
Lecture 5: Using electronics to make 
measurements

• As physicists, we’ re not really interested in electronics for its 
own sake

• We want to use it to measure something
– often, something too small to be directly sensed

• As an example, we’ ll assume we want to measure the strain on 
an object
– strain is the degree to which an object changes its shape due to an 

external force:

• We can convert this to an electrical signal by using a strain 
gauge, a device that changes its resistance under strain
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• The measuring power of a strain gauge is quantified by the 
gauge factor:

• A higher gauge factor makes a better gauge

• One example is a metallic wire bonded to a piece of 
material:

wire become thinner and longer as material stretches –
resistance increases 

• Typically these have resistance of 120Ω and GF ≈ 2
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• Let’s say we want to be sensitive to strains of the order    
10-5 or so using this gauge

• That means the change in resistance is:

• How can we measure such a small change in resistance?

• One answer is the Wheatstone bridge:
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Analysis of Wheatstone bridge
• Think of it as a set of two voltage dividers:

• So the difference in voltages is:

• Note that when                     ,

• The bridge is balanced when this happens 
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• For simplicity, we’ ll choose R2 = R3 = R4 = R

• The bridge is then balanced when R1 = R

• Let’s see what happens when R1 is close to, but not equal 
to, R:

• So we see that the voltage difference varies linearly with δ
– But since the change in resistance is small, so is the change 

in voltage
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• So we need to measure a very small voltage difference, 
without being sensitive to fluctuations in Vo itself
– sounds like a job for a differential amplifier!

• We might try a variation on the inverting amplifier 
discussed in the last lecture
– This is called a “ follower with gain” :
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• This has some nice features
– for example, the input impedance is very high (equal to the 

internal resistance of the op-amp)

• Here’s how it works as an amplifier:
– The op-amp makes sure that V+ = V-

– We also know that:

– Current is the same through both resistors since no current 
flows into the op-amp

– So we have two expressions for I that must be equal:
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• This has high gain (1000), depending only on resistor 
values
– that’s good!

• But the output is only approximately equal to the 
difference between the inputs
– there was still that VB term all by itself

– means there is some common-mode gain as well

• This circuit is good enough for many differential-
amplification uses
– but not good enough for our strain gauge!



Instrumentation Amplifier
• To do the job we want, we need a circuit like this (called 

an instrumentation amplifier):

• We’ ll break this up into pieces to see how it works
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• We’ ll start with the two left op-amps:

• Each op-amp has equal 
voltage at its inputs

• so, voltage at top of R1

is VA, and at bottom it’s 
VB

• Current through R1 is:

• This current can’ t go into 
op-amps

• must go across R2 and 
R3
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• Putting that information together, we have:

• So this is also a differential amplifier
– gain determined by resistors, which is good!
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• What about the common-mode gain of these two op-amps?

• Using the equations on the previous slide, we have:

• If we choose R1 and R2 to be equal, the common-mode 
output is the same as the input
– in other words, common-mode gain is one

• CMRR is already pretty good for this circuit
– but not good enough for our strain gauge!
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• That brings us to the final op-amp in our instrumentation 
amplifier:

• We can solve for the currents:

• Applying the ideal op-amp 
rules here, we have:
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• With this, we can solve for vo:

• This part of the circuit is a subtractor
– Gets rid of the common-mode signal that makes it through 

the first set of op-amps

• Note that exact subtraction requires all four resistors to 
have the same value
– Large CMRR will require the use of high-precision resistors!
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Active low-pass filter
• We studied filters in the first lecture, and built them in the 

first lab

• Those were “passive”  filters
– they could transmit or supress a signal, but they couldn’ t 

amplify it

• With an op-amp, we can build an “active filter”
– an amplifier where the gain depends on the frequency of the 

signal

• Here’s how it might look:
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• This looks like an inverting amplifier, so we know the gain 
is:

• The impedance is given by:

• So the gain is:
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