LAMAR UNIVERSITY CIRCUITS LABORATORY

EXPERIMENT 4:

Thévenin Equivalent Circuit and Maximum Power Transfer

Objective:

Verify Thévenin's theorem by obtaining the Thévenin equivalent voltage (V_{TH}) and Thévenin equivalent resistance (R_{TH}) for the given circuit. Verify the Maximum Power Transfer Theorem.

Equipment:

- ➤ NI ELVIS
- Assorted Resistors(300 Ω (2), 560 Ω (2), 820 Ω and 1.2 K Ω)
- Decade Resistance Box.

Theory:

Thévenin's Theorem: It is a process by which a complex circuit is reduced to an equivalent series circuit consisting of a single voltage source (V_{TH}) , a series resistance (R_{TH}) and a load resistance (R_L) . After creating the Thévenin Equivalent Circuit, the load voltage V_L or the load current I_L may be easily determined.

One of the main uses of Thévenin's theorem is the replacement of a large part of a circuit, often a complicated and uninteresting part, by a very simple equivalent. The new simpler circuit enables us to make rapid calculations of the voltage, current, and power which the original circuit is able to deliver to a load. It also helps us to choose the best value of this load resistance for *maximum* power transfer.

Figure 1.

Figure 2: Thévenin Equivalent Circuit of Figure 1

2. Maximum Power Transfer Theorem states that an independent voltage source in series with a resistance R_S or an independent current source in parallel with a resistance R_S , delivers a maximum power to that load resistance R_L for which $R_L = R_S$.

In terms of a Thévenin Equivalent Circuit, maximum power is delivered to the load resistance R_L when R_L is equal to the Thévenin equivalent resistance R_{TH} of the circuit.

Figure 3: Maximum Power Transfer

Procedure:

- 1. Verifying the Thévenin's theorem:
 - a) Construct the circuit of Figure 1 using the following component values:

 $R1 = 300 \Omega$

 $R2 = 560 \Omega$

 $R3 = 560 \Omega$

 $R4 = 300 \Omega$

 $R5 = 820 \Omega$

 $R_L = 1.2 \text{ K}\Omega$

 $V_S = 10 V$

b) Accurately measure the voltage V_L across the load resistance using NI Elvis voltmeter or an external DMM. This value will later be compared to the one you will find using Thevenin Equivalent.

c) Find V_{TH} : Remove the load resistance R_L and measure the open circuit voltage V_{OC} across the terminals. This is equal to V_{TH} . See Figure 4. below

Figure 4: Measuring the Thevenin Voltage

d) Find R_{TH} : Remove the source voltage V_S and construct the circuit as in Fig.5.. below. Measure the resistance looking into the opening where R_L was with an ohmmeter (DMM). This gives R_{TH} . Make sure there is no power in the circuit before measuring with an Ohm-meter.

Figure 5: Measuring the Thevenin Resistance RTH.

e) Obtaining V_{TH} and R_{TH} , construct the circuit of figure 2. Set the value of R_{TH} using a Decade Resistance Box, and set V_{TH} using variable power supply.

Figure 6: Thevenin Equivalent Construction

- f) Measure the V_L for this circuit and compare it to the V_L obtained in Procedure 1-b. This verifies the Thévenin theorem.
- g) Optional: Repeat steps 1(b) to 1(f) for $R_L = 3.3 \text{ K}\Omega$
- 2. Verifying the Maximum Power Transfer theorem:
 - a) Construct the circuit as in Figure 7 using the following values:

 $V_{S} = 10 \text{ V}$

 $R1 = R2 = 560 \Omega$

 $R3 = 820 \Omega$

 R_L = Decade Resistance Box (DRB)

Figure 7: Circuit for Max. Pow. Theorem

- b) Connect the DMM across R_L for measuring the load voltage.
- c) To find the value of R_L for which maximum power is transferred, vary the resistances on the DRB between $800~\Omega$ to $1400~\Omega$ in $100~\Omega$ steps and note down V_L for each case.
- d) Calculate the power for each load resistor value (DRB) using $P_L = V_L^2 / R_L$. Then, find the resistor value corresponding to the maximum power (P_{L-max}). This value should be equal to R_{TH} of circuit in fig.7 with respect to load terminals.

Questions for Lab Report:

- 1. Calculate the percentage error difference between the load voltages obtained for circuits of figure 1 and figure 2.
- 2. Using Voltage Division for circuit of figure 2, calculate V_L . Compare it to the measured values. Explain any differences.
- 3. Calculate the maximum power transmitted to the load R_L obtained for the circuit of figure 3.