Features
• High output current
• Pump-up circuit
• Low dissipation
• Minimum number of external parts required
• Direct drive to the deflection coils
• Internal thermal shutdown circuit

Applications
• Power Amplifier
• Thermal Protection
• Flyback Generator

Description
The KA2142 is a monolithic linear IC designed for color TV and monitor vertical deflection output. It is intended for direct drive of the deflection coils with a high efficiency.

internal Block Diagram
Pin Assignments

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Pin Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vin (-)</td>
<td>I</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>2</td>
<td>Vcc(L)</td>
<td>I</td>
<td>Supply Voltage</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>N.C.</td>
</tr>
<tr>
<td>4</td>
<td>F.G</td>
<td>O</td>
<td>Flyback Generator</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>VO</td>
<td>O</td>
<td>Output</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>N.C.</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>N.C.</td>
</tr>
<tr>
<td>9</td>
<td>Vcc(H)</td>
<td>I</td>
<td>Output Stage Supply Voltage</td>
</tr>
<tr>
<td>10</td>
<td>Vin (+)</td>
<td>I</td>
<td>Non-Inverting Input</td>
</tr>
</tbody>
</table>
PIN Definitions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>WAVEFORM</th>
<th>EQUIVALENT CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inverting Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Voltage Supply</td>
<td>DC</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Flyback Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>DC</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Output Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Output Stage Voltage Supply</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Non-Inverting Input</td>
<td>DC</td>
<td>-</td>
</tr>
</tbody>
</table>
Absolute Maximum Rating (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc(L)</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>Flyback Peak Voltage</td>
<td>V6, V9</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Flyback Generator Voltage</td>
<td>V6</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V1, V10</td>
<td>V cc(L) - 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Peak - to - Peak Output Current*</td>
<td>I0(p-p)</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Peak - to - Peak Flyback Current</td>
<td>I4(p-p)</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Total Power Dissipation (Ta = 25°C)</td>
<td>PD</td>
<td>15</td>
<td>W</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-40 ~ +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>Topt</td>
<td>-25 ~ +70</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Maximum output peak to peak current in TV or Monitor set.

Thermal Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Between Junction and Case</td>
<td>Rth (j-c)</td>
<td>12</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance Between Junction and Ambient</td>
<td>Rth (j-a)</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Shut down Temperature</td>
<td>Tsd</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristic

(Refer to the test circuit, V cc(L)= 35V, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc(L)</td>
<td>-</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>Vcc(H)</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Supply Quiescent Current</td>
<td>ICC(L)</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>16</td>
<td>mA</td>
</tr>
<tr>
<td>Supply Quiescent Current</td>
<td>ICC(H)</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>36</td>
<td>mA</td>
</tr>
<tr>
<td>Pin4 Saturation Voltage to Gnd</td>
<td>V4SAT</td>
<td>I4 = 20mA</td>
<td>-</td>
<td>0.5</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Saturation Voltage to supply</td>
<td>VHSAT</td>
<td>I6 = -1.2A</td>
<td>-</td>
<td>1.6</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>Saturation Voltage to ground</td>
<td>VLSAT</td>
<td>I6 = -0.7A</td>
<td>-</td>
<td>1.3</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>Output Center Voltage</td>
<td>VMID</td>
<td>R1=5.6K,Rfb=45K</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>IBIAS</td>
<td>V1 = 1V, V10 = 2V</td>
<td>-</td>
<td>-0.1</td>
<td>-1</td>
<td>μA</td>
</tr>
</tbody>
</table>
Typical Performance Characteristic

Figure 1. Vs-V4L

Figure 2. I4-V4L

Figure 3. Isink-V6H

Figure 4. Isource-V6L

Figure 5. Vs-I2, I9
DC Test Circuit

<table>
<thead>
<tr>
<th>ITEM</th>
<th>INPUT VOLTAGE (V)</th>
<th>SWITCH STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V10</td>
</tr>
<tr>
<td>I2, I9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>V4L</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>V6L</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>V6H</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
AC Test Circuit

Typical Application Circuit
Mechanical Dimensions

Package

Dimensions in millimeters

10-SIP H/S
Ordering Information

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Package</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA2142</td>
<td>10-SIP H/S</td>
<td>-20°C ~ +70°C</td>
</tr>
</tbody>
</table>
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com