
Mani B. Srivastava

UCLA - EE

VHDL: A Tutorial!

 2
mbs

OUTLINE

n Introduction to the language

- simple examples

n VHDL’s model of a system

- its computation model: processes, signals and time

n Language features

n VHDL for logic and queue simulation

 3
mbs

WHAT IS VHDL?

Programming Language + Hardware Modelling Language

It has all of the following:

- Sequential Procedural language: PASCAL and ADA like

- Concurrency: statically allocated network of processes

- Timing constructs

- Discrete-event simulation semantics

- Object-oriented goodies: libraries, packages, polymorphism

 4
mbs

A NAND Gate Example

-- black-box definition (interface)
entity NAND is

generic (Tpd : time := 0 ns);
port (A, B : in bit; Y : out bit);

end entity;

-- an implementation (contents)
architecture BEHAVIOR_1 of NAND is
begin

Y <= A nand B after Tpd;
end BEHAVIOR_1;

Important Concepts
entity

architecture
generic

port
waveform assignment

A
B

Y

 5
mbs

Another Implementation of NAND

-- there can be multiple implementations
architecture BEHAVIOR_2 of NAND is

signal X : bit;
begin

-- concurrent statements
Y <= X after Tpd;
X <= ‘1’ when A=’0’ or B=’0’ else

‘0’;
end BEHAVIOR_2;

Important Concepts
multiple architectures

signal
concurrent statements

A
B

Y

 6
mbs

Yet More NAND Gates!!!

entity NAND_N is
generic (N : integer := 4; Tpd : time);
port (A, B : in bit_vector(1 to N);

Y : out bit_vector(1 to N));
end NAND_N;

architecture BEHAVIOR_1 of NAND_N is
begin

process
variable X : bit_vector(1 to N);

begin
X := A nand B;
Y <= X after Td;
wait on A, B;

end process;
end BEHAVIOR_1;

Important Concepts
process
variable

wait
sequential statements

events

 7
mbs

The process Statement

[label:] process [(sensitivity_list)]
[declarations]

begin
{sequential_statement}

end process [label];

• It defines an independent sequential process which
repeatedly executes its body.

• Following are equivalent:
process (A,B) process
begin begin

C <= A or B; C <= A or B;
end; wait on A, B;

end;

•No wait statements allowed in the body if there is a
sensitivity_list.

 8
mbs

The wait Statement

wait [on list_of_signals]
[until boolean_expression]
[for time_expression] ;

This is the ONLY sequential statement during which time
advances!

examples:
-- wait for a rising or falling edge on CLK
wait on CLK;
wait until CLK’EVENT; -- this is equivalent to the above

-- wait for rising edge of CLK
wait on CLK until CLK=’1’;
wait until CLK=’1’; -- this is equivalent to the above

-- wait for 10 ns
wait until 10 ns;

-- wait for ever (the process effectively dies!)
wait;

 9
mbs

A Simple Producer-Consumer Example

entity producer_consumer is
end producer_comsumer;

architecture two_phase of producer_consumer is
signal REQ, ACK : bit;
signal DATA : integer;

begin
P: process begin

DATA <= produce();
REQ <= not REQ;
wait on ACK;

end P;
C: process begin

wait on REQ;
consume(DATA);
ACK <= not ACK;

end C;
end two_phase;

P C

DATA

REQ

ACK

 10
mbs

Producer-Consumer contd. : 4-ϕ case

architecture four_phase of producer_consumer is
signal REQ, ACK : bit := ‘0’;
signal DATA : integer;

begin
P: process begin

DATA <= produce();
REQ <= ‘1’;
wait until ACK=’1’;
REQ <= ‘0’;
wait until ACK=’0’;

end P;
C: process begin

wait until REQ=’1’;
consume(DATA);
ACK <= ‘1’;
wait until REQ=’0’;
ACK <= ‘0’;

end C;
end four_phase;

P C

DATA

REQ

ACK

 11
mbs

Muller C-Element

entity MULLER_C_ELEMENT is
port (A,B : in bit; C : out bit);

end MULLER_C_ELEMENT;

architecture BEHAVIOR is
begin

process begin
wait until A=’1’ and B=’1’;
C <= ‘1’;
wait until A=’0’ and B=’0’;
C <= ‘0’;

end process;
end BEHAVIOR;

C

A

B

C

Could have written:

wait until A=B;
C <= A;

 12
mbs

An Edge-Triggered D Flip-Flop

entity DFF is
generic (T_setup, T_hold, T_delay : time:=0 ns);
port (D, CLK: in bit; Q : out bit);

begin
-- check setup time
assert not (CLK’EVENT and CLK=’1’ and

D’LAST_EVENT < T_setup)
report “Setup violation”
severity WARNING;

-- check hold time
assert not (CLK’DELAYED(T_hold)’EVENT and

 CLK’DELAYED(Thold)=’1’ and
D’LAST_EVENT < T_hold)

report “Hold violation”
severity WARNING;

end DFF;
architecture BEHAVIOR of DFF is
begin

process begin
wait on CLK until CLK=’1’;
Q <= D after T_delay;

end process;
end BEHAVIOR;

Try writing this in THOR!

 13
mbs

Behavior vs Structure Description

An entity can be described by its behavior or by its structure, or
in a mixed fashion.

example: a 2-input XOR gate

A

B

Y

Y = A.B+A.B

A

B

Y

G1

G2

G4

G3

entity XOR is
port (A,B : in bit; Y : out bit);

end XOR;

architecture BEHAVIOR of XOR is
begin

Y <= (A and not B) or (not A and B);
end BEHAVIOR;

architecture STRUCTURE of XOR is
component NAND

port (A, B : in bit; Y : out bit);
end component;
signal C, D, E : bit;

begin
G1 : NAND port map (A, B, C);
G2 : NAND port map

(A => A, B => C, Y => D);
G3 : NAND port map

(C, B => B, Y => E);
G4 : NAND port map (D, E, Y);

end STRUCTURE;

architecture MIXED of XOR is
component NAND

port (A, B : in bit; Y : out bit);
end component;
signal C, D, E : bit;

begin
D <= A nand C;
E <= C nand B;
G1 : NAND port map (A, B, C);
G4 : NAND port map (D, E, Y);

end MIXED;

Component Instantiation
is just another

Concurrent Statement!

 14
mbs

The Generate Statement

Used to generate iteratively or conditionally a set of concurrent statements.

example: a ripple-carry adder

entity RIPPLE_ADDER is
port (A, B : in bit_vector; CIN : in bit;

SUM : out bit_vector; COUT : out bit);
begin

assert A’LENGTH=B’LENGTH and
 A’LENGTH=SUM’LENGTH
report “Bad port connections”
severity ERROR;

end;
architecture STRUCTURE of RIPPLE_ADDER is

alias IN1 : bit_vector(0 to A’LENGTH-1) is A;
alias IN2 : bit_vector(0 to A’LENGTH-1) is B;
alias S : bit_vector(0 to A’LENGTH-1) is SUM;
signal C : bit_vector(IN1’RANGE);
component FULL_ADDER port (A,B,CIN: in bit; S, COUT: out bit);
end component;

begin
L1: for I in S’RANGE generate

L2: if I=0 generate
FA1: FULL_ADDER

port map (IN1(0),IN2(0),CIN,S(0),C(0));
end generate;
L3: if I>0 generate

FA2: FULL_ADDER
port map (IN1(I),IN2(I),C(I-1),S(I),C(I));

end generate;
end generate;
COUT <= C(C’HIGH);

end STRUCTURE;

 15
mbs

n Concurrent Statements

Process independent sequential process
Block groups concurrent statements
Concurrent Procedure convenient syntax for
Concurrent Assertion commonly occurring form
Concurrent Signal Assignment of processes
Component Instantiation structure decomposition
Generate Statement regular description

Order of execution is not defined!

n Sequential Statements

Wait synchronization of processes
Assertion
Signal Assignment
Variable Assignment
Procedure Call
If
Case
Loop (for, while)
Next
Exit
Return
Null

Concurrent vs Sequential Statements

 16
mbs

VHDL’s Model of a System

• Static network of concurrent processes communicating using
signals.

• A process has drivers for certain signals.

• A signal may be driven by multiple processes.

P1 P2

P3

Reminds one of a multi-tasking OS!

And, most (all?) VHDL simulators are indeed very
similar in philosophy ... a kernel process coordinates the
activity of user-defined processes during simulation.

user-defined
processes

KERNEL
or

SCHEDULER
PROCESS

 17
mbs

Simplified Anatomy of the
VHDL Kernel Process

vhdl_simulator_kernel()
{

/* initialization phase */
time = 0 ns;
for (each process P) {

run P until it suspends;
}

while TRUE do {
/* this is one simulation cycle ... */
if (no driver is active) {

time = next time at which a driver is active
or a process resumes;

if (time = TIME’HIGH) break;
}
update_signals(); /* events may occur */
for (each process P) {

if (P is sensitive to signal S and an event has
occurred on S in this cycle) {

resume P; /* put it on a list ... */
}

}
for (each process P that has just resumed) {

run P until it suspends;
}

}
}

 18
mbs

Signals versus Variables

architecture DUMMY_1 of JUNK is
signal Y : bit := ‘0’;

begin
process

variable X : bit := ‘0’;
begin

wait for 10 ns;
X := ‘1’;
Y <= X;
wait for 10 ns;
-- What is Y at this point ? Answer: ‘1’
...

end process;
end DUMMY_1;

architecture DUMMY_2 of JUNK is
signal X, Y : bit := ‘0’;

begin
process
begin

wait for 10 ns;
X <= ‘1’;
Y <= X;
wait for 10 ns;
-- What is Y at this point ? Answer: ‘0’
...

end process;
end DUMMY_2;

Signal assignments with 0 delay take effect only after a delta
delay. i.e., in the next simulation cycle.

 19
mbs

TRANSACTION SCHEDULING MODEL
TRANSPORT vs INERTIAL DELAY

Case 1: transport delay model
Y <= 0 after 0 ns, 2 after 2 ns, 4 after 4 ns, 6 after 6 ns;
wait for 1 ns;
Y <= transport 3 after 2 ns, 5 after 4 ns, 7 after 6 ns;

Case 2: inertial delay model
Y <= 0 after 0 ns, 2 after 2 ns, 4 after 4 ns, 6 after 6 ns;
wait for 1 ns;
Y <= 3 after 2 ns, 5 after 4 ns, 7 after 6 ns;

0 2 4 6

3 5 7

0 2 4 6

3 5 7 0 2

0 2

3 5 7

5 73

0 2 4 6

3 5 7

0 2 4 6

3 5 7 0

0

3 5 7

5 73

Projected waveform
Preemptive t iming
Transport delay
Inertial delay

 20
mbs

Signals with Multiple Drivers

Y <= A; -- in process1
and, Y <= B; -- in process2

What is the value of the signal in such a case?

VHDL uses the concept of a Resolution Function that is attached
to a signal or a type, and is called every time the value of signal
needs to be determined -- that is every time a driver changes
value.

example: wire-anding (open-collector)
package RESOLVED is

function wired_and (V:bit_vector) return bit;
subtype rbit is wired_and bit;

end RESOLVED;
package body RESOLVED is

function wired_and(V:bit_vector) return bit is
begin

for I in V’RANGE loop
if V(I)=‘0’ then return ‘0’; end if;

end loop;
return ‘1’;

end wired_and;
end RESOLVED;

A B

Y

 21
mbs

Guarded Signals - register and bus

Guarded signals are those whose drivers can be turned off.

What happens when all drivers of a guarded signal are off?

Case 1: retain the last driven value

signal X : bit register;

useful for modelling charge storage nodes

Case 2: float to a user defined default value

signal Y : bit bus;

useful for modelling busses

Two ways to turn off the drivers:

-- null waveform in sequential signal assignment
signal_name <= null after time_expression;

-- guarded concurrent signal assignment
block (data_bus_enable=’1’)
begin

data_bus <= guarded “0011”;
end block;

 22
mbs

How do VHDL and THOR differ?

• VHDL allows more or less arbitrary data types, parameterized
models, and many other language goodies!

• VHDL can mix structure and behavior in a module.

• THOR has only wired-X resolution.

• VHDL is process-oriented, THOR is event-oriented.

THOR to VHDL conversion is easy ...

THOR_PROCESS: process
begin

thor_init_section();
while TRUE loop

wait on list_of_input_and_biput_signals;
thor_body_section();

end loop;
end process THOR_PROCESS;

VHDL to THOR conversion is not!

THOR models are written as state machines.
In VHDL processes, the state is implicit.

• THOR has very poor delay modelling capabilities.

 23
mbs

Using VHDL like C!

Normal sequential procedural programs can be written in VHDL
without ever utilizing the event scheduler or the concurrent
concepts.

example:

entity HelloWorld is end;

architecture C_LIKE of HelloWorld is
use std.textio.all;

begin
main: process

variable buf : line;
begin

write(buf, ”Hello World!”);
writeln(output, buf);
wait; -- needed to terminate the program

end process main;
end C_LIKE;

 24
mbs

Language Features: TYPES

TYPE = Set of Values + Set of Operations

VHDL TYPES:
SCALAR

ENUMERATION e.g. character, bit, boolean
INTEGER e.g. integer
FLOATING e.g. real
PHYSICAL e.g. time

COMPOSITE
ARRAY e.g. bit_vector, string
RECORD

ACCESS
FILE

examples:
type bit is (‘0’, ‘1’);
type thor_bit is (‘U‘, ‘0’, ‘1’, ‘Z’);
type memory_address is range 0 to 2**32-1;
type small_float is range 0.0 to 1.0;
type weight is range 0 to 1E8

units
Gm; -- base unit
Kg = 1000 Gm; -- kilogram
Tonne = 1000 Kg; -- tonne

end units;

 25
mbs

Language Features: SUBTYPES

SUBTYPE = TYPE + constraints on values
- TYPE is the base-type of SUBTYPE
- SUBTYPE inherits all the operators of TYPE
- SUBTYPE can be more or less used interchangeably
with TYPE

examples:
subtype natural is integer range 0 to integer’HIGH;
subtype good_thor_bit is thor_bit range ‘0’ to ‘1’;
subtype small_float is real range 0.0 to 1.0;

examples of Array and Record types:
-- unconstrained array (defines an array type)
type bit_vector is array (natural range <>) of bit;
-- constrained array (define an array type and subtype)
type word is array (0 to 31) of bit;
-- another unconstrained array
type memory is array (natural range <>) of word;
-- following is illegal!
type memory is array (natural range <>) of bit_vector;
-- an example record
type PERSON is

record
name : string(1 to 20);
age : integer range 0 to 150;

end record;

 26
mbs

Language Features: OVERLOADING

•Pre-defined operators (e.g., +, -, and, nand etc.) can be
overloaded to call functions

example:

function “and”(L,R : thor_bit) return thor_bit is
begin

if L=’0’ or R=’0’ then
return ‘0’;

elsif L=’1’ and R=’1’ then
return ‘1’;

else
return ‘U’;

end if;
end “and”;

-- now one can say
C <= A and B; -- where A, B and C are of type thor_bit

• Two subprograms (functions or procedures) can have the same
name, i.e., the names can be overloaded. They are distinguished
by parameter types. e.g.,

function MAX(A,B:integer) return integer;
function MAX(A,B:real) return real;

 27
mbs

Language Features: CONFIGURATIONS

• Component declarations really define a template for a design
entity.

• The binding of an entity to this template is done through a
configuration declaration.

entity data_path is
...

end data_path;
architecture INCOMPLETE of data_path is

component alu
port(function : in alu_function;

op1, op2 : in bit_vector_32;
result : out bit_vector_32);

end component;
begin

...
end INCOMPLETE;
configuration DEMO_CONFIG of data_path is

for INCOMPLETE
for all:alu

use entity work.alu_cell(BEHAVIOR)
port map (function_code => function,

operand1 => op1, operand2 => op2,
result => result, flags => open);

end for;
end for;

end DEMO_CONFIG;

 28
mbs

Language Features: PACKAGES

• A package is a collection of reusable declarations (constants,
types, functions, procedures, signals etc.)

A package has a
- declaration (interface), and a
- body (contents) [optional]

example:
package SIMPLE_THOR is

type thor_bit is (‘U’, ‘0’,’1’,’Z’);
function “and”(L,R: thor_bit) return thor_bit;
function “or”(L,R:thor_bit) return thor_bit;
...

end SIMPLE_THOR;

package body SIMPLE_THOR is
function “and”(L,R: thor_bit) return thor_bit is
begin
...
end “and”;
...

end SIMPLE_THOR;

-- and then it can be used after saying
library my_lib; use my_lib.SIMPLE_THOR.all;

 29
mbs

Language Features: DESIGN UNITS
and LIBRARIES

• VHDL constructs are written in a design file and the
compiler puts them into a design library.

• Libraries are made up of design units.
- primary design units

entity declarations
package declarations
configuration declarations

- secondary design units
architecture bodies
package bodies

• Libraries have a logical name and the OS maps the logical
name to a physical name.

- for example, directories on UNIX

• Two special libraries:
work: the working design library
std: contains packages standard and textio

• To declare libraries that are referenced in a design unit:
library library_name;

• To make certain library units directly visible:
use library_name.unit_name;

use also defines dependency among design units.

 30
mbs

Logic Simulation In VHDL

• The 2-state bit data type is insufficient for low-level simulation.

• Multi-Valued types can easily be built in VHDL
- several packages available
- but no standard yet ...

• THOR uses a 4-value (‘U’,’0’,’1’,’Z’) system
- but no notion of strength
- only wired-X resolution

• Multi-State/Strength systems with interval logic

 31
mbs

High-Level Message Queue Simulation

• VHDL signal is not a very good inter-process communication
primitive for high-level simulation

- unbuffered and non-interlocked
- cannot support queues directly

• Queue package to support message queues with
- single reader/writer
- synchronous (unbuffered) or asynchronous
(buffered - finite depth and infinite depth)

- write with blocking/overwrite/timeout
- read with blocking/previous/timeout

P_sender P_receiver
message
queue

queue
processP_sender P_receiver

 32
mbs

MCC VHDL Simulator

ANALYZER

COMPILER

C COMPILER

IR (Intermediate Representation)

VHDL Source

C Source

LINKER

Object File

ELABORATION

Executable Binary

EXECUTION

Unfolded Design Hierarchy

PICL

Pattern Language

Binary Pattern Input

Binary Patter Output
PATPRN

DEBUGGER

va

vs

video

TEXT

 33
mbs

Problems in VHDL

• No generic packages

• No function pointers

• File I/O is pretty clumsy ...

• No math library yet
- can use C-interface

• No standard package for low level simulation

• No support for high level simulation with message queues

• Arbitrary data types make user-interface a problem

• Just too complex!

