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 Abstract – This project explores the impact of applying a 
variety of space vector modulated voltage waveforms – a type of 
pulse width modulation – to the stator of a squirrel-cage 
induction machine with a focus on the frequency spectra of the 
resulting voltage, current, and torque waveforms.  Four 
different space vector modulation (SVM) algorithms are 
investigated:  conventional continuous SVM with the active 
vectors centered in each half-carrier cycle,  and 30º, 60º, and 
120º discontinuous SVM.  The effects on the squirrel-cage 
machine are studied for both rated operation and 
overmodulation.   
 

I.  INTRODUCTION 
 

 The problem posed is to find the ripple and harmonic 
frequency content of squirrel-cage induction machine 
characteristics (i.e. current, torque, rotor speed, and voltage) 
when various space vector modulation (SVM) algorithms are 
applied to the stator voltage.  The 30º, 60º, and 120º 
discontinuous modulation techniques as well as continuous 
SVM with active pulses centered in each half-carrier cycle 
were implemented using basic SVM theory from [1].  The 
theory is described in Section II.  Matlab and Simulink 
provided the programming environment to develop these four 
SVM algorithms, and all the documented Matlab code and 
Simulink simulation material may be found in the appendix.  
 

II.  SPACE VECTOR MODULATION IMPLEMENTATION 
 

 This project instigates four space vector modulation 
algorithms – conventional with active vectors placed in the 
middle of the half-cycle of the carrier and the 30º, 60º, and 
120º discontinuous modulation algorithms.  Theory telss us to 
expect the conventional SVM to outperform the 
discontinuous modulation algorithms with respect to 
unwanted harmonic content and ripple.  One may question 
the use of discontinuous modulation when faced with this 
fact.  The reason to use discontinuous modulation is to 
decrease the switching losses through the transistors by 
periodically clamping one of the three phases to a rail to 
produce a zero vector.  The decrease in switching losses 
associated with discontinuous modulation allows the system 
to utilize a higher carrier / switching frequency.  However, 
this analysis only uses one carrier frequency, fc = 15 kHz.  
The carrier frequency governs the period in which 
modulation / switching of the inverter gates occurs.  

 We want the amplitude of our stator voltage, Vs, to be 
460*sqrt(2/3) Vln on each phase for rated operation.  This 
means by virtue of the inverter circuit in Fig. 1 and space 
vector modulation theory that the DC input to the inverter 
must be 
 

)3πsin(
1

2
3

sin VV = ,                            (1) 

 
assuming that the magnitude of each space vector is (2/3)Vin.  
This relation is due to the limit of averaging the two nearest 
space vectors at phases 
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With the input voltage as defined in (1), the peak inverter 
output voltage at each phase θk cannot exceed 460*sqrt(2/3). 
 The voltage source inverter is modeled with ideal switches 
(e.g. Ta1, Ta2, Tb1, Tb2, Tc1, Tc2) and an infinitely stiff voltage 
source at the inverter input terminals.  Ideal switch operation 
assumes no conduction or switching losses in the transistors, 
and the stiff input voltage requires the capacitance, Cin, across 
the inverter input terminals to be infinite.  The inverter is 
pictured in Fig. 1 below. 
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Fig. 1.  Ideal three phase inverter 

 

 The underlying theory behind space vector modulation is 
to apply space vectors as illustrated in Fig. 2 for varying time 
periods in a pattern based on the SVM algorithm.  Six space 
vectors can be obtained in a three phase system through six 
different combinations of open and closed switches in the 
inverter shown in Fig. 1.  Only one switch may be closed per 
phase leg in order to prevent a short circuit.  The space 
vectors represent the complex d-q voltage applied to the 
stator. 



 
Fig.2.  Space vector d,q-axis locations and their 

corresponding closed switches 
 

A.  Summary of how to apply active vectors 
 

 The method of choosing active vectors is the same 
regardless of which SVM algorithm is used.  Basically, a 
command voltage with the desired magnitude and phase is 
compared to all the space vectors – in this project, the 
magnitude and phase of the command voltage were sampled 
at the beginning of each carrier half-cycle.  Two space 
vectors with phases closest to the phase of the command 
voltage are chosen.  Application of a combination of these 
space vectors and the zero vector represent the command 
voltage.  The active vectors are applied for a prescribed time 
period within each half cycle of the carrier based on an 
averaging effect that effectively yields the correct voltage 
phase and magnitude.  The active times for each space vector 
are derived in [1] using a geometric relation which places a 
limit on the output voltage.  This limit is based on the fact 
that the combined active times of each space vector may not 
exceed half of the carrier period.  Manipulation of this 
relation yields the following equations for the space vector 
active times within the carrier half-cycle with a command 
voltage . cmdcmdV θ∠
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The first time, , corresponds to the space vector whose 
phase angle is smaller.   

)(nSVt

 Once the active times are identified, the only part left is to 
identify the placement of the zero vectors.  The position of 
the zero vectors in the carrier half-cycle will influence the 
harmonic content of the voltage waveform which in turn will 

affect machine performance.  Each of the four SVM 
algorithms implemented uses a different zero vector 
arrangement.   

d-axis 
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B.  Summary of modulation techniques chosen 
 

 All of the discontinuous modulation strategies work by 
eliminating one of the zero vectors, causing the active space 
vectors in two successive half carrier intervals to join 
together.  The 120º discontinuous modulation algorithm is the 
most basic of the discontinuous modulation strategies.  This 
algorithm operates by sequentially clamping one phase leg to 
the upper or lower DC rail for one-third of the fundamental 
cycle.  If the upper DC rail is chosen as the clamp, the SV0 
vector is eliminated, but if the lower DC rail is used to clamp, 
the SV7 vector is eliminated from the SVM algorithm.  Since 
the effect of either method is similar, this project only 
implements the 120º discontinuous modulation which clamps 
to the lower DC rail. 
 Both the 30º and 60º discontinuous modulation strategies 
work by alternately eliminating the zero space vectors SV0 
and SV7.  There is only one type of 30º discontinuous 
modulation which is essentially a variant of 60º discontinuous 
modulation.  These methods clamp all the phase legs to the 
opposite DC rails in each 60º segment so as to switch 
between the SV0 and SV7 zero vectors in each 60º segment.  
Clamping occurs in the 60º intervals between voltage peaks.   

There are three different ways of realizing 60º 
discontinuous modulation:  30º lagging clamp, 30º leading 
clamp, and 0º clamp.  The clamp phase offset relates to where 
the non-switching periods of each phase leg are positioned 
relative to the fundamental (command) voltage waveform 
peaks.  Each method calls for a successive inverter phase leg 
to be unmodulated for 60º of the fundamental, alternating 
between clamping to the lower (SV0) or upper (SV7) DC rail 
of the inverter.  The 30º lagging, 60º discontinuous 
modulation strategy was chosen because it is best suited for a 
system with a lagging power factor of 0.866, which is close 
to that of our induction machine.  

The pulse width modulation technique is regularly sampled 
since the voltages are implemented as discrete time 
waveforms.  As mentioned previously, the command voltage 
magnitude and phase is sampled at the beginning of each 
half-carrier cycle.  A look-up table is developed to store the 
active times for the two space vectors in any one of the six 
60º segments.  This is applied to each of the four space vector 
modulation algorithms which were implemented as discretely 
sampled waveforms using Matlab.  The code to develop these 
waveforms is included in the appendix.   
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III.  INDUCTION MACHINE MODEL 
 

 A squirrel-cage induction motor whose equivalent circuit is 
pictured in Fig. 3 is used in this simulation.  The state space 
model represented in (5) and the accompanying equations (6) 
– (8) were used to simulate the performance of such a motor.  
Table II defines the variables used in these equations.  Values 
of the machine parameters can be found in the appendix 
along with a Simulink model of the induction machine.  All 
calculations were carried out in the stator / stationary 
reference frame using flux voltages as the state variable.   
 The Simulink model imports the SVM voltage waveforms 
from Matlab’s workspace since the voltage waveforms were 
created by the Matlab script listed in the appendix rather than 
in the Simulink model itself.   
 

 
Fig. 3.  The d,q equivalent three phase squirrel-cage  

induction machine circuit 
 

 
 

 
TABLE I 

MACHINE VARIABLE DEFINITIONS 

Machine Variables 

mlrls XXX ,,  Stator, rotor, and magnetizing machine 
impedances  (Ω) 

( )mlrlsm XXXX =* Parallel combination of impedances  (Ω) 

rs rr ,  Stator and rotor resistances  (Ω) 

Le TT ,  Electromechanical and load torque (N·m) 

P  Number of machine poles 

J  Machine inertia (kg·m2 = N·m·s2) 

dsqsqds jλλλ −=  Stator d,q flux (V·s) 

dsqsqds jiii −=  Stator d,q current (A) 

dsqsqds
jψψψ −=  Stator d,q flux voltage, [ ]λωψ B= , (V) 

dsqsqds jvvv −=  Stator d,q voltage (V) 

ω,ω,ω Br  Rotor, base (rated), and reference frame 
frequency (rad/s) 

 
IV.  RESULTS 

 

 The following two sub-sections describe the ripple and 
harmonic effects of space vector modulation (SVM) on 
several machine parameters such as the torque, current, and 
voltage.  The first sub-section deals with effects at rated 
operation while the second evaluates the effects of 
overmodulated operation. 
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A.  Rated operation 
 

 Table II below lists the steady-state torque, rotor speed, 
and stator phase a current and voltage in the synchronous 
reference frame.  These values were calculated from the 
machine equations in Section II with a pure 60 Hz sinusoidal 
voltage applied to the stator.  It is assumed that the stator 
voltage peak is aligned with the q-axis of the synchronous 
reference frame.  The steady state solution in Table II occurs 
at rated operation and provides us with a basis for comparison 
between the SVM methods.  The appendix contains 
documented Matlab code used to evaluate the steady state 
solution. 
 

TABLE II 
RATED STEADY-STATE VALUES WITH PURE 60 Hz SINUSOIDAL EXCITATION 

 
 The following two figures illustrate continuous SVM on 
stator phase a in the stationary reference frame as compared 
to a purely sinusoidal voltage waveform at 60 Hz.  Fig. 4 
includes one full 60 Hz cycle whereas Fig. 5 is a close-up 
segment of Fig. 4 to illustrate the switching effects of 
continuous SVM.  All of the graphs appearing in this paper 
were generated using the Matlab scripts in the appendix. 
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Fig. 4.  One cycle of phase a stator voltage in the stationary reference frame 
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Fig. 5.  Zoom-in view of phase a stator voltage 
 

 The subsequent figures depict the torque, rotor speed, and 
stator phase a current and voltage waveforms in the 
synchronous reference frame.  Each of the graphs provides a 
comparison between operation with a 60 Hz sinusoid and the 
SVM voltages.  Fig. 6 presents a key for each of the graphs.  
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60o Discontinuous SVM
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Fig. 6.  Waveform key for Figs. 7 - 10 and 17 - 19 
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Fig. 7.  Phase a stator voltage in the synchronous reference frame 

Voltage  
(pu) 

rω  
(pu) (pu) (pu) 

60 Hz Sinusoid 1.05 0.954 1.07 1.0 



 Notice that the sinusoidal voltage in the synchronous 
reference frame is constant, but the SVM waveforms have 
large instantaneous voltage spikes.  These spikes are what 
cause unwanted harmonics.  The stator current pictured in 
Fig. 8 attenuates these spikes due to the nature of the 
induction machine’s lowpass filtering properties (i.e. 

∫= dt
L
vi ).  Thanks to this filtering by the machine 

inductances, the rotor speed and torque of Figs. 9 and 10 are 
smoothed despite the voltage spikes.  In the presence of 
harmonic losses within the machine, however, the rotor speed 
is lower for SVM operation than sinusoidal in order to supply 
the rated torque. 
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Fig. 8.  Phase a stator current in the stationary reference frame  
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Fig. 9.  Rotor speed 
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 The following table compares the ripple in the torque, rotor 
speed, stator phase a current and voltage waveforms in the 
synchronous reference frame for all SVM algorithms.  A 
trivial but important result is that the voltage ripple for each 
algorithm is identical since every SVM scheme relies on 
switching between the same space vectors.  Comparing the 
SVM performance depends on whether performance is rated 
in terms of torque ripple or rotor speed ripple.  If we rate 
based on rotor speed ripple, continuous SVM outperforms the 
others as one would expect.  But if we choose torque ripple, 
60º discontinuous SVM performs the best contrary to what 
one would predict.  This is due to the fact that the 60º 
discontinuous SVM method chosen is suited for an inductive 
load which decreases the current ripple and in turn decreases 
the torque ripple. 
 

TABLE III 
RIPPLE VALUES FOR ALL SVM ALGORITHMS 

Ripple
Variable

SVM 
e
asi  e

asv  eT  

Algorithm 
(pu) 

rω  
(rad/s) (pu) (pu) 

30º discontinuous 
modulation 0.4626 0.4399 0.527 1.1547 

60º discontinuous 
modulation 0.4229 0.4347 0.4886 1.1547 

120º 
discontinuous 

modulation 
0.5197 0.4369 0.5858 1.1547 

Continuous 
modulation with 
centered active 

vectors 

0.4877 0.2639 0.5752 1.1547 



 Table IV contains the value of ripple as a percentage of the 
sinusoidally-excited steady state value.  This gives an idea of 
how much the modulation technique causes the machine 
characteristics to deviate from the rated value.  Overall, the 
rotor speed does not deviate much, but the torque and current 
fluctuate substantially from the rated steady-state value. 

 
TABLE IV 

RIPPLE AS A PERCENTAGE OF THE STEADY STATE VALUE 

 
 The baseband, carrier, and sideband harmonics of the stator 
voltage, current, and machine torque were compared from 
each voltage excitation method.  Equations (9) and (10) 
define these harmonic components, where f(t) is a waveform 
from which we are extracting the harmonic components and 
fe is the electrical frequency whose period is Te.  All harmonic 
content was calculated using the Matlab code in the appendix.  
Since the sideband harmonics were negligible, they are not 
included in the analysis.  
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 The ensuing three figures depict the torque and stator 
phase a current and voltage harmonics from the stationary 
reference frame.  Each of the graphs provides a comparison 
between operation with a 60 Hz sinusoid and the SVM 
voltages.  Fig. 11 acts as a key for the graphs.  
 Although the harmonic content of the voltage and current 
resulting from sinusoidal excitation only contains the 
fundamental component, it is included as a baseline 
comparison for the SVM techniques.  Interestingly, the 
baseband harmonic content of every one of the space vector 
modulated stator voltages and currents, as seen in Figs. 12 
and 13, is quite similar with different SVM algorithms 

performing better at different harmonic frequencies.  In all 
but the stator voltage, the carrier harmonics of the SVM 
algorithms follow the harmonics of the sinusoid, leading the 
observer to conclude that these are artifacts of digital 
processing.  With a lower carrier frequency or higher 
electrical frequency, we might expect the differences in the 
harmonics to be more exaggerated, but with the carrier 
frequency at 15 kHz, the baseband harmonics of each of the 
algorithms do not distinguish any SVM method as superior 
over another. Ripple % 

Variable 
SVM 

e
asi  e

asv  eT  
(%) 

rω  
(%) 

 

30o Discontinuous SVM

60o Discontinuous SVM

120o Discontinuous SVM
Continuous SVM
Pure Sinusoid  

(%) 
Algorithm 

(%) 

30º discontinuous 
modulation 44.05 0.1223 49.26 1.1547 

60º discontinuous 
modulation 40.28 0.1209 45.65 1.1547 

120º 
discontinuous 

modulation 
49.5 0.1215 54.74 1.1547 

Continuous 
modulation with 
centered active 

vectors 

46.45 0.0734 53.75 1.1547 

Fig. 11. Key for the graphs in Figs. 12 - 14 and 20 - 22 
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Fig. 12.  Harmonics of the stator voltage in the stator reference frame 
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Fig. 13.  Harmonics of the stator current in the stator reference frame 

 

B.  Overmodulation 
 Overmodulation causes the voltage amplitude on each 
phase to saturate at the maximum input voltage.  This in turn 
causes the magnitude of the stator d-q voltage to vary over 
time rather than remain constant as is the case with regular 
inverter operation such as the rated operation just presented.  
The following questions arise when dealing with 
overmodulated operation: 

1) Does the machine current and torque ripple 
increase relative to rated operation? 

2) Does the harmonic response of the space vector 
modulation algorithms degrade substantially from 
rated operation?   

3) Do any of the methods yield better overmodulation 
performance as compared with each other? 

 In the overmodulation regime, the inverter output voltage 
magnitude is limited by the input voltage, but the frequency 
may still increase beyond the rated value.   Because of this,  

 

Fig. 14.  Harmonics of the torque 
 

constant V/Hz operation may not be achieved, and we expect 
the torque to decrease accordingly. A good visualization of 
this effect comes from the fact that the stator and rotor flux 
voltage amplitudes do not reach 1.0 p.u. at the higher 
electrical frequencies with limited voltage.  Induction 
machine theory predicts that the steady state torque will be 
0.7 p.u., according to the relation (11) where ωe is 2πfe.  
 

( )Be

Rated
e

TT
ωω

=                                (11) 

 
For this analysis, both the excitation frequency and command 
voltage on the stator are increased by a factor of 1.5 from 
rated operation.  The load torque is scaled to match (11), and 
the base electrical frequency is held at 60 Hz.  The voltage 
amplitude on each phase is increased according to constant 
V/Hz operation but clipped at the maximum voltage value, as 
seen in Fig. 15, according to the limits of the inverter.   
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Fig. 15.  One cycle of phase a stator voltage in the stationary reference frame 
 

 The subsequent figures depict the torque, rotor speed, and 
stator phase a current and voltage waveforms in the 
synchronous reference frame.  Each of the graphs provides a 
comparison between operation with the sinusoid pictured in 
Fig. 15 and the SVM voltages.  The same key from Fig. 6 in 
the previous section applies to Figs. 16 - 19.  
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Fig. 16.  Phase a stator voltage in the synchronous reference frame 

 
 The first thing that the reader should notice is that the 
stator voltage in the synchronous frame is no longer constant 
because the amplitude of each phase voltage is clipped, 
analogous to the command voltage for the SVM algorithms.  
The performance difference between each of the algorithms is 
more pronounced now, and we can easily see that the 
continuous SVM algorithm outperforms the others with 
respect to torque and rotor speed ripple.  As before, the SVM 

algorithms yield lower rotor speed than the sinusoidal input, 
and the torque and current ripple centers around the 
sinusoidal steady state value which now fluctuates slightly. 
 There are two resounding conclusions to be made from the 
graphs in Figs. 17 - 19.  The first is that the ripple associated 
with the continuous SVM algorithm decreases from rated 
operation, but the most interesting result of all is that the 60º 
discontinuous SVM scheme performs the poorest of all even 
though it was one of the best for rated operation. 
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Fig. 17.  Phase a stator current in the stationary reference frame 
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Fig. 18.  Rotor speed 
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Fig. 19.  Torque  

 

 Since all the voltage waveforms applied to the stator are 
distorted due to clipping of the voltage amplitude, the fast 
fourier transform was taken to compare against the harmonic 
content.  As was expected, the only significant frequency 
response occurs at the baseband harmonics.  Because of this, 
analysis of the carrier harmonics is omitted. 
 The harmonic response of the machine to the 
overmodulated stator voltage is pictured in Figs. 20 - 22.  Fig. 
11 in the previous section may be used as a key for these 
graphs.  We can see that the baseband harmonics are two 
orders of magnitude smaller than the fundamental component 
at 90 Hz, but no SVM algorithm is clearly superior to 
another.  In this case, the ripple parameters give a more 
apparent indication of which algorithm performs better. 
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Fig. 20.  Harmonics of the stator voltage in the stator reference frame 
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Fig. 21.  Harmonics of the stator current in the stator reference frame 
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Fig. 22.  Harmonics of the torque 
 

IV.  CONCLUSION 
 

 Four different space vector modulation (SVM) algorithms 
were investigated:  conventional continuous SVM with the 
active vectors centered in each half-carrier cycle,  and 30º, 
60º, and 120º discontinuous SVM.  The impact of these four 
types of SVM voltage waveforms on a squirrel-cage 
induction machine were compared with each other and with a 
sinusoid.  The resulting voltage, current, and torque ripple 
and harmonic content were used for this comparison at both 
rated operation and overmodulation.  It was found that both 
the 60º discontinuous SVM and continuous SVM methods 
yielded the best results at rated operation even though the 60º 
discontinuous SVM performed the worst in overmodulation.  



For overmodulated operation, the continuous SVM algorithm 
offered the best performance.  If any of the SVM algorithms 
were to be used in a real machine, lowpass filtering the SVM 

voltage waveform would be necessary to decrease the large 
torque, current, and rotor speed ripple. 

 
APPENDIX 

 
Matlab code for space vector modulation generation and analysis 
 

% Project 
% ECE 711 
% 
%      Space Vector Modulation Algorithm 
% 
 
%%  Induction Machine parameters  %% 
% 
Poles       = 4;                     % Number of poles in machine 
Pbase       = 37.285e3;             % 3-phase Base power [W] 
Vload_rms   = 460/sqrt(3);          % Voltage across stator and load [V line-to-neutral] 
Vbase       = Vload_rms*sqrt(2);    % Base voltage is peak value [V line-to-neutral] 
Ibase       = 66.2;                  % Base current is peak value [A] 
Tbase       = 197.9;                  % Base torque [Nm] 
s_rated     = 0.0463;                % Rated slip of machine 
fe          = 1.5 * 60;                % Electrical frequency [Hz] 
we          = 2*pi*fe;               % Electrical speed [elec rad/s] 
w_base      = 2*pi*60;               % Base electrical speed @ 60Hz [elec rad/s] 
w_ref       = 0;                     % Reference frame speed [rad/s] -- stator frame 
Flux_base   = Vbase / w_base;        % Base flux is peak value [V s] 
%% assume pf is lagging b/c induction machine 
pf_rated    = 0.894;                 % Rated power factor at stator (cos Theta_rated) 
Is_rated_pu = 1.2;                   % Rated current [pu] 
Zbase       = 5.67;                  % Base impedence [ohms] 
Rs          = 0.087;                 % Stator resistance [ohms] 
Rs_pu       = 0.0153;                % Stator resistance [pu] 
Rr          = 0.228;                 % Rotor resistance [ohms] 
Rr_pu       = 0.0402;                % Rotor resistance [pu] 
Xls         = 0.302;                 % Stator leakage impedence [ohms] 
Xls_pu      = 0.0532;               % Stator leakage impedence [pu] 
Xlr         = Xls;                   % Rotor leakage impedence [ohms] 
Xlr_pu      = Xls_pu;                % Rotor leakage impedence [pu] 
Xm          = 13.08;                 % Magnetizing impedence [ohms] 
Xm_pu       = 2.31;                  % Magnetizing impedence [pu] 
Xs          = Xls + Xm;              % Stator impedence [ohms] 
Xs_pu       = Xls_pu + Xm_pu;        % Stator impedence [pu] 
Xr          = Xlr + Xm;              % Rotor impedence [ohms] 
Xr_pu       = Xlr_pu + Xm_pu;        % Rotor impedence [pu] 
Lm          = Xm / w_base;           % Magnetizing inductance [H] 
Lr          = Xr / w_base;           % Rotor inductance [H] 
Ls          = Xs / w_base;           % Stator inductance [H] 
Llr         = Xlr / w_base;          % Rotor leakage inductance [H] 
Lls         = Xls / w_base;          % Stator leakage inductance [H] 
Lm_pu       = Lm * (w_base/Zbase);   % Magnetizing inductance [pu] 
Lr_pu       = Lr * (w_base/Zbase);   % Rotor inductance [pu] 
Ls_pu       = Ls * (w_base/Zbase);   % Stator inductance [pu] 
Llr_pu      = Llr * (w_base/Zbase);  % Rotor leakage inductance [pu] 
Lls_pu      = Lls * (w_base/Zbase);  % Stator leakage inductance [pu] 
Xm_star     = ((1/Xm)+(1/Xls)+(1/Xlr))^-1;   % Shorted machine impedence [ohms] 
Xm_star_pu  = Xm_star / Zbase;       % Shorted machine impedence [pu] 
M           = 1.5;                   % Inertial time constant [sec] 
 
%%  Calculate machine inertia  %% 
% 
J           = M * (Poles/2)^2 * Pbase / (w_base^2);  % [Ns] 
 
%%  Calculate the rated angle between stator voltage and current  %% 
% 
pf_angle_rated = acos(pf_rated);                 % [rad] 
  
 



%%  Calculate rated rotor speed  %% 
%% 
wr          = -1 * [(s_rated * we) - we];         % [rad/s] 
 
%%  Calculate load torque constant  %% 
% 
% Tload = k*wr 
% 
% use steady state:  Te_ss - Tload_ss = 0 
%                    k = Tload_ss / wr_ss 
Te_ss_pu     = 1.0500612722482;                   % [pu] 
Te_ss           = Te_ss_pu * Tbase;                  % [Nm] 
k                  = Te_ss / wr;                          % [Nms] 
k_pu         = Te_ss_pu / (wr/w_base);            % [pu] 
 
 
%%  PWM parameters  %% 
% 
Fc           = 15e3;                        % Carrier frequency is 15kHz [Hz] 
Tc           = 1/Fc;                        % Period of carrier signal [sec] 
t_Tc        = 0:(Tc/2):1/fe-(Tc/2);      % Time vector of fundamental  
                                            %   with half cycle time steps [sec] 
 
%%  Command voltage vector  %% 
% 
Vmag        = Vbase * (we/w_base);      % Command voltage magnitude for  
                                            %   constant V/Hz operation [V] 
%  Note:  maximum phase voltage = Vin/sqrt(3) if the magnitude of each 
%         space vector is (2/3)*Vin 
% 
%  Vmax,phase = sin(pi/3) * Vmag,SV = (sqrt(3)/2) * Vmag,SV 
Vphase      = we.*t_Tc;              % Phase of command voltage at  
                                     %   each half cycle of the carrier [rad] 
                                     %   Vqds is aligned with q-axis at t=0 
                                     %   NOTE:  phase is sampled at the  
                                     %          beginning of the half cycle!!!! 
% Vcommand   = Vmag .*exp(j.*Vphase);  % Command voltage in dq coordinates [V] 
                                     %   Cannot use this method if we want 
                                     %   to clip the voltage phase 
                                     %   magnitudes 
a           = exp(j*2*pi/3); 
% Calculate individual phase voltages so we can clip the  
%   phase voltages at the maximum inverter voltage 
Vas          = Vmag * cos(Vphase); 
Iover        = find(Vas > Vbase); 
Vas(Iover)   = Vbase; 
Iunder      = find(Vas < -Vbase); 
Vas(Iunder)  = -Vbase; 
Vbs          = Vmag * cos(Vphase-(2*pi/3)); 
Iover        = find(Vbs > Vbase); 
Vbs(Iover)   = Vbase; 
Iunder       = find(Vbs < -Vbase); 
Vbs(Iunder)  = -Vbase; 
Vcs          = Vmag * cos(Vphase+(2*pi/3)); 
Iover        = find(Vcs > Vbase); 
Vcs(Iover)   = Vbase; 
Iunder       = find(Vcs < -Vbase); 
Vcs(Iunder)  = -Vbase; 
Vcommand    = (2/3)*(Vas+a*Vbs+a^2*Vcs); % Command voltage in dq coordinates [V] 
 
%%  Define space vectors  %% 
% 
% first define the magnitude of each space vector to be able to attain Vmag 
SVmag       = Vmag / sin(pi/3); 
% 
% space vectors 0-7 
SV1         = SVmag * exp(j*0); 
SV2         = SVmag * exp(j*pi/3); 
SV3         = SVmag * exp(j*2*pi/3); 
SV4         = SVmag * exp(j*pi); 



SV5         = SVmag * exp(j*4*pi/3); 
SV6         = SVmag * exp(j*5*pi/3); 
SV0         = 0; 
SV7         = 0; 
 
SV          = [SV1 SV2 SV3 SV4 SV5 SV6 SV7]; 
 
%%  Calculate active times for the two space vectors in each 60deg segment  %% 
% 
% p261 
% Note:  the phase of Space Vector T1 < the phase of Space Vector T2 
%%%  ex. T1 corresponds to SV1 
%%%      T2 corresponds to SV2 
PHASE       = 0:pi/300:pi/3;  % define T1 & T2 with many phases so  
                              %    we can interpolate to Vphase    [rad] 
Vas          = Vmag * cos(PHASE); 
Iover        = find(Vas > Vbase); 
Vas(Iover)   = Vbase; 
Iunder       = find(Vas < -Vbase); 
Vas(Iunder)  = -Vbase; 
Vbs          = Vmag * cos(PHASE-(2*pi/3)); 
Iover        = find(Vbs > Vbase); 
Vbs(Iover)   = Vbase; 
Iunder       = find(Vbs < -Vbase); 
Vbs(Iunder)  = -Vbase; 
Vcs          = Vmag * cos(PHASE+(2*pi/3)); 
Iover        = find(Vcs > Vbase); 
Vcs(Iover)   = Vbase; 
Iunder       = find(Vcs < -Vbase); 
Vcs(Iunder)  = -Vbase; 
Vcmd         = (2/3)*(Vas+a*Vbs+a^2*Vcs);            % Command voltage in dq coordinates [V] 
T1_segment  = abs(Vcmd).*sin((pi/3)-PHASE)*(Tc/2)/(SVmag*sin(pi/3));    % [sec] 
T2_segment  = abs(Vcmd).*sin(PHASE)*(Tc/2)/(SVmag*sin(pi/3));            % [sec] 
% 
% interpolate for all 60deg segments (0-360deg) from the above 60deg segment 
Vphase_mod  = mod(Vphase,pi/3);                             % [rad], vector with a sample for each half cycle period 
T1            = interp1(PHASE, T1_segment, Vphase_mod);   % [sec], vector with a sample for each half cycle period 
T2            = interp1(PHASE, T2_segment, Vphase_mod);   % [sec], vector with a sample for each half cycle period 
 
%%  Calculate space vector modulated voltage waveforms  %% 
% 
samplesPerTc = 80;                            % number of samples in one carrier cycle 
timeStep         = Tc/samplesPerTc;              % amount of time per sample [sec] 
                                                 %   for best results, should be 
                                                 %   multiple of Tc 
t                = 0:timeStep:1/fe-timeStep;      % time vector for SVM [sec] 
NumT1          = floor(T1/timeStep);            % number of samples corresponding to T1  
                                                 %   in each half carrier cycle (Tc/2) 
NumT2   = floor(T2/timeStep);           % [samples] 
NumZero   = (samplesPerTc/2)-(NumT1+NumT2); % number of samples for the 
                                                 %   zero vector      
                                                 
%%  Continuous and (30, 60, 120 degree) Discontinuous Modulated SVM  %% 
% 
% Continuous SVM:  The best harmonic performance occurs by placing   
%   active vectors in the middle of the half cycle, Tc/2 
% 
% 30, 60 degree Discontinuous SVM:  Alternately eliminate zero space  
%   vectors SV0 and SV7 for successive 30, 60 degree segments 
% 
% 120 degree Discontinuous SVM:  Each phase leg in turn is continuously 
%   locked to the upper or lower DC rail for one-third of the  
%   fundamental cycle (120 deg) 
% 
% Therefore, need to split the number of zero vectors to be before and 
%   after the active vectors 
NumZero_begin   = floor(NumZero/2);             % first half of zero vectors 
NumZero_end     = ceil(NumZero/2);               % second half of zero vectors 
% 
% Figure out which active space vectors should be used 



% 
% Define space vectors by 60deg segment and their corresponding active times 
%              T1  |  T2 
%  --------------------- 
%  Segment 1:  SV1   SV2 
%  Segment 2:  SV2   SV3 
%  Segment 3:  SV3   SV4 
%  Segment 4:  SV4   SV5 
%  Segment 5:  SV5   SV6 
%  Segment 6:  SV6   SV1 
% 
Vphase(1)                    = Vphase(1)+0.0000001;       % choose segment for 0deg phase  
Segment                      = ceil(Vphase/(pi/3));        % calculate segment 
ContinuousSVM_Vqds_s         = zeros(1,length(t)); 
discontinuous30_SVM_Vqds_s   = zeros(1,length(t)); 
discontinuous60_SVM_Vqds_s   = zeros(1,length(t)); 
discontinuous120_SVM_Vqds_s  = zeros(1,length(t)); 
% 
% Chose clamping reference for the 30, 60 degree discontinuous SVM algorithms 
deg30_Sequence   = [0 7 7 0 0 7 7 0 0 7 7 0];     % Choose rail (SV0 or SV7) for each  
                                                 %   30 deg. segment 
I_30degClamp     = floor(Vphase / (pi/6)) + 1;    % Identify the 30 deg. segment at  
                                                 %   each half cycle of the carrier 
deg30_Clamp      = deg30_Sequence(I_30degClamp); % Assign the clamping rail for each  
                                                 %   half cycle of the carrier 
  % Implement the 30 deg. lagging clamp for 60deg discontinuous SVM 
deg60_Sequence   = [7 0 7 0 7 0];                 % Choose rail (SV0 or SV7) for each  
                                                 %   60 deg. segment 
I_60degClamp     = floor(Vphase / (pi/3)) + 1;    % Identify the 60 deg. segment at  
                                                 %   each half cycle of the carrier 
deg60_Clamp      = deg60_Sequence(I_60degClamp); % Assign the clamping rail for each  
                                                 %   half cycle of the carrier 
for halfCycle=1:length(t_Tc) 
  Vec1       = Segment(halfCycle); 
  Vec2       = mod(Segment(halfCycle),6)+1; 
  Ibegin     = ((halfCycle-1)*samplesPerTc/2)+1;  % index of beginning of this  
                                                 %    half cycle of the carrier 
  Iend       = halfCycle*samplesPerTc/2;          % index of ending of this  
                                                 %    half cycle of the carrier 
  ContinuousSVM_Vqds_s(Ibegin:Iend) = ... 
      [SV0*ones(1,NumZero_begin(halfCycle)) ... 
      SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
      SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
      SV0*ones(1,NumZero_end(halfCycle))]; 
   
  if (mod(halfCycle,2) == 1)            % in first half of carrier period 
    if (deg30_Clamp(halfCycle) == 0)            % 30deg discont. SVM:  tied to lower dc rail, SV0 
      discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV0*ones(1,NumZero(halfCycle)) ... 
          SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle))]; 
    else                                   % 30deg discont. SVM:  tied to upper dc rail, SV7 
      discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
          SV0*ones(1,NumZero(halfCycle))]; 
    end 
     
    if (deg60_Clamp(halfCycle) == 0)           % 60deg discont. SVM:  tied to lower dc rail, SV0 
      discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV0*ones(1,NumZero(halfCycle)) ... 
          SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle))]; 
    else                                   % 60deg discont. SVM:  tied to upper dc rail, SV7 
      discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
          SV0*ones(1,NumZero(halfCycle))]; 
    end 
    



    % Lower DC rail is the clamping reference:  SV0 at beginning of half cycle    
    discontinuous120_SVM_Vqds_s(Ibegin:Iend) = ... 
        [SV0*ones(1,NumZero(halfCycle)) ... 
        SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
        SV(Vec2)*ones(1,NumT2(halfCycle))];  
     
  else                                     % in second half of carrier period 
    if (deg30_Clamp(halfCycle) == 0)            % 30deg discont. SVM:  tied to lower dc rail, SV0 
      discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
          SV0*ones(1,NumZero(halfCycle))]; 
    else                                   % 30deg discont. SVM:  tied to upper dc rail, SV7 
      discontinuous30_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV0*ones(1,NumZero(halfCycle)) ... 
          SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle))]; 
    end 
     
    if (deg60_Clamp(halfCycle) == 0)           % 60deg discont. SVM:  tied to lower dc rail, SV0 
      discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
          SV0*ones(1,NumZero(halfCycle))]; 
    else                                   % 60deg discont. SVM:  tied to upper dc rail, SV7 
      discontinuous60_SVM_Vqds_s(Ibegin:Iend) = ... 
          [SV0*ones(1,NumZero(halfCycle)) ... 
          SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
          SV(Vec2)*ones(1,NumT2(halfCycle))]; 
    end 
          
    % Lower DC rail is the clamping reference:  SV0 at end of half cycle    
    discontinuous120_SVM_Vqds_s(Ibegin:Iend) = ... 
        [SV(Vec1)*ones(1,NumT1(halfCycle)) ... 
        SV(Vec2)*ones(1,NumT2(halfCycle)) ... 
        SV0*ones(1,NumZero(halfCycle))]; 
  end 
end 
% clear SV* Ibegin Iend Vec1 Vec2 Num* deg* I_* T1* T2* Segment ... 
%     halfCycle Vphase* PHASE timeStep samplesPerTc; 
 
%  Confirm correct waveform! 
%figure, plot(t, real(Vqds_s)), hold on, plot(t_Tc, real(Vcommand), 'r'), hold off  
 
%%  Place in format for use in Simulink  %% 
% 
numCycles                                = 200;      % want 200 cycles of fundamental waveform 
%% for some reason, I defined Vqds_s as negative sequence... just reverse signal 
continuousSVM.signals.values             = repmat(ContinuousSVM_Vqds_s(end:-1:1)', [numCycles, 1]);   
continuousSVM.time                       = zeros(numCycles*length(t), 1); 
continuousSVM.time(1:length(t))         = t'; 
continuousSVM.signals.dimensions         = 1; 
 
discontinuous30_SVM.signals.values       = repmat(discontinuous30_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);   
discontinuous30_SVM.time                 = zeros(numCycles*length(t), 1); 
discontinuous30_SVM.time(1:length(t))    = t'; 
discontinuous30_SVM.signals.dimensions   = 1; 
 
discontinuous60_SVM.signals.values       = repmat(discontinuous60_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);   
discontinuous60_SVM.time                 = zeros(numCycles*length(t), 1); 
discontinuous60_SVM.time(1:length(t))    = t'; 
discontinuous60_SVM.signals.dimensions   = 1; 
 
discontinuous120_SVM.signals.values      = repmat(discontinuous120_SVM_Vqds_s(end:-1:1)', [numCycles, 1]);   
discontinuous120_SVM.time                = zeros(numCycles*length(t), 1); 
discontinuous120_SVM.time(1:length(t))   = t'; 
discontinuous120_SVM.signals.dimensions  = 1; 
 
for i=2:numCycles 
  Ibegin    = ((i-1)*length(t))+1;      % index of beginning of this  



                                                %    fundamental cycle  
  Iend        = i*length(t);                     % index of ending of this  
                                                %    fundamental cycle  
  continuousSVM.time(Ibegin:Iend)         = continuousSVM.time(Ibegin-1) + t'; 
  discontinuous30_SVM.time(Ibegin:Iend)  = discontinuous30_SVM.time(Ibegin-1) + t'; 
  discontinuous60_SVM.time(Ibegin:Iend)   = discontinuous60_SVM.time(Ibegin-1) + t'; 
  discontinuous120_SVM.time(Ibegin:Iend)  = discontinuous120_SVM.time(Ibegin-1) + t'; 
end 
clear Ibegin Iend numCycles i; 
 
nullSVM.time = 0; 
nullSVM.signals.values = 1+j; 
nullSVM.signals.dimensions = 1; 
 
 
% Graph one cycle of continuous SVM 
Vas1        = Vmag * cos(we.*t); 
Iover       = find(Vas1 > Vbase); 
Vas1(Iover) = Vbase; 
Iunder      = find(Vas1 < -Vbase); 
Vas1(Iunder)= -Vbase; 
figure('Units', 'inches', 'Position', [4,4,3.45,3.45]), ... 
    plot(t, real(ContinuousSVM_Vqds_s)./Vbase, 'k-.'), hold on, ... 
    plot(t, Vas1/Vbase, 'c-', 'LineWidth', 2), ... 
    title('Phase a stator voltage in the stator frame, V ^s_a_s'), ... 
    xlabel('Time (sec)'), ylabel('Voltage (pu)'), axis tight, grid, ... 
    legend('Continuous SVM', 'Pure Sinusoid', 'Location', 'BestInside'), hold off; 
 
 
 
%%  steady state matrix:  induction machine  %% 
% 
%  use variables from PWM_SVM.m 
% 
%  steady state values with w_ref=2*pi*60 Hz 
%  sinusoidal voltage input Vbase 
% 
w_ref = we; 
disp('w_ref = 120*pi') 
 
SSmatrix = [Rs               -(w_ref*Ls)     0                -(w_ref*Lm); 
             w_ref*Ls         Rs               w_ref*Lm         0; 
             0                (wr-w_ref)*Lm    Rr               (wr-w_ref)*Lr; 
             (w_ref-wr)*Lm    0                (w_ref-wr)*Lr    Rr]; 
InVector = [0;  
            Vbase;  
            0;  
            0];  %% assume Vqds is aligned with the q-axis in the sync. ref. frame 
 
CurrentVector = SSmatrix^-1 * InVector; 
    Ids = CurrentVector(1);     Ids_pu      = Ids/Ibase; 
    Iqs = CurrentVector(2);     Iqs_pu      = Iqs/Ibase; 
    Idr = CurrentVector(3);     Idr_pu      = Idr/Ibase; 
    Iqr = CurrentVector(4);     Iqr_pu      = Iqr/Ibase; 
 
Te       = (3/2)*(Poles/2)*Lm*(-Ids*Iqr + Iqs*Idr); 
Te_pu    = Te/Tbase; 
flux_dr  = Lr*Idr + Lm*Ids;      flux_dr_pu  = flux_dr/Flux_base;      
flux_qr  = Lr*Iqr + Lm*Iqs;      flux_qr_pu  = flux_qr/Flux_base; 
flux_r   = sqrt(flux_dr^2 + flux_qr^2); 
flux_r_pu   = flux_r/Flux_base; 
 
 
 
 
 
function [FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] = ... 
    GetHarmonics(signalAmplitude, signalTime, w_fund, w_carrier, numHarmonics) 
% 
%function [FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] =  



%    GetHarmonics(signalAmplitude, signalTime, numHarmonics) 
% 
%   Compute harmonics of signals created in the Simulink program 
%    should directly contain all 60Hz harmonics 
% 
% INPUT: 
%   signalAmplitude      =  amplitude of the signal 
%   signalTime           =  time in seconds corresponding to the signal 
%   w_fund               =  fundamental component freq [rad/s] 
%   w_carrier            =  carrier freq [rad/s] 
%   numHarmonics         =  number of harmonics to calculate  
% 
% OUTPUT: 
%   FundCompHarmonics   =  harmonics 1-numHarmonics of the fundamental in signalAmplitude 
%   CarrierHarmonics     =  harmonics 1-numHarmonics of the carrier in signalAmplitude 
%   SidebandHarmonics    =  harmonics that are both multiples of the carrier 
%                            and fundamental in signalAmplitude 
%                            (rows == fund. harmonics) 
%                            (columns == carrier harmonics) 
% 
 
FundCompHarmonics    = zeros(1,numHarmonics); 
CarrierHarmonics     = zeros(1,numHarmonics); 
SidebandHarmonics    = zeros(2*numHarmonics,numHarmonics); 
 
%%  Calculating the harmonics  %% 
% 
for n=1:numHarmonics 
  FundCompHarmonics(n)  = (1/length(signalAmplitude)) * sum(signalAmplitude .* exp(j*n*w_fund.*signalTime)); 
  CarrierHarmonics(n)   = (1/length(signalAmplitude)) * sum(signalAmplitude .* exp(j*n*w_carrier.*signalTime)); 
   
  %%  Sideband Harmonics are negligible   
%   i=1; 
%   for m=[-numHarmonics:-1 1:numHarmonics] 
%     SidebandHarmonics(i,n) = (1/length(signalAmplitude)) * ... 
%         sum(signalAmplitude .* exp(j*(n*w_carrier + m*w_fund).*signalTime)); 
%     i = i+1; 
%   end 
end 
 
 
 
function [signal_power, f] = TakeFFT(signalAmplitude, signalTime) 
% 
%function [signal_power, f] = TakeFFT(signalAmplitude, signalTime) 
% 
%   Compute FFT of signals created in the Simulink program 
%   FFT should directly contain all 60Hz harmonics 
% 
 
Fs = 2^14; %Hz 
% interpolate signalAmplitude to ensure consistent sampling period 
signalAmplitude = interp1(signalTime, signalAmplitude, 0:1/Fs:1);   
 
fft_length  = 2^14;                  % fft is fastest for powers of 2 
signal_fft  = fft(signalAmplitude, fft_length);                        
signal_power  = signal_fft .* conj(signal_fft) / fft_length; 
f = Fs*(-(fft_length/2):(fft_length/2)-1)/fft_length; 
signal_power  = fftshift(signal_power); 
 
 
 
 
 
 
 
function saveVars(Name, Notes) 
% 
%  Save important variables from Simulink simulation, all in pu 
% 



%  INPUT:   
%       Name   = name of .mat file to save to 
%       Notes  = optional variable to describe simulation 
 
Idr_s = SIM_Idr_s; 
Ids_s = SIM_Ids_s; 
Iqr_s = SIM_Iqr_s; 
Iqs_s = SIM_Iqs_s; 
Te = SIM_Te; 
Tload = SIM_Tload_pu; 
Vds_s = SIM_Vds_s; 
Vflux_dr = SIM_Vflux_dr_pu; 
Vflux_ds = SIM_Vflux_ds_pu; 
Vflux_qr = SIM_Vflux_qr_pu; 
Vflux_qs = SIM_Vflux_qs_pu; 
Vqs_s = SIM_Vqs_s; 
wr = SIM_wr_pu; 
 
% if nargin < 2 
%   Notes = {'All variables in pu'}; 
% end 
 
eval(['save ''C:\Documents and Settings\Jennifer Vining\Desktop\JennStuff\ECE711\Project\' Name '.mat'' ' ... 
    'Idr_s Ids_s Iqr_s Iqs_s Te Tload Vds_s Vflux_dr Vflux_ds Vflux_qr Vflux_qs Vqs_s wr Notes']); 
 
 
 
% 
% Compute FFT of voltage, current, and torque from the  
%   continuous and discontinuous SVM algorithms developed in Simulink 
%   simulation 'Project.mdl' 
% 
%  FFT should directly contain all 60Hz harmonics 
% 
 
% Choose an operating regime and input the correct excitation frequency 
%OperatingRegime = 'SteadyState';  f_scale = 1; 
OperatingRegime  = 'Overmod';  f_scale = 1.5; 
f_fund            = f_scale*60;        % fundamental component frequency [Hz] 
w_fund            = 2*pi*f_fund;       % fundamental component frequency [rad/s] 
f_carrier         = 15e3;              % carrier frequency [Hz] 
w_carrier         = 2*pi*f_carrier;    % carrier frequency [rad/s] 
numHarmonics     = 15;                % number of harmonics to compute 
 
VoltageMethod = {'30^o Discontinuous SVM', ... 
    '60^o Discontinuous SVM', '120^o Discontinuous SVM', ... 
    'Continuous SVM', 'Pure Sinusoid'}; 
signalPrefix = {'discont30', 'discont60', 'discont120', 'cont', 'sinusoid'}; 
FileName = {'30degDiscontinuousSVM', '60degDiscontinuousSVM', '120degDiscontinuousSVM', ... 
    'continuousSVM', 'sinusoid'}; 
signals = {'Iqs_s', 'Iqr_s', 'Vqs_s', 'Te', 'wr'}; 
signals2 = {'Ids_s', 'Idr_s', 'Vds_s', 'Te', 'wr'}; 
titles = [[{'Phase a stator current in synchronous frame, i    ^e_a_s'}, {'i ^s_a_s'}], 
    [{'Phase a rotor current in the synchronous frame, i    ^e_a_r'}, {'i ^s_a_r'}], 
    [{'Phase a stator voltage in the synchronous frame, V   ^e_a_s'}, {'V ^s_a_s'}], 
    [{'Generated machine torque, T_e', 'T_e'}], 
    [{'Rotor speed, \omega_r', '\omega_r'}]]; 
titles2 = [{['Over four ' num2str(f_fund) ' Hz cycles']}, 
    {['Over four ' num2str(f_fund) ' Hz cycles']}, 
    {['Over one ' num2str(f_fund) ' Hz cycle']}, 
    {['Over four ' num2str(f_fund) ' Hz cycles']}, 
    {['Over four ' num2str(f_fund) ' Hz cycles']}]; 
ylabels = {'Current (pu)', 'Current (pu)', 'Voltage (pu)', 'Torque (pu)', 'Rotor Speed (pu)'}; 
ylabels2 = {'Current', 'Current', 'Voltage', 'Torque', 'Rotor Speed'}; 
 
lines = {'''b-''', '''r--''', '''m:''', '''k-.''', '''c-'', ''LineWidth'', 2'}; 
markers = {'b.', 'rd', 'mx', 'ko', 'cs'}; 
 
%%  Construct figure for the plot of each VoltageMethod, signals combination  %% 
% 



% for i=1:length(VoltageMethod) 
%   for k=1:length(signals) 
%     figure('Units', 'inches', 'Position', [4,4,3.45,3.45]); 
%   end 
% end 
 
%%  Construct figure for FFT and harmonic plots of all VoltageMethods for each signal  %% 
% 
for k=1:length(signals) 
  eval([signals{k} ' = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']); 
  title({ titles{k,1}, titles2{k} }), 
  eval(['ylabel(''' ylabels{k} '''),']); 
  xlabel('Time (sec)'), grid on, box on; 
 
  eval([signals{k} '_fft = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,5.15]);']); 
  eval(['title({''Frequency Spectrum of ' titles{k,1} ''', ''' titles{k,2} '''}),']); 
  eval(['ylabel(''Magnitude of ' ylabels{k} '''),']); 
  xlabel('Frequency (Hz)'), grid on, set(gca, 'YScale', 'log'); 
   
  eval([signals{k} '_fundHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']); 
  title({'Fundamental Component and Baseband', ['Harmonics of ' titles{k,2}] }), 
  eval(['ylabel(''Magnitude of ' ylabels2{k} ' Harmonics (pu)''),']); 
  xlabel(['Harmonic Number of the Fundamental (f  _f_u_n_d = ' num2str(f_fund) ' Hz)']), ... 
      grid on, set(gca, 'YScale', 'log'); 
 
  eval([signals{k} '_carrierHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,3.45]);']); 
  eval(['title({''Carrier Harmonics of ' titles{k,2} '''}),']); 
  eval(['ylabel(''Magnitude of ' ylabels2{k} ' Harmonics (pu)''),']); 
  xlabel(['Harmonic Number of the Carrier (f  _c_a_r_r_i_e_r = ' num2str(f_carrier/1000) ' kHz)']), ... 
      grid on, set(gca, 'YScale', 'log'); 
   
  eval([signals{k} '_harmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,6.86]);']); 
  subplot(2,1,1), title({'Fundamental Component and Baseband', ['Harmonics of ' titles{k,2}] }), 
    ylabel(['Magnitude of ' ylabels2{k} ' Harmonics (pu)']), 
    xlabel(['Harmonic Number of the Fundamental (f  _f_u_n_d = ' num2str(f_fund) ' Hz)']), ... 
      grid on, box on, set(gca, 'YScale', 'log'); 
  subplot(2,1,2), title(['Carrier Harmonics of ' titles{k,2} ]), 
    ylabel(['Magnitude of ' ylabels2{k} ' Harmonics (pu)']), 
    xlabel(['Harmonic Number of the Carrier (f  _c_a_r_r_i_e_r = ' num2str(f_carrier/1000) ' kHz)']), ... 
      grid on, box on, set(gca, 'YScale', 'log') 
 
  %%  Sideband Harmonics are negligible   
%   eval([signals{k} '_sideHarmonics = figure(''Units'', ''inches'', ''Position'', [4,4,3.45,5.15]);']); 
%   eval(['title({''Sideband Harmonics of ' titles{k,1} ''', ''' titles{k,2} '''}),']); 
%   eval(['zlabel(''Magnitude of ' ylabels{k} '''),']); 
%   xlabel(['Harmonic Number of the Fundamental (f_f_u_n_d = ' num2str(f_fund) ' Hz)']),  
%   ylabel(['Harmonic Number of the Carrier (f_c_a_r_r_i_e_r = ' num2str(f_carrier) ' Hz)']), 
%   grid on, set(gca, 'ZScale', 'log'); 
end 
   
for i=1:length(VoltageMethod) 
  for k=1:length(signals) 
    eval([signalPrefix{i} ' = load(''C:\Documents and Settings\Jennifer Vining\Desktop\' ... 
      'JennStuff\ECE711\Project\' OperatingRegime '_' FileName{i} '.mat'', ''' signals{k} ''');']); 
     
%     figure(k + length(signals)*(i-1)), hold on, eval(['plot(' signalPrefix{i} '.' signals{k} ... 
%         '.time, ' signalPrefix{i} '.' signals{k} '.signals.values),']), hold off; 
%     eval(['title({''' VoltageMethod{i} ':  '  titles{k,1} ''', ''' titles{k,2} ... 
%         '''}),']); 
%     eval(['ylabel(''' ylabels{k} '''),']); 
%     xlabel('Time (sec)'), grid on; 
     
    if k~=3  % plot four f_fund cycles for i, Te and wr 
      endTime = 0.5 + 4/f_fund; 
    else 
      endTime = 0.5 + 1/f_fund; 
    end 
    %endTime = 1.0;  % expand the end time for ripple analysis 
    eval(['Itime = find(' signalPrefix{i} '.' signals{k} '.time >= 0.5 & ' ... 
        signalPrefix{i} '.' signals{k} '.time <= endTime);']); 



     
    % Calculate ripple of each signal 
    eval(['ripple = max(' signalPrefix{i} '.' signals{k} '.signals.values(Itime))' ... 
        '-min(' signalPrefix{i} '.' signals{k} '.signals.values(Itime));']); 
    disp([signalPrefix{i} '.' signals{k} ' ripple = ' num2str(ripple)]); 
     
    if k<=3  % move current and voltage into the synchronous frame 
      eval(['f_ds = load(''C:\Documents and Settings\Jennifer Vining\Desktop\' ... 
          'JennStuff\ECE711\Project\' OperatingRegime '_' FileName{i} '.mat'', ''' signals2{k} ''');']); 
       
      eval(['f_qd_e= (' signalPrefix{i} '.' signals{k} ... 
          '.signals.values - j*f_ds.' signals2{k} '.signals.values) .* exp(-j*w_fund.*' ... 
          signalPrefix{i} '.' signals{k} '.time);']); 
      eval(['figure(' signals{k} '), hold on']); 
      eval(['plot(' signalPrefix{i} '.' signals{k} ... 
          '.time(Itime)-0.5, real(f_qd_e(Itime)), ' lines{i} '),']), axis tight, hold off; 
       
      % Calculate ripple of each signal 
      ripple = max(real(f_qd_e(Itime)))-min(real(f_qd_e(Itime))); 
      disp([signalPrefix{i} '.' signals{k} ' SYNC REF FRAME ripple = ' num2str(ripple)]); 
    else 
      eval(['figure(' signals{k} '), hold on']); 
      eval(['plot(' signalPrefix{i} '.' signals{k} '.time(Itime)-0.5, ' signalPrefix{i} ... 
        '.' signals{k} '.signals.values(Itime), ' lines{i} '),']), axis tight, hold off; 
    end 
 
     
    %% Take the FFT of signals 
    eval(['[signal_power, f] = TakeFFT(' signalPrefix{i} '.'  signals{k} ... 
        '.signals.values, ' signalPrefix{i} '.' signals{k} '.time);']); 
    eval(['figure(' signals{k} '_fft), hold on']); 
    eval(['plot(f, signal_power, ' lines{i} '), hold off;']); 
     
    %% Get the harmonic content 
 %   if i ~= 5  % do not take harmonic content of pure sinusoid, trivial soln 
      eval(['[FundCompHarmonics, CarrierHarmonics, SidebandHarmonics] = ' ... 
          'GetHarmonics(' signalPrefix{i} '.'  signals{k} ... 
          '.signals.values(Itime), ' signalPrefix{i} '.' signals{k} '.time(Itime), ' ... 
          'w_fund, w_carrier, numHarmonics);']); 
       
      eval(['figure(' signals{k} '_fundHarmonics)']), hold on,  
      plot(1:numHarmonics, abs(FundCompHarmonics), markers{i}, 'LineWidth', 1), hold off; 
       
      eval(['figure(' signals{k} '_carrierHarmonics)']), hold on,  
      plot(1:numHarmonics, abs(CarrierHarmonics), markers{i}, 'LineWidth', 1), hold off; 
       
      eval(['figure(' signals{k} '_harmonics)']), hold on, 
      subplot(2,1,1), hold on, plot(1:numHarmonics, abs(FundCompHarmonics), markers{i}, 'LineWidth', 1), hold off; 
      subplot(2,1,2), hold on, plot(1:numHarmonics, abs(CarrierHarmonics), markers{i}, 'LineWidth', 1), hold off; 
      %%  Sideband Harmonics are negligible   
%       eval(['figure(' signals{k} '_sideHarmonics)']), hold on; 
%       x = [-numHarmonics:-1 1:numHarmonics]; 
%       y = ones(1,2*numHarmonics); 
%       for n=1:numHarmonics 
%         plot3(x, n*y, abs(SidebandHarmonics(1:2*numHarmonics, n)), markers{i}, ... 
%             'LineWidth', 1); 
%       end 
%       hold off; 
  %  end 
  end 
end 
 
for k=1:length(signals) 
   eval(['figure(' signals{k} ');']); 
   legend(VoltageMethod, 'Location', 'SouthOutside'); 
    
  eval(['figure(' signals{k} '_fft);']); 
  legend(VoltageMethod, 'Location', 'SouthOutside'); 
 
   eval(['figure(' signals{k} '_fundHarmonics);']); 



   legend(VoltageMethod(1:5), 'Location', 'SouthOutside'); 
 
   eval(['figure(' signals{k} '_carrierHarmonics);']); 
   legend(VoltageMethod(1:5), 'Location', 'SouthOutside'); 
 
   %%  Sideband Harmonics are negligible   
   eval(['figure(' signals{k} '_sideHarmonics);']); 
   legend(VoltageMethod(1:4), 'Location', 'SouthOutside');   
end 
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Simulink module Vqds_pu sinusoidal waveform 

make negative
(d component is neg)

2
Vds_pu

1
Vqs_pu

1

phase C:  cos Wave

This lower block is for 
clipping the input voltage 
when in overmodulation

phase B:  cos Wave

phase A:  cos Wave

eu

exp(j*we*t)

Saturation2

Saturation1

Saturation

Manual Switch

2*a^2/3

Gain4

2*a/3

Gain3

2/3

Gain2

j*we

Gain1

-1

Re(u)
Im(u)

Complex to
Real-Imag

Clock

Add

Ov ermodulation:
note that this works f or regular operation as well

Regular operation

 
 

 
Simulink module wr_rad_s 

Tload  [pu]

1
wr

w_base

w_base
(change to rad/s)

wr

rated wr

Te - Tload

Manual Switch:
Choose load characteristic

Manual Switch:
Choose between const. and 

dynamic rotor speed

k_pu

Load Torque const

1
s

Integrator

1/M

1/M

2
Tload_pu

1
Te_pu

Te  [pu]
wr [pu]d(wr_pu)/dtTe_pu - Tload_pu

Tload [pu]

 
 
 
Simulink module Te_pu 

1
Te_puIqs*Vflux_ds

- Ids*Vflux_qs

Iqs*Vflux_ds

Ids*Vflux_qs
4

Vflux_qs_pu

3
Ids_pu

2
Vflux_ds_pu

1
Iqs_pu

Vf lux_qs_pu

Vf lux_ds_pu

Iqs_pu

Ids_pu

Te_pu

 



Simulink module Vqds_pu SVM waveform 

change to pu,
also make negative

Control Input = 1

Control Input = 2

Control Input = 3

Control Input = 4

2
Vds_pu

1
Vqs_pu

Multiport Switch:
If the control input is 1, then the first data input is 

passed through to the output. If the control input is 2, 
then the second data input is passed through to the output, etc.

-1/Vbase

4

Control Input

Re(u)
Im(u)

Complex to
Real-Imag

1/Vbase

Change to pu

continuousSVM

(From Workspace)
Continuous SVM

discontinuous60_SVM

(From Workspace)
60 Deg. Discontinuous SVM

discontinuous30_SVM

(From Workspace)
30 Deg. Discontinuous SVM

discontinuous120_SVM

(From Workspace)
120 Deg. Discontinuous SVM

Space Vector Modulation
Voltage Sources  

 
 
Simulink module Vflux_qds_pu 

2
Vflux_qs_pu

1
Vflux_ds_pu

dVflux_qs_pu/dt

dVflux_ds_pu/dt
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Integrator1
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Integrator
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Vflux_mq_pu
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Simulink module Vflux_qdr_pu 

2
Vflux_qr_pu

1
Vflux_dr_pu

dVflux_qr_pu/dt

dVflux_dr_pu/dt
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Product
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Integrator1
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Integrator
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Vflux_mq_pu

4
Vflux_md_pu

3
wr  [rad/s]

2
Vqr_pu

1
Vdr_pu

 
 
 

Simulink module Vflux_mqd_pu 

2
Vflux_mq_pu

1
Vflux_md_pu

Xm_star/Xls

mq:  Xm_star / Xls

Xm_star/Xlr

mq:  Xm_star / Xlr

Xm_star/Xls

md:  Xm_star / Xls

Xm_star/Xlr

md:  Xm_star / Xlr

Vflux_mq

Vflux_md

4
Vflux_qr_pu

3
Vflux_qs_pu

2
Vflux_dr_pu

1
Vflux_ds_pu

(Xm_star / Xls) *
Vf lux_ds

(Xm_star / Xlr) *
Vf lux_dr

Vf lux_md_pu

(Xm_star / Xls) *
Vf lux_qs

(Xm_star / Xlr) *
Vf lux_qr

Vf lux_mq_pu

 



Simulink module Iqds 

2
Ids_pu

1
Iqs_pu

1/Xls_pu

qs:  1/Xls_pu

1/Xls_pu

ds:  1/Xls_pu

Vflux_qs - Vflux_mq

Vflux_ds - Vflux_md
4

Vflux_md_pu

3
Vflux_ds_pu

2
Vflux_mq_pu

1
Vflux_qs_pu

Vf lux_md_pu

Vf lux_mq_pu

Vf lux_qs_pu

Vf lux_ds_pu

Iqs_pu

Ids_pu

 
 
 
 
Simulink module Iqdr 

2
Idr_pu

1
Iqr_pu

1/Xlr_pu

qs:  1/Xr_pu

1/Xlr_pu

ds:  1/Xlr_pu

Vflux_qr - Vflux_mq

Vflux_dr - Vflux_md
4

Vflux_md_pu

3
Vflux_dr_pu

2
Vflux_mq_pu

1
Vflux_qr_pu

Vf lux_md_pu

Vf lux_mq_pu

Vf lux_qr_pu

Vf lux_dr_pu

Iqs_pu

Ids_pu
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