discontinuous60_SVM

(From Workspace)
60 Deg. Discontinuous SVM

discontinuous30_SVM

(From Workspace)
30 Deg. Discontinuous SVM

discontinuous120_SVM

(From Workspace)
120 Deg. Discontinuous SVM

Space Vector Modulation
Voltage Sources

Simulink module Vflux_qds_pu

2
Vflux_qs_pu

1
Vflux_ds_pu

dVflux_qs_pu/dt

dVflux_ds_pu/dt

Subtract1

Subtract

1
s

Integrator1

1
s

Integrator

w_ref

Gain5

w_ref

Gain4

Rs*w_base/Xls

Gain3

w_base

Gain2

Rs*w_base/Xls

Gain1

w_base

Gain

4
Vflux_mq_pu

3
Vflux_md_pu

2
Vqs_pu

1
Vds_pu

Simulink module Vflux_qdr_pu

2
Vflux_qr_pu

1
Vflux_dr_pu

dVflux_qr_pu/dt

dVflux_dr_pu/dt

Subtract1

Subtract

Product1

Product

1
s

Integrator1

1
s

Integrator

Rr*w_base/Xlr

Gain3

w_base

Gain2

Rr*w_base/Xlr

Gain1

w_base

Gain

u-w_ref

Bias

5
Vflux_mq_pu

4
Vflux_md_pu

3
wr [rad/s]

2
Vqr_pu

1
Vdr_pu

Simulink module Vflux_mqd_pu

2
Vflux_mq_pu

1
Vflux_md_pu

Xm_star/Xls

mq: Xm_star / Xls

Xm_star/Xlr

mq: Xm_star / Xlr

Xm_star/Xls

md: Xm_star / Xls

Xm_star/Xlr

md: Xm_star / Xlr

Vflux_mq

Vflux_md

4
Vflux_qr_pu

3
Vflux_qs_pu

2
Vflux_dr_pu

1
Vflux_ds_pu

(Xm_star / Xls) *
Vf lux_ds

(Xm_star / Xlr) *
Vf lux_dr

Vf lux_md_pu

(Xm_star / Xls) *
Vf lux_qs

(Xm_star / Xlr) *
Vf lux_qr

Vf lux_mq_pu

Simulink module Iqds

2
Ids_pu

1
Iqs_pu

1/Xls_pu

qs: 1/Xls_pu

1/Xls_pu

ds: 1/Xls_pu

Vflux_qs - Vflux_mq

Vflux_ds - Vflux_md
4

Vflux_md_pu

3
Vflux_ds_pu

2
Vflux_mq_pu

1
Vflux_qs_pu

Vf lux_md_pu

Vf lux_mq_pu

Vf lux_qs_pu

Vf lux_ds_pu

Iqs_pu

Ids_pu

Simulink module Iqdr

2
Idr_pu

1
Iqr_pu

1/Xlr_pu

qs: 1/Xr_pu

1/Xlr_pu

ds: 1/Xlr_pu

Vflux_qr - Vflux_mq

Vflux_dr - Vflux_md
4

Vflux_md_pu

3
Vflux_dr_pu

2
Vflux_mq_pu

1
Vflux_qr_pu

Vf lux_md_pu

Vf lux_mq_pu

Vf lux_qr_pu

Vf lux_dr_pu

Iqs_pu

Ids_pu

REFERENCES

[1] D. G. Holmes and T. A. Lipo, “Pulse Width Modulation for Power
Converters: Principles and Practice,” M. E. El-Hawary, Ed. New
Jersey: IEEE Press, Wiley-Interscience, 2003, pp. 259–381.

