Diodes & Rectifiers

Experiment 5

EE 312
Basic Electronics Instrumentation Laboratory
Wednesday, September 27, 2000

Objectives:

- Si Rectifier Forward I-V Characteristics
 - -Forward Conduction
 - at Room Temp (T)
 - at Elevated Temp (IVT Method)
- Characteristics of Zener Diodes
 - -Forward Conduction at Room Temp
 - Reverse Conduction at Room Temp

Background:

Two Types

Semiconductor Diodes:

Types of diodes:

Parameters:

- Maximum average forward current (If, Max)
 - Full-cycle average current I_F that the diode can safely conduct without becoming overheated
- PRV, PIV, or VRM All mean the same
 - peak reverse voltage
 - peak inverse voltage
 - voltage reverse, maximum

(Maximum allowable reverse-bias voltage for the diode)

PRV rating of 200 V means that the diode may breakdown & conduct & may even be destroyed, if the peak reverse voltage is greater than 200 V

- Surge or fault current (Isurge)
 - The amount of momentary overload current Isurge the diode can withstand without being destroyed
- Temperature Range
- Forward voltage drop (V_F)
 - VF across the diode when it is conducting, given at the maximum average forward current
- Maximum reverse current (IR,Max)
 - Maximum current In the diode can handle for sustained period of time when operated as a Zener Diode
- Other Parameters
 - Base diagram, total capacitance, reverse recovery time, recommended operating ranges

Forward Characteristics

Reverse Characteristics

Forward Characteristics

Procedures:

1- Silicon Rectifier (IVT)

Forward I-V at 21 C

Forward I-V at ~45 C & ~70 C

2- Silicon Zener Diode (I-V)

Forward I-V at 21 C

Reverse I-V at 21 C

3- PSPICE Simulation (Bell 242)

Components:

- Silicon Rectifer (VBD < 200 V)
- Si Diode (Zener, VBD ~ 27 V or ~ 12 V)
- 0.1, 1.0, 4.7 kohms 2Watt Resistors
- Heater Block & Tube Insulator
- Temperature Probe
- Variac (Shock Warning: Not Isolated From Power Line)

1- Forward Characteristics of Diodes

R [ohm]	Vdc	Id	V_{d}
	10.20	$\frac{[\text{mA}]}{\text{O.01}}$	[V]
100k	10.38	0.01	0.380
•	•	•	•
100	10.822	. 100	0.822

2-Reverse Characteristics of Zener Diode

(at voltages below breakdown)

DC CONSTANT-VOLTAGE CURRENT-LIMITED FLOATING POWER SUPPLY

2-Reverse Characteristics of Zener diode

(at breakdown region)

Zener

3- Simulation (PSPICE)

D1 20 Diode

.Model Diode D(IS=1E-14 RS=5 N=1 BV=25 IBV=1E-10)

	<u>default:</u>	<u>Unit:</u>
IS Saturation current	1.0E-14	A
RS Ohmic resistance	0	Ohm
N Emission Coefficient	1	-
BV Reverse breakdown voltage	infinite	V
IBV Current at breakdown voltage	1.0E-3	A

ISR, NR, IKF, NBV, IBVL, NBVL, TT, CJO, VJ, M FC, EG, XTI, TIKF, TBV1, TBV2, TRS1, TRS2, KF, AF

5- Temperature Characteristics of Ge Diode

Temperature Probe converter Box switch Fluke Multimeter 200 mV range 1 mV/degree Probe

Temperature Dependence of I_S

See Sedra/Smith, TABLE 3-1, p. 156

Insert expression for the intrinsic carrier concentration n_i^2 into the expression for the saturation current I_S

 $I_S = C1 \text{ X } T^3 \text{ X } \exp(-E_G/kT)$ where C1 is a constant

The T³ temperature dependence is weak compared to the exponential temperature dependence so that

$$I_S = C2 \text{ X exp}(-E_G/kT) \text{ where } C2 = C1 \text{ X } 300^3$$

$$lnI_S = ln(C1 \times 300^3) - E_G/kT$$

Temperature Dependence of I_S

See Sedra/Smith, TABLE 3-1, p. 156

Insert expression for the intrinsic carrier concentration n_i^2 into the expression for the saturation current $I_{\scriptscriptstyle S}$

 $I_S = C1 X T^3 X \exp(-E_G/kT)$ where C1 is a constant

The T³ temperature dependence is weak compared to the exponential temperature dependence so that

$$I_S = C2 \text{ X exp(-E}_G/kT) \text{ where } C2 = C1 \text{ X } 300^3$$

$$lnI_S = ln(C1 X 300^3) - E_G/kT$$

Precautions:

- Always turn off the Variac and set its dial to zero when not using it.
- At the start of the lab period, preheat the "hot block" to 40°C. When you get to part 5, insert the diode into the block and allow a few minutes for the temperature to stabilize.
- Do not exceed a temperature of 75C in the "hot block."
- Do not exceed the current rating for the diode:
 - Ge: IF, Max = 100 mA I R, Max = 1.0 mA
 - Si: I F, Max = 100 mA I R, Max = 100 mA

Report is required

Must Submit Electronic
Version Using Command
submit ee312 E5ReportTuAM#

Paper Version Also Required

Team Writing

- Abstract & Report for Zener Diode reverse
 IV on the 1999 web
- Introduction to be provided or omitted
- One Partner does silicon rectifier IVT results & discussion for I_S & n
- Must provide results in a computer file to Partner in less than one week & submit to EE 312 Staff using submit command.

- Other Partner uses information provided by partner to determine E_G . Also include discussion and conclusions . Submit report electronically within one week of receiving partner's contribution. Paper version also.
- PSPICE Simulations Not Required.
- Late penalties are -10 points per day and the day starts at 9:00 AM.