Lecture 6

Transmission Line II and Matching

June 18, 2003

A. Nassiri

Types of Transmission Lines:

$$
Z_{\mathrm{o}}=\frac{120}{\sqrt{\varepsilon_{r}}} \ln \frac{2 s}{d}[\Omega]
$$

$$
L=\frac{\mu}{\pi} \ln \frac{2 s}{d}[H / m]
$$

$$
C=\frac{\pi \varepsilon}{\ln \frac{2 s}{d}}[F / m]
$$

$$
v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \varepsilon}}[\mathrm{~m} / \mathrm{s}]
$$

$v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \varepsilon}}[\mathrm{~m} / \mathrm{s}]$

E Transmission Lines are "Guiding" devices for carrying electromagnetic waves to and from antenna, etc.

- Transmission Line behavior occurs when the wavelength of the wave is small relative to the length of the cable.
- We have already shown that in a loss-less line (zero resistance along conductors, infinite resistance between them), the propagation speed is given by

$$
v=\frac{1}{\sqrt{L C}}[\mathrm{~m} / \mathrm{s}]
$$

where L and C are the inductance and capacitance per unit length. The characteristic (specific) impedance is given by:

$$
Z_{\circ}=\sqrt{\frac{L}{C}}[\Omega]
$$

Transmission Lines with Unmatched Termination:

Incident Waue: $\bar{v}_{i} e^{j(\omega t-\beta x)}$
ReflectedWave: $\bar{v}_{r} e^{j(\omega t+\beta x)}$
$\therefore v(x, t)=\bar{v}_{i} e^{j(\omega t-\beta x)}+\bar{v}_{r} e^{j(\omega t+\beta x)}=\widetilde{v}(x) e^{j \omega t}$ where $\widetilde{v}(x)=\bar{v}_{i} e^{j(-\beta x)}+\bar{v}_{r} e^{j(\beta x)}$
Similarly: $i(x, t)=\bar{i}(x) e^{j \omega t}$ where $\bar{i}(x)=\frac{\bar{v}_{i}}{Z_{o}} e^{j(-\beta x)}-\frac{\bar{v}_{r}}{Z_{o}} e^{j(\beta x)}$
Notice minus sign in reflected current component: Energy flows in opposite direction to incident wave.

Transmission Lines with Unmatched Termination:

Nome $\frac{\widetilde{v}(0)}{\widetilde{i}(0)}=Z_{L}$ and $\left.\begin{array}{l}\widetilde{v}(0)=\bar{v}_{i}+\bar{v}_{r} \\ \\ \\ \widetilde{i}(0)=\frac{\bar{v}_{i}}{Z_{\circ}}-\frac{\bar{v}_{r}}{Z_{\circ}}\end{array}\right\} Z_{L}=\frac{\bar{v}_{i}+\bar{v}_{r}}{\bar{v}_{i}-\bar{v}_{r}} \cdot Z_{\circ}$
$\therefore Z_{L} \bar{v}_{i}-Z_{L} \bar{v}_{r}=Z_{\circ} \bar{v}_{i}+Z_{\circ} \bar{v}_{r}$
$\left(Z_{L}-Z_{\circ}\right) \bar{v}_{i}=\left(Z_{L}+Z_{\circ}\right) \bar{v}_{r}$
$\therefore \frac{\bar{v}_{I}}{\bar{v}_{i}}=$ Reflected Coefficient $\Rightarrow \Gamma=\frac{Z_{L}-Z_{\circ}}{Z_{L}+Z_{\circ}}$

Transmission Lines with Unmatched Termination:

$\widetilde{V}(x)=\bar{v}_{i}\left(e^{-\jmath \beta x}+\Gamma e^{, \beta x}\right)$
$\tilde{i}(x)=\frac{\bar{v}_{i}}{Z_{o}}\left(e^{-, \beta x}-\Gamma e^{\jmath \beta x}\right)$
Generalized 7mpedance: $Z(x)=\frac{\widetilde{V}(x)}{\widetilde{i}(x)}=Z_{\circ} \frac{e^{-\jmath \beta x}+\Gamma e^{\jmath \beta x}}{e^{-\jmath \beta x}-\Gamma e^{\jmath \beta x}}$

$$
\frac{e^{-. \beta x}+\frac{Z_{L}-Z_{\circ}}{Z_{L}+Z_{\circ}} e^{\jmath \beta x}}{e^{-\jmath \beta x}-\frac{Z_{L}-Z_{\circ}}{Z_{L}+Z_{\circ}} e^{\jmath \beta x}}
$$

Transmission Lines with Unmatched Termination:

Suppose $l \rightarrow \lambda / 4[$ quarter - Wavelength $]$
sa $\beta \ell \rightarrow \beta \frac{\lambda}{4}=\frac{2 \pi}{\lambda} \times \frac{\lambda}{4}=\frac{\pi}{2}$ And $\tan \frac{\pi}{2}=\infty$
$\therefore Z\left(-\frac{\lambda}{4}\right)=\lim _{\ell \rightarrow \lambda / 4}[Z(-\ell)]=Z_{\circ} \frac{j Z_{0} \tan \beta \ell}{j Z_{L} \tan \beta \ell}=\frac{Z_{0}^{2}}{Z_{L}}$
\therefore We can match a line of impedance Z_{S} to a load of impedance
Z_{L} with a $\frac{\lambda}{4}$ section of characteristic impedance Z_{\circ} such that

$$
Z_{\mathrm{o}}=\sqrt{Z_{s} Z_{L}} \Omega
$$

Transmission Lines with Unmatched Termination:

$=Z_{\circ}\left[\frac{\left(Z_{L}+Z_{\circ}\right)\left(\cos \beta_{X}-j \sin \beta_{X}\right)+\left(Z_{L}-Z_{\circ}\right)\left(\cos \beta_{X}+j \sin \beta_{X}\right)}{\left(Z_{L}+Z_{\circ}\right)\left(\cos \beta_{X}-j \sin \beta_{X}\right)-\left(Z_{L}-Z_{\circ}\right)\left(\cos \beta_{X}+j \sin \beta_{X}\right)}\right]$
$\left[Z_{L} \cos \beta_{X}-j Z_{L} i n \beta_{X}+Z_{\circ} \cos \beta_{X}-j Z_{\circ} \sin \beta_{X}\right.$
$=Z_{\circ} \frac{+Z_{L} \cos \beta_{x}+j Z_{L} \sin \beta_{x}-Z_{\circ} \cos \beta_{x}-j Z_{\circ} \sin \beta_{x}}{Z_{L} \cos \beta_{X}-j Z_{L} \operatorname{in} \beta_{x}+Z_{\circ} \cos \beta_{X}-j Z_{\circ} \sin \beta_{X}}$
$\left.-Z_{L} \cos \beta_{x}-j Z_{L} \sin \beta_{x}+Z_{\circ} \cos \beta_{X}+j Z_{\circ} \sin \beta_{X}\right]$
$=Z_{\circ}\left[\frac{2 Z_{L} \cos \beta_{x}-j 2 Z_{\circ} \sin \beta_{x}}{2 Z_{L} \cos \beta_{x}-j 2 Z_{L} \sin \beta_{x}}\right] \Longrightarrow Z(x)=Z_{\circ} \frac{Z_{L}-j Z_{\circ} \tan \beta_{x}}{Z_{\circ}-j Z_{L} \tan \beta_{x}}$
Impedance " risible" at end of line $Z(-\ell)$

$$
Z(-\ell)=Z_{\circ} \frac{Z_{L}+j Z_{\circ} \tan \beta \ell}{Z_{\circ}+j Z_{L} \tan \beta \ell}
$$

Transmission Lines :

Example- Suppose we want to match a 75Ω transmission line to a 37Ω Marconi Antenna.

The matching cane therefore be achieved using a QuarterWavelength section of 50Ω Transmission Line.

Transmission Lines:

Now consider a short circuit termination: $\left(Z_{L}=0\right)$

$$
\therefore Z(-\ell)=Z_{\circ} \frac{j Z_{\circ} \tan \beta \ell}{Z_{\circ}}=j \underbrace{Z_{\circ} \tan \beta \ell}_{\text {Reactance } \chi(\Omega)}
$$

Transmission Lines :

Now consider an open circuit termination: $\left(\mathrm{Z}_{\mathrm{L}}=\infty\right)$
$\therefore Z(-\ell)=Z_{\circ} \frac{Z_{L}}{j Z_{L} \tan \beta \ell}=j\left(-Z_{\circ} \cot \beta \ell\right)$

Microwave Physics and Techniques

Transmission Lines :

Problem

Suppose we have a load with an impedance of $(40+\mathrm{j} 80) \Omega$ which we need to match to a 100Ω transmission line. (c $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\mathrm{f}=130 \mathrm{MHz}$).

$$
Z_{L(n)}=\frac{Z_{L}}{Z_{\circ}}=\frac{40+j 80 \Omega}{100 \Omega}=0.4+j 0.8
$$

From the Smith Chart, the distance (in mavelength)
from this point toward the generator is $\sim 0.135 \lambda$.
The distance is $d=0.135 \times \frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{130 \times 10^{6} \mathrm{~Hz}}=0.31 \mathrm{~m}$
Looking in here, we
see a resistive load
of 440Ω. We can
match this to 100Ω
using a $1 / 4 \lambda$
matching section.

Microwave Physics and Techniques

$$
\begin{aligned}
& Z_{\mathrm{o}}=\sqrt{Z_{s} Z_{L}} \\
& Z_{\mathrm{o}}=\sqrt{100 \times 440}=209.8 \Omega
\end{aligned}
$$

Transmission Lines:

Problem

Find the length, position and characteristic impedance of the quarter-wavelength transformer required to match an antenna with an impedance of $(30-j 40) \Omega$ to a 75 Ω transmission line. The operating frequency of this system is 100 MHz and the insulator in the transmission line has a dielectric constant of 10.

The speed of Wave Propagation $v=\frac{c}{\sqrt{\varepsilon_{r}}}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\sqrt{10}}=9.49 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Wavelength $\lambda=\frac{v}{f}=\frac{9.49 \times 10^{7}}{100 \times 10^{6}}=9.49 \mathrm{~m}$
Normalized 7mpedance $Z_{L(n)}=\frac{Z_{L}}{Z_{\circ}}=\frac{30-j 40}{75}=0.4-j 0.533$

Transmission Lines :

Problem

From the Smith Chart, we find that we need to move 0.86λ away from the load (i.e., towards the generator) in order to eliminate the reactance (or imaginary) impedance component. At this point, the resistive (real) element is 0.29 . Thus:

Stub Matching :

We showed how a quarter-wavelength matching section can be used to impedance-match a load to a line. However, this technique has a major disadvantage: it is unlikely that one can find a transmission line with exactly the right characteristic impedance to perform the matching.

An alternative method is known as "Stub-Matching"
Using the parameters of example 1
Suppose we have a load with an impedance of $(40+\mathrm{j} 80) \Omega$ which we need to match to a 100Ω transmission line. (c $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\mathrm{f}=130 \mathrm{MHz}$).

Stub Matching requires us to convert from impedance Z to admittance Y .

Stub Matching :

$$
\begin{aligned}
Y_{L(n)} & =\frac{1}{Z_{L(n)}}=\frac{Y_{L}}{Y_{\circ}}=\frac{Z_{\circ}}{Z_{L}} \\
& =\frac{100}{400+j 80} \times \frac{400-j 80}{400-j 80}=\frac{4000-j 8000}{\left(40^{2}+80^{2}\right)}=0.5-j 1.0
\end{aligned}
$$

Towards Generator Towards Load

$$
\lambda=\frac{3 \times 10^{8}}{130 \times 10^{6}}=2.3 \mathrm{~m} \Rightarrow 0.318 \lambda=0.734 \mathrm{~m}
$$

Looking into the line at the point X , we see a normalized admittance ($1+\mathrm{j} 1.65$).

If we introduce a reactive admittance of -j 1.65 in parallel with the line at this point, the overall admittance will be 1.+j0 and the matching will be achieved.

Stub Matching :

A pure reactance can be created by means of a "Stub",i.e.,a length of transmission line with a short-circuit termination.
$Z_{\text {in }}$

We showed before that the input impedance of a short-circuited line is given by

$$
Z_{i n}=j Z_{\circ} \tan \beta \ell
$$

$$
\therefore \text { Input Admittance is } y_{\text {in }}=\frac{1}{j Z_{0} \tan \beta l}=-\frac{j}{Z_{0}} \cot \beta l
$$

Stub Matching :

Transmission Line

We assume the line is characterized by distributed resistance R, inductance L, capacitance C, and conductance G per unit length.

Microwave Physics and Techniques

Transmission Lines

Applying Kirchhoff's voltage law to the small length dz:
$-d v=R d z i+L d z \frac{\partial i}{\partial t}$

$$
\frac{\partial V}{\partial z}=-R i-L \frac{\partial i}{\partial t}
$$

Applying Kirchhoff's current law to the small length dz:

$$
-d i=G d z(v+d v)+C d z \frac{\partial(v+d v)}{\partial t}
$$

$$
\frac{\partial i}{\partial z}=-G_{V}-C \frac{\partial V}{\partial t}
$$

These basic equations are difficult to solve for non-sinusoidal waves in the general case. We only consider

1) transients on lossless lines
2) sinusoidal waves on lossy lines.

Transmission Lines (Lossless Lines)

In a lossless line we put $\mathrm{R}-0$ and $\mathrm{G}=0$.

$$
\begin{aligned}
& \frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t} \\
& \frac{\partial i}{\partial z}=-C \frac{\partial V}{\partial t}
\end{aligned}
$$

If we eliminate i we obtain the one-dimensional wave equation

$$
\frac{\partial^{2} v}{\partial z^{2}}=L C \frac{\partial^{2} v}{\partial t^{2}}
$$

The general solution contains forward and reverse traveling waves of arbitrary shape, and has the form

$$
v(z, t)=V_{f}(z-c t)+V_{r}(z+c t)
$$

Exercise: Verity this solution satisfies the wave equation.

Transmission Lines (Lossless Lines)

Relation of voltage to current

$$
\frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t}
$$

Substitute v back into the equation and integrate with respect to time,

$$
\sqrt{\frac{L}{C}} i(z, t)=V_{f}(z-c t)-V_{r}(z+c t)+f(z) \quad f^{\prime}(z)=0 \Longrightarrow f(z)=\text { const }
$$

$$
Z_{0} i(z, t)=V_{f}(z-c t)-V_{r}(z+c t), Z_{0}=\sqrt{\frac{L}{C}}
$$

The current can be written as the sum of forward and revese components as

$$
i(z, t)=I_{f}(z-c t)+I_{r}(z+c t)
$$

where

$$
I_{f}=\frac{1}{Z_{0}} V_{f} \quad I_{r}=-\frac{1}{Z_{0}} V_{r}
$$

Reflection

We consider a simple transmission line

Microwave Physics and Techniques

Voltage reflection factor

We define the voltage reflection factor of the load as

$$
\Gamma_{V}(L)=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Special cases

Condition	Z_{L}	$\Gamma_{\mathrm{v}}(\mathrm{L})$
Matched	Z_{0}	0
o / c	∞	1
$\mathrm{~s} / \mathrm{c}$	0	-1

The input resistance of the line when there is no reflected wave is

$$
R_{\text {in }}=\frac{V_{\text {in }}}{i_{\text {in }}}=\frac{V_{f}}{I_{f}}=\frac{Z_{0} I_{f}}{I_{f}}=Z_{0}
$$

The input resistance of an initially uncharged line is initially equal to the characteristic impedance.

Example

At $\mathrm{z}=\mathrm{S}$

$$
V_{S}=V_{f}(S, t)+V_{r}(S, t)
$$

and

$$
Z_{0} i_{S}=V_{f}(S, t)-V_{r}(S, t)
$$

v_{S} and i_{S} must satisfy the boundary conditions provided by the source viz.

$$
v_{S}=V_{S}-Z_{S} i_{S}
$$

If we eliminate v_{s} and iS from the equations above, we obtain

$$
\begin{aligned}
& V_{f}(S, t)= V_{S}\left(\frac{Z_{0}}{Z_{S}+Z_{0}}\right)+V_{r}(S, t)\left(\frac{Z_{S}-Z_{0}}{Z_{S}+Z_{0}}\right) \\
& \mathrm{V}_{\mathrm{r}}(\mathrm{~S}, \mathrm{t}) \equiv 0 \quad 0 \leq \mathrm{t}<2 \mathrm{~T}
\end{aligned}
$$

Example
From the load end $V_{r}(L, t)=V_{f}(L, t) \Gamma_{V}(L), \quad \Gamma_{V}(L)=\frac{Z_{L}-Z}{Z_{S}+Z}$

Microwave Physics and Techniques

Example

Lattice Diagram
$v_{L}(t)=V_{S}\left(\frac{Z_{0}}{Z_{S}+Z_{0}}\right)\left[1+\Gamma_{V}(L)\right]\left[u(t-T)+\Gamma_{V}(L) \Gamma_{V}(S) u(t-3 T)+\Gamma_{V}(L)^{2} \Gamma_{V}(S)^{2} u(t-5 T)+\ldots\right]$
This has the form of a geometrical progression with common ration $\Gamma_{V}(L) \Gamma_{V}(S)$. For large values of t the final value of the load voltage may be shown by summing the geometrical progression above to be

$$
V_{L}(t) \rightarrow V_{S}\left(\frac{Z_{0}}{Z_{S}+Z_{0}}\right)\left[1+\Gamma_{V}(L)\right] \frac{1}{1-\Gamma_{V}(L) \Gamma_{V}(S)}
$$

If we substitute for $\Gamma_{V}(L)$ and $\Gamma_{V}(S)$ in terms of $\mathrm{Z}_{\mathrm{S}}, \mathrm{Z}_{\mathrm{L}}$ and Z_{0} and re-arrange, we get

$$
V_{L}(t) \rightarrow V_{S}\left(\frac{Z_{L}}{Z_{S}+Z_{L}}\right) \text { as } t \rightarrow \infty
$$

Example

1. No activity at the load until the time T
2. The initial step at that time is the product of two factors, initially launched forward wave on the line and the sum of the unity and the reflection factor at the load known as the transmission factor at the load junction.
3. Each of the subsequent steps is a common factor times the amplitude of the preceding step.
4. The steps become progressively smaller so that the eventual load voltage converges towards a value which is recognizable as the value the load voltage would have if one simply regarded the source impedance and load impedance as forming a voltage divider delivering to the load a fraction of the source voltage.

Special cases

$$
V_{S}\left(\frac{Z_{0}}{Z_{S}+Z_{0}}\right) \stackrel{\uparrow}{\substack{\mathrm{v}_{\mathrm{L}}(\mathrm{t}) \\ \hdashline}}
$$

Waveform for a line matched at the load end.

Waveform for an open circuit line.
Microwave Physics and Techniques

Non-resistive terminations

Adding these, we obtain
$V_{L}+Z_{0} i_{L}=2 V_{f}(L, t)$

With $\tau=Z_{0} C$,

$$
V_{L}=V_{S} u(t-T)\left(1-e^{-(t-T) / \tau}\right) \forall t
$$

The reverse wave produced at the load end can then be found from

$$
\begin{aligned}
& V_{r}(L, t)=V_{L}(t)-V_{f}(L, t) \quad \text { and is } \\
& V_{r}(L, t)=V_{S^{u}}(t-T)\left(\frac{1}{2}-e^{-(t-T) / \tau}\right) \forall t
\end{aligned}
$$

To find V_{r} at some point $\mathrm{z}<\mathrm{L}$ we add a further delay time $\mathrm{T}-t^{\prime}$ where $t^{\prime}=z / c$ to obtain

$$
V_{r}(z, t)=V_{S^{u}}\left(t+t^{\prime}-2 T\right)\left(\frac{1}{2}-e^{-\left(t+t^{\prime}-2 T\right) / \tau}\right) \forall t
$$

The total voltage on the line at any point and time is then obtained by adding to this backward wave the forward wave

$$
\begin{aligned}
& V_{f}(z, t)=\frac{1}{2} V_{S^{u}}\left(t-t^{\prime}\right) \text { to obtain } \\
& v(z, t)=\frac{1}{2} V_{S}\left(u\left(t-t^{\prime}\right)+u\left(t+t^{\prime}-2 T\right)\left(1-2 e^{-\left(t+t^{\prime}-2 T\right) / \tau}\right)\right)
\end{aligned}
$$

Analysis in Frequency Domain

$$
v(z, t)=\mathfrak{R} e\left\{V(z) e^{j \omega t}\right\}
$$

$\mathrm{V}(\mathrm{z})$ is a complex phasor representing peak value.

$$
\begin{array}{ll}
\frac{d V}{d z}=-(R+j \omega L) I=-Z I & Z=R+j X=R+j \omega L \\
\frac{d I}{d z}=-(G+j \omega C) V=-Y V & Y=G+j B=G+j \omega C
\end{array}
$$

Solution:

Eliminating I

$$
\begin{gathered}
\frac{d^{2} V}{d z^{2}}=\gamma^{2} V \quad \gamma=\sqrt{Z Y}=\sqrt{(R+j \omega L)(G+j \omega C)} \\
V(z)=V_{f} e^{-\gamma z}+V_{r} e^{+\gamma z}
\end{gathered}
$$

V_{f} represents the amplitude and the phase (at the origin) of a forward wave, while V_{r} represents the amplitude and phase (both at the origin) of a reverse wave).
$\gamma=\alpha+J \beta$ is the complex propagation constant.

phase constant
attenuation constant

The current $I z$) is

$$
I(z)=-\frac{1}{Z}\left[-\gamma V_{f} e^{-\gamma z}+\gamma V_{r} e^{+\gamma z}\right]
$$

Substituting for γ

$$
\begin{aligned}
I(z) & =\sqrt{\frac{Y}{Z}}\left[V_{f} e^{-\gamma z}-V_{r} e^{+\gamma z}\right] \\
& =\frac{1}{Z_{0}}\left[V_{f} e^{-\gamma z}-V_{r} e^{+\gamma z}\right]
\end{aligned}
$$

where we introduced

$$
Z_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} \quad \text { characteristic impedance of line }
$$

We define the complex voltage reflection factor $\Gamma_{v}(z)$ at any point on the line as

$$
\begin{aligned}
\Gamma_{v}(z) & =\frac{\text { complex amplitude of the reverse voltage wave at } z}{\text { complex amplitude of the forward voltage wave at } z} \\
\Gamma_{V}(z) & =\frac{V_{r} e^{\gamma z}}{V_{f} e^{-\gamma z}}=\Gamma_{V}(0) e^{2 \gamma_{z}}
\end{aligned}
$$

When $\mathrm{z}=\mathrm{L}$, i.e. at the load, we denote Γ_{v} by $\Gamma_{\mathrm{v}}(\mathrm{L})$, the reflection factor of the load. When $\mathrm{z}=\mathrm{S}$, i.e. at the source, we denote Γ_{v} by $\Gamma_{\mathrm{v}}(\mathrm{S})$, the reflection factor looking into the line at the source end.

$$
\frac{\Gamma_{V}(S)}{\Gamma_{V}(L)}=\frac{e^{2 \gamma S}}{e^{2 \gamma L}}=e^{-2 \gamma(L-S)}=e^{-2 \gamma \ell}
$$

Impedance

We define impedance at any point by

$$
Z(z)=\frac{V(z)}{I(z)}=\frac{V_{f} e^{-\gamma z}+V_{r} e^{+\gamma z}}{I_{f} e^{-\gamma z}+I_{r} e^{+\gamma z}}
$$

$$
\frac{Z(z)}{Z_{0}}=\frac{1+\Gamma_{V}(z)}{1-\Gamma_{V}(z)} \quad \Gamma_{V}(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}
$$

Combine steps to find Z_{I}

$$
\frac{Z_{I}}{Z_{0}}=\frac{1+\left(\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right) e^{-2 \gamma \ell}}{1-\left(\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right) e^{-2 \gamma \iota}} \Longleftrightarrow \frac{Z_{I}}{Z_{0}}=\frac{Z_{L} \cosh \gamma \ell+Z_{0} \sinh \gamma \ell}{Z_{0} \cosh \gamma \ell+Z_{L} \sinh \gamma \ell}
$$

Matching

If a line is terminated in its characteristic impedance (which is complex for an arbitrary lossy line), i.e. if $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$, then

$$
\mathrm{Z}_{\mathrm{I}}=\mathrm{Z}_{0} \text { for any } l
$$

Lossless TL

We assume $\mathrm{R}=0$ and $\mathrm{G}=0$:

$$
\alpha=0 \quad \text { i.e. no attenuation }
$$

$$
\beta=\omega \sqrt{L C} \quad \text { i.e. no dispersion }
$$

$v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}=$ constant
$v_{g}=\frac{\partial \omega}{\partial \beta}=\frac{1}{\sqrt{L C}}=$ same constant
Z_{0} in now real and independent of frequency: $\quad Z_{0}=\sqrt{\frac{L}{C}}$

We find that the voltage reflection factor

$$
\Gamma_{V}(z)=\Gamma_{V}(0) e^{2, \beta z}
$$

changes in phase nut not in magnitude as we go along the line. It advances in phase along $+z$ direction toward the load. At the source

$$
\Gamma_{V}(S)=\Gamma_{V}(L) e^{-2, \beta \ell}
$$

distance l back from the load the voltage reflection factor is retarded in phase as we make the line longer and move back from the load.

$$
\frac{Z_{I}}{Z_{0}}=\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}
$$

Special cases

Case	Impedance
Short circuit load	$Z_{I}=j Z_{0} \tan \beta \ell$
Shorted $\lambda / 4$ line	$Z_{I} \rightarrow \infty \quad$ i.e. o/c
Open circuit load	$Z_{I}=-j Z_{0} \cot \beta \ell$
Open circuit $\lambda / 4$ line	$Z_{I}=0 \quad$ i.e. s / c

Quarter wave lines

When $l=\lambda / 4, \beta l=\pi / 2$. Then

$$
Z_{I}=\frac{Z_{0}^{2}}{Z_{L}}
$$

This important result means $\lambda / 4$ lines can be used as transformers.

$$
Z_{0}=\sqrt{Z_{I} Z_{L}} \longrightarrow \quad Z_{0}=\sqrt{(100 \Omega)(50 \Omega)}=70.7 \Omega
$$

Normalized impedance

$$
z=\frac{Z}{Z_{0}} \quad \Gamma_{V}=\frac{z-1}{z+1} \quad z=\frac{1+\Gamma_{V}}{1-\Gamma_{V}}
$$

Admittance Formulation

For every impedance Z we have a corresponding admittance $\mathrm{Y}=1 / \mathrm{Z}$. It is easy to show that

$$
\frac{Y_{I}}{Y_{0}}=\frac{Y_{L} \cos \beta \ell+j Y_{0} \sin \beta \ell}{Y_{0} \cos \beta \ell+j Y_{L} \sin \beta \ell}
$$

Special cases

Case	Impedance
Open circuit load	$Y_{I}=j Y_{0} \tan \beta \ell$
Open $\lambda / 4$ line	$Y_{I} \rightarrow \infty \quad$ i.e. s / c
Short circuit load	$Y_{I}=-j Y_{0} \cot \beta \ell$
Short circuit $\lambda / 4$ line	$Y_{I}=0 \quad$ i.e. o/c

Quarter wave lines

$$
Y_{I}=\frac{Y_{0}^{2}}{Y_{L}}
$$

Normalized admittance

$$
y=\frac{Y}{Y_{0}} \quad-\Gamma_{V}=\frac{y-1}{y+1} \quad y=\frac{1-\Gamma_{V}}{1+\Gamma_{V}}
$$

Current reflection factor

$$
\Gamma_{i}(z)=\frac{I_{r} e^{\gamma z}}{I_{f} e^{-\gamma z}}
$$

Substituting for I_{f} and I_{r} in terms of V_{f} and V_{r}, we find:

$$
\begin{aligned}
& \Gamma_{i}=-\Gamma_{V} \\
& \Gamma_{i}=\frac{y-1}{y+1} \\
& y=\frac{1+\Gamma_{i}}{1-\Gamma_{i}}
\end{aligned}
$$

Then

$$
\Gamma_{i}(z)=\Gamma_{i}(0) e^{2 \jmath \beta z}
$$

or

$$
\Gamma_{i}(S)=\Gamma_{i}(L) e^{-2, \beta e}
$$

Voltage Standing Wave Ratio

We look at the way the total voltage $\mathrm{V}(z)$ varies along the lossless line. We have, with

$$
\gamma=j \beta
$$

$$
V(z)=V_{f} e^{-\jmath \beta z}+V_{r} e^{+\jmath \beta z} \quad V_{f} \text { and } V_{r} \text { are complex numbers }
$$

$$
\begin{aligned}
& V_{\text {max }}=\left|V_{f}\right|+\left|V_{r}\right| \\
& V_{\text {min }}=\left|V_{f}\right|-\left|V_{r}\right|
\end{aligned}
$$

$$
\text { VSWR: } \quad S=\frac{V_{\max }}{V_{\min }}=\frac{\left|V_{f}\right|+\left|V_{r}\right|}{\left|V_{f}\right|-\left|V_{r}\right|}
$$

$$
\left|\Gamma_{V}\right|=\frac{S-1}{S+1} \quad S^{2}=\frac{1+\left|\Gamma_{V}\right|}{1-\left|\Gamma_{V}\right|}
$$

Line Parameters

Maximum and minimum values of impedance along the line can be related simply to S . When $V_{f} e^{-, \beta z}$ is in phase with $V_{r} e^{+\jmath \beta z}$ we have a simultaneous voltage maximum and current minimum. Thus

$$
Z_{\max }=\frac{V_{\max }}{I_{\min }}=\frac{\left|V_{f}\right|+\left|V_{r}\right|}{\left(\left|V_{f}\right|-\left|V_{r}\right|\right) / Z_{0}}=S Z_{0} \quad \text { and } \quad Z_{\min }=\frac{V_{\min }}{I_{\max }}=\frac{\left|V_{f}\right|-\left|V_{r}\right|}{\left(\left|V_{f}\right|+\left|V_{r}\right|\right) / Z_{0}}=\frac{Z_{0}}{S}
$$

$$
\begin{aligned}
& L=\frac{\mu_{0}}{2 \pi} \ln \left(\frac{b}{a}\right) \\
& C=\frac{2 \pi \varepsilon}{\ln \left(\frac{b}{a}\right)}
\end{aligned} \quad \square Z_{0}=\sqrt{\frac{L}{C}}=\frac{1}{2 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon}} \ln \left(\frac{b}{a}\right)
$$

The complex propagation constant is

$$
\alpha+, \beta=\sqrt{Y Z}=j \omega \sqrt{L C}
$$

There is no attenuation since we assumed there are no losses and the velocity $c=\omega / \beta$ is

$$
c=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \varepsilon}}
$$

Consider a twin line

$$
L=\frac{\mu_{0}}{\pi} \operatorname{arcosh}\left(\frac{s}{d}\right) \approx \frac{\mu_{0}}{\pi} \ln \left(\frac{2 s}{d}\right) \quad s \gg d
$$

$$
C=\frac{\pi \varepsilon}{\operatorname{arcosh}\left(\frac{s}{d}\right)} \approx \frac{\pi \varepsilon}{\ln \left(\frac{2 s}{d}\right)}
$$

$$
Z_{0}=\frac{1}{\pi} \sqrt{\frac{\mu_{0}}{\varepsilon}} \ln \left(\frac{2 s}{d}\right) \quad s \gg d
$$

Common values of Z_{0} are 300Ω for communication lines, 600Ω for telephone lines and slightly higher values are found for power lines.

Matching of T.L.

We recall from lumped circuit theory the maximum power transfer theorem for a.c. circuits which indicates that a sinusoidal steady state source of fixed internal voltage V_{s} and source impedance Z_{S} will deliver maximum power to a load impedance Z_{L} when Z_{L} is adjusted to be the complex conjugate of the source impedance Z_{S}, that is

$$
Z_{L}=Z_{S}^{*}
$$

Matching of the T.L. at both ends makes power transfer between the source and the load take place at minimum loss, and also makes the system behavior become independent of the line length.

