Lecture 5: Using electronics to make measurements

- As physicists, we're not really interested in electronics for its own sake
- We want to use it to measure something
- often, something too small to be directly sensed
- As an example, we'll assume we want to measure the strain on an object
- strain is the degree to which an object changes its shape due to an external force:

$$
\text { strain }=\frac{\Delta L}{L}
$$

- We can convert this to an electrical signal by using a strain gauge, a device that changes its resistance under strain
- The measuring power of a strain gauge is quantified by the gauge factor:

$$
G F=\frac{\Delta R / R}{\text { strain }}=\frac{\Delta R / R}{\Delta L / L}
$$

- A higher gauge factor makes a better gauge
- One example is a metallic wire bonded to a piece of material:

wire become thinner and longer as material stretches resistance increases
- Typically these have resistance of 120Ω and $\mathrm{GF} \approx 2$
- Let's say we want to be sensitive to strains of the order 10^{-5} or so using this gauge
- That means the change in resistance is:

$$
\Delta R=R \cdot S \cdot G F=120 \Omega \cdot 10^{-5} \cdot 2=0.0024 \Omega
$$

- How can we measure such a small change in resistance?
- One answer is the Wheatstone bridge:

Analysis of Wheatstone bridge

- Think of it as a set of two voltage dividers:

$$
\begin{aligned}
V_{A} & =\frac{R_{4}}{R_{1}+R_{4}} V_{o} \\
V_{B} & =\frac{R_{3}}{R_{2}+R_{3}} V_{o}
\end{aligned}
$$

- So the difference in voltages is:

$$
V_{A}-V_{B}=\left(\frac{R_{4}}{R_{1}+R_{4}}-\frac{R_{3}}{R_{2}+R_{3}}\right) V_{o}
$$

- Note that when $R_{4} R_{2}=R_{3} R_{1}$,

$$
V_{A}-V_{B}=0
$$

- The bridge is balanced when this happens
- For simplicity, we'll choose $R_{2}=R_{3}=R_{4}=R$
- The bridge is then balanced when $R_{1}=R$
- Let's see what happens when R_{1} is close to, but not equal to, R :

$$
\begin{aligned}
R_{1} & =R+\delta \\
\Delta V & =V_{A}-V_{B}=\left(\frac{R}{R+\delta+R}-\frac{R}{R+R}\right) V_{o} \\
& =\frac{1}{2}\left(\frac{1}{\delta /(2 R)+1}-1\right) V_{o} \\
& \approx \frac{1}{2}\left(1-\frac{\delta}{2 R}-1\right) V_{o}=-\frac{\delta}{4 R} V_{o}
\end{aligned}
$$

- So we see that the voltage difference varies linearly with δ
- But since the change in resistance is small, so is the change in voltage

$$
\frac{\Delta V}{V_{0}} \text { can be } \sim 10^{-6}
$$

- So we need to measure a very small voltage difference, without being sensitive to fluctuations in V_{o} itself
- sounds like a job for a differential amplifier!
- We might try a variation on the inverting amplifier discussed in the last lecture
- This is called a "follower with gain":

- This has some nice features
- for example, the input impedance is very high (equal to the internal resistance of the op-amp)
- Here's how it works as an amplifier:
- The op-amp makes sure that $V_{+}=V_{-}$
- We also know that:

$$
\begin{aligned}
& V_{A}-I \cdot 10 \mathrm{k} \Omega=V_{-}=V_{B} \\
& V_{-}=V_{B}=V_{o}+I \cdot 10 \mathrm{M} \Omega
\end{aligned}
$$

- Current is the same through both resistors since no current flows into the op-amp
- So we have two expressions for I that must be equal:

$$
\begin{aligned}
& I=\frac{V_{A}-V_{B}}{10 \mathrm{k} \Omega}=\frac{V_{B}-V_{o}}{10 \mathrm{M} \Omega} \\
& V_{o}=\frac{10 \mathrm{M} \Omega}{10 \mathrm{k} \Omega}\left(V_{B}-V_{A}\right)+V_{B} \approx \frac{10 \mathrm{M} \Omega}{10 \mathrm{k} \Omega}\left(V_{B}-V_{A}\right)
\end{aligned}
$$

- This has high gain (1000), depending only on resistor values
- that's good!
- But the output is only approximately equal to the difference between the inputs
- there was still that V_{B} term all by itself
- means there is some common-mode gain as well
- This circuit is good enough for many differentialamplification uses
- but not good enough for our strain gauge!

Instrumentation Amplifier

- To do the job we want, we need a circuit like this (called an instrumentation amplifier):

- We'll break this up into pieces to see how it works
- We'll start with the two left op-amps:

- Each op-amp has equal voltage at its inputs
- so, voltage at top of R_{1} is V_{A}, and at bottom it's V_{B}
- Current through R_{1} is:

$$
I=\frac{V_{A}-V_{B}}{R_{1}}
$$

This current can't go into op-amps

- must go across R_{2} and R_{3}
- Putting that information together, we have:

$$
\begin{aligned}
& I=\frac{V_{A}-V_{B}}{R_{1}} \\
& v_{1}-I R_{2}=V_{A} \\
& v_{2}+I R_{3}=V_{B} \\
& v_{1}=V_{A}+\frac{R_{2}}{R_{1}}\left(V_{A}-V_{B}\right) \\
& v_{2}=V_{B}-\frac{R_{3}}{R_{1}}\left(V_{A}-V_{B}\right) \\
& v_{1}-v_{2}=\left(V_{A}-V_{B}\right)\left(1+\frac{R_{2}+R_{3}}{R_{1}}\right)
\end{aligned}
$$

- So this is also a differential amplifier
- gain determined by resistors, which is good!
- What about the common-mode gain of these two op-amps?
- Using the equations on the previous slide, we have:

$$
\begin{aligned}
& v_{1}=V_{A}+\frac{R_{2}}{R_{1}}\left(V_{A}-V_{B}\right) \\
& v_{2}=V_{B}-\frac{R_{3}}{R_{1}}\left(V_{A}-V_{B}\right) \\
& v_{1}+v_{2}=V_{A}+V_{B}+\left(\frac{R_{2}-R_{3}}{R_{1}}\right)\left(V_{A}-V_{B}\right)
\end{aligned}
$$

- If we choose R_{1} and R_{2} to be equal, the common-mode output is the same as the input
- in other words, common-mode gain is one
- CMRR is already pretty good for this circuit
- but not good enough for our strain gauge!
- That brings us to the final op-amp in our instrumentation amplifier:

- Applying the ideal op-amp rules here, we have:

$$
\begin{aligned}
& V_{-}=v_{1}-I_{1} R_{4}=v_{o}+I_{1} R_{4} \\
& V_{+}=v_{2}-I_{2} R_{4}=I_{2} R_{4} \\
& V_{+}=V_{-}
\end{aligned}
$$

- We can solve for the currents:

$$
\begin{aligned}
& I_{2}=\frac{v_{2}}{2 R_{4}} \\
& I_{1} R_{4}=v_{1}-v_{2}+I_{2} R_{4}=v_{1}-v_{2} / 2 \\
& I_{1}=\frac{2 v_{1}-v_{2}}{2 R_{4}}
\end{aligned}
$$

- With this, we can solve for v_{o} :

$$
v_{o}=v_{1}-2\left(v_{1}-\frac{v_{2}}{2}\right)=v_{2}-v_{1}
$$

- This part of the circuit is a subtractor
- Gets rid of the common-mode signal that makes it through the first set of op-amps
- Note that exact subtraction requires all four resistors to have the same value
- Large CMRR will require the use of high-precision resistors!

Active low-pass filter

- We studied filters in the first lecture, and built them in the first lab
- Those were "passive" filters
- they could transmit or supress a signal, but they couldn't amplify it
- With an op-amp, we can build an "active filter"
- an amplifier where the gain depends on the frequency of the signal
- Here's how it might look:

- This looks like an inverting amplifier, so we know the gain is:

$$
\frac{V_{o}}{V_{i}}=-\frac{Z_{F}}{R_{1}}
$$

- The impedance is given by:

$$
\begin{aligned}
& \frac{1}{Z_{F}}=\frac{1}{R_{2}}+\frac{1}{Z_{c}}=\frac{1}{R_{2}}+i \omega C=\frac{1+i \omega R_{2} C}{R_{2}} \\
& Z_{F}=\frac{R_{2}}{1+i \omega R_{2} C}
\end{aligned}
$$

- So the gain is:

$$
\frac{V_{o}}{V_{i}}=-\frac{R_{2}}{R_{1}}\left(\frac{1}{1+i \omega R_{2} C}\right)
$$

