Data Sheet

KMZ10A
Magnetic field sensor

Product specification
Supersedes data of 1996 Nov 08
File under Discrete Semiconductors, SC17

1998 Mar 24
Magnetic field sensor KMZ10A

DESCRIPTION
The KMZ10A is an extremely sensitive magnetic field sensor, employing the magnetoresistive effect of thin-film permalloy. Its properties enable this sensor to be used in a wide range of applications for navigation, current and field measurement, revolution counters, angular or linear position measurement and proximity detectors, etc.

PINNING

<table>
<thead>
<tr>
<th>PIN</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+V_D</td>
<td>output voltage</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>ground</td>
</tr>
<tr>
<td>3</td>
<td>−V_D</td>
<td>output voltage</td>
</tr>
<tr>
<td>4</td>
<td>V_CC</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_CC</td>
<td>bridge supply voltage</td>
<td>−</td>
<td>5</td>
<td>−</td>
<td>V</td>
</tr>
<tr>
<td>T_bridge</td>
<td>bridge operating temperature</td>
<td>−40</td>
<td>−</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>H_y</td>
<td>magnetic field strength</td>
<td>−0.5</td>
<td>−</td>
<td>+0.5</td>
<td>kA/m</td>
</tr>
<tr>
<td>H_x</td>
<td>auxiliary field</td>
<td>−</td>
<td>0.5</td>
<td>−</td>
<td>kA/m</td>
</tr>
<tr>
<td>S</td>
<td>sensitivity</td>
<td>−</td>
<td>16</td>
<td>−</td>
<td>mV/V</td>
</tr>
<tr>
<td>R_bridge</td>
<td>bridge resistance</td>
<td>0.8</td>
<td>−</td>
<td>1.6</td>
<td>kΩ</td>
</tr>
<tr>
<td>V_offset</td>
<td>offset voltage</td>
<td>−1.5</td>
<td>−</td>
<td>+1.5</td>
<td>mV/V</td>
</tr>
</tbody>
</table>

CIRCUIT DIAGRAM
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>bridge supply voltage</td>
<td></td>
<td>$-$</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>up to $T_{amb} = 134 , ^\circ C$</td>
<td>$-$</td>
<td>90</td>
<td>mW</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>note 1</td>
<td>-65</td>
<td>$+150$</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>T_{bridge}</td>
<td>bridge operating temperature</td>
<td></td>
<td>-40</td>
<td>$+150$</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Note

1. Maximum operating temperature of the thin-film permalloy.

Fig.3 Power derating curve.
Magnetic field sensor

KMZ10A

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th,j-a}$</td>
<td>thermal resistance from junction to ambient</td>
<td>180</td>
<td>K/W</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

$T_{amb} = 25 \, ^\circ C; \ H_x = 0.5 \, kA/m; \ notes \ 1 \ and \ 2; \ V_{CC} = 5 \, V \ unless \ otherwise \ specified.$

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_y</td>
<td>magnetic field strength</td>
<td>notes 2 and 3</td>
<td>−0.5</td>
<td>−</td>
<td>+0.5</td>
<td>kA/m</td>
</tr>
<tr>
<td>S</td>
<td>sensitivity</td>
<td></td>
<td>13</td>
<td>−</td>
<td>19</td>
<td>mV/V</td>
</tr>
<tr>
<td>TCV_O</td>
<td>temperature coefficient of output voltage</td>
<td>$V_{CC} = 5 , V; \ T_{amb} = -25 , to \ +125 , ^\circ C$</td>
<td>−</td>
<td>−0.4</td>
<td>−</td>
<td>%/K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{CC} = 3 , mA; \ T_{amb} = -25 , to \ +125 , ^\circ C$</td>
<td>−</td>
<td>−0.15</td>
<td>−</td>
<td>%/K</td>
</tr>
<tr>
<td>R_{bridge}</td>
<td>bridge resistance</td>
<td></td>
<td>0.8</td>
<td>−</td>
<td>1.6</td>
<td>kΩ</td>
</tr>
<tr>
<td>TCR_{bridge}</td>
<td>temperature coefficient of bridge resistance</td>
<td>$T_{bridge} = -25 , to \ +125 , ^\circ C$</td>
<td>−</td>
<td>0.25</td>
<td>−</td>
<td>%/K</td>
</tr>
<tr>
<td>V_{offset}</td>
<td>offset voltage</td>
<td></td>
<td>−1.5</td>
<td>−</td>
<td>+1.5</td>
<td>mV/V</td>
</tr>
<tr>
<td>TCV_{offset}</td>
<td>offset voltage drift</td>
<td>$T_{bridge} = -25 , to \ +125 , ^\circ C$</td>
<td>−6</td>
<td>−</td>
<td>+6</td>
<td>µV/V/K</td>
</tr>
<tr>
<td>FL</td>
<td>linearity deviation of output voltage</td>
<td>$H_y = 0 , to \ \pm 0.25 , kA/m$</td>
<td>−</td>
<td>−</td>
<td>0.8</td>
<td>%/FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H_y = 0 , to \ \pm 0.4 , kA/m$</td>
<td>−</td>
<td>−</td>
<td>2.5</td>
<td>%/FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H_y = 0 , to \ \pm 0.5 , kA/m$</td>
<td>−</td>
<td>−</td>
<td>4.0</td>
<td>%/FS</td>
</tr>
<tr>
<td>FH</td>
<td>hysteresis of output voltage</td>
<td></td>
<td>−</td>
<td>−</td>
<td>0.5</td>
<td>%/FS</td>
</tr>
<tr>
<td>f</td>
<td>operating frequency</td>
<td></td>
<td>0</td>
<td>−</td>
<td>1</td>
<td>MHz</td>
</tr>
</tbody>
</table>

Notes

1. Before first operation or after operation outside the SOAR (Fig.4) the sensor has to be reset by application of an auxiliary field $H_x = 3 \, kA/m$.
2. No disturbing field (H_d) allowed; for stable operation under disturbing conditions see Fig.4 (SOAR) and see Fig.5 for decrease of sensitivity.
3. $S = \frac{(V_O \ at \ H_y = 0.4 \, kA/m) - (V_O \ at \ H_y = 0)}{0.4 \times V_{CC}}$.

1998 Mar 24
Magnetic field sensor

Fig.4 Safe Operating Area (permissible disturbing field H_d as a component of auxiliary field H_x).

In applications with $H_x < 3 \text{kA/m}$, the sensor has to be reset, after leaving the SOAR, by an auxiliary field of $H_x = 3 \text{kA/m}$.

I = Region of permissible operation.
II = Permissible extension if $H_y < 0.15 \text{A/m}$.

Fig.5 Relative sensitivity (ratio of sensitivity at certain H_x and sensitivity at $H_x = 0.5 \text{kA/m}$).

In applications with $H_x \leq 3 \text{kA/m}$, the sensor has to be reset by an auxiliary field of $H_x = 3 \text{kA/m}$ before using.

Fig.6 Sensor output characteristics.

$H_x = 0.5 \text{kA/m}$; $T_{\text{amb}} = 25 \degree \text{C}$; $V_{\text{offset}} = 0$.

1998 Mar 24
PACKAGE OUTLINE

Plastic single-ended flat package; 4 in-line leads

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>b_p</th>
<th>b_1</th>
<th>c</th>
<th>D</th>
<th>E</th>
<th>e</th>
<th>e_1</th>
<th>L</th>
<th>L_1(1) max.</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.8</td>
<td>0.48</td>
<td>0.7</td>
<td>0.45</td>
<td>5.2</td>
<td>4.8</td>
<td>3.75</td>
<td>1.25</td>
<td>14.5</td>
<td>12.7</td>
<td>2</td>
</tr>
<tr>
<td>1.6</td>
<td>0.40</td>
<td>0.5</td>
<td>0.39</td>
<td>5.0</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>

Notes

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE VERSION

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>EUROPEAN PROJECTION</th>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td>JEDEC</td>
<td>EIAJ</td>
</tr>
<tr>
<td>SOT195</td>
<td></td>
<td>97-06-02</td>
</tr>
</tbody>
</table>
DEFINITIONS

<table>
<thead>
<tr>
<th>Data Sheet Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
Philips Semiconductors – a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Comuterstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands

Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bouchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America

Czech Republic: see Austria

Denmark: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920

France: see Italy

Germany: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399

India: see Austria

Hungary: see South America

Ireland: see Singapore

Indonesia: Tel. +91 22 493 8541, Fax. +91 22 493 0966
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415

Kosovo: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880

Let’s make things better

Philips
Semiconductors

Norway: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811

Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSAW,
Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain

Romania: see Italy

Russia: Philips Russia, Ul. Usacheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2536, Fax. +65 251 6500

Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107

Sweden: see South America

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B,
04547-130 SÃO PAULO, SP, Brazil.
Tel. +55 11 821 2333, Fax. +55 11 821 2382

Uruguay: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax. +381 11 635 777

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

Vietnam: see South America

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax. +381 11 635 777

For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequences of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

11510/00/03/pp8 Date of release: 1998 Mar 24 Document order number: 9397 750 03584
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.