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Lesson 61 - Derivation of Bernoulli�s Equation 
 
We focus on the case of an incompressible fluid with density ρ (= a constant) moving 
with a constant, non-turbulent volume flow rate (= A1�v1 m3/s = A2�v2 m3/s = a constant).  
The pressure is also constant as long as the radius and elevation are constant.  The radius 
of the pipe and the elevation of the pipe may change, however.   
 
We will follow the pressure changes in a volume of fluid (volume element) flowing first 
at point #1, then at point #2.  The same volume flow rate is observed at both points in the 
pipe by our assumption.  We choose two points where the pipe and thus the velocity of 
the fluid are horizontal to simplify the math without changing the general conclusions.  
The following diagram summarizes the general case. 

 The total mechanical energy of the volume element at position #1, E1, is  
 
 E1 = kinetic energy + potential energy = ½�∆m1�v1

2 + ∆m1�g�y1  
 

(where v1 is velocity, y1 is elevation, ∆m1 is mass) 
 
Similarly for the volume element at position #2, its total mechanical energy, E2, is  
 
 E2 = kinetic energy + potential energy = ½�∆m2�v2

2 + ∆m2�g�y2  
 

(where v2 is velocity, y2 is elevation, ∆m2 is mass) 
 
Under our assumed conditions of constant volume flow for an incompressible fluid, the 
mass of the volume elements is conserved during the flow, so that we may substitute 
 
 ∆m1 = ∆m2 = ∆m  
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Clearly, if the flow was steady (v1 = v2 = v), and if there was no change in the elevation 
(y1 = y2 = y), then there would be no change in the total mechanical energy of the fluid.  
If, however, either one or both of those parameters changes between position #1 and 
position #2, there will be changes in the total mechanical energy of the fluid, as follows: 
 
 E2 − E1 = ½�∆m�v2

2 + ∆m�g�y2 � ½�∆m�v1
2 − ∆m�g�y1 

 
This difference in mechanical energy arises from the Net Work done on the system, ie, 
the Net Work done on all the fluid in the pipe between point #1 and point #2.   
 
(Net Work = Work done on the fluid minus work done by the fluid = Won − Wout) 
 
At point #1, Won = [force]�[distance] = [pressure � area]�[velocity � time interval] 
 
      = (P1�A1)�(v1�∆t)            (∆t is time to move an element length) 
 
      = P1�(ρ�A1�v1�∆t) / ρ           (ρ/ρ inserted) 
 
But (ρ�A1�v1�∆t) is the mass of our volume element at position #1.  Note that (v1�∆t) is 
simply the length of the volume element; A1 is its cross-sectional area.  Those two 
multiplied together give us its volume.  Density times volume equals mass.  Therefore,  
 
 Won = P1� ∆m / ρ 
 
The same arguments apply at point #2.  The work done by the system will be subtracted 
because this work decreases the total mechanical energy of the fluid. 
 
 Wout = P2 � ∆m / ρ 
 
Thus, the net work done on the fluid, which is the work done on the system minus the 
work done by the system, is  
 
 Won − Wout = P1 � ∆m / ρ − ( P2 � ∆m / ρ) = (P1 − P2) � ∆m / ρ 
 
This Net Work is the source of the energy difference, E2 − E1, which we can rearrange as 
follows: 
 
 E2 − E1 = ∆m � {½ � (v2

2 � v1
2) + g � (y2 − y1)} 
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Now, the Net Work and the change in mechanical energy must equal each other (Work-
Energy Theorem), therefore, 
 
 (P1 − P2) � ∆m / ρ = ∆m � {½ � (v2

2 � v1
2) + g � (y2 − y1)} 

 
The mass terms cancel, because the fluid is incompressible, and we can move the density 
to the other side of the equation, leaving, 
 
P1 − P2  = ρ � {½ � (v2

2 � v1
2) + g � (y2 − y1)}  

                
 = (½�ρ�v2

2) � (½�ρ�v1
2) + (ρ�g�y2) − (ρ�g�y1) 

 
Or, after moving all negative terms to the opposite side of the equation,  
 

P1 + (½�ρ�v1
2) + (ρ�g�y1)  = P2 + (½�ρ�v2

2) + (ρ�g�y2)  
 
Which gives us Bernoulli�s Equation in its normal presentation as 
 
 P1 + ½ρv1

2 + ρgy1  = P2 + ½ρv2
2 + ρgy2 = constant everywhere in the fluid 

 
 
Interpretation of Bernoulli�s Equation 
 
We should first note that, if the cross-sectional areas at points #1 and #2 are the same, 
then the two velocities are equal and the ½ρv2-terms cancel each other.  Further, if there 
is no difference in the heights at points #1 and #2, the two ρgy-terms cancel each other.  
If both are true, then no matter what happens to the pipe size and elevation between these 
two points, the pressure at these two points will still be equal; P1 = P2. 
 
If we examine the case where only the elevation is constant, then we get  
 
 P1 + ½ρv1

2 = P2 + ½ρv2
2 

 
This takes a little contemplation, but what this equation tells us is that as the velocity 
increases the pressure decreases.  Think of it this way: the two sides of the equation must 
remain equal.  If v2 increases because of a decrease in A2, then P2 must decrease in order 
for their sum to maintain its equality with the left side of the equation.   
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It is easy to demonstrate that this is true.  The mathematics is elegant and simple, but 
sometimes you just have to check with the universe to make sure it agrees with you.  So, 
try this little experiment for yourself. 
 
Hold a piece of paper bent-over and hanging vertically from just below your lips.  Blow 
horizontally just above the top of the bent leading edge of the paper.  Do not blow under 
the paper; that would be easier but not in the spirit of Bernoulli�s Equation.  Like this� 

 
 
Applications of Bernoulli�s Equation 
 
Operation of an airplane wing: 
 

 
There is a lot more going on with the airplane wing than shown in this diagram.  We are 
ignoring turbulence and the fact that air is a compressible fluid, among other things.  But 
the general idea should be clear.  The higher velocity above the wing means less pressure 
above the wing.  The higher pressure below then pushes up on the wing, which keeps the 
airplane in the air. All planes have a minimum air speed they must maintain in order to 
fly.  It is the speed that creates a pressure difference sufficient to hold the plane in the air.  
Below that speed there will still be a pressure difference between the air above the wing 
and the air below the wing.  It will simply be too small to support the weight of the plane, 
and the plane will no longer fly. 
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Venturi Tube: Variants of this concept can also be used for measuring quantities of gas 
flowing through a tube, for measuring the speed of subsonic aircraft, for measuring the 
volumes of oil or natural gas flowing through a pipeline, among others. 
 
For simplicity we will consider here only the velocity of a flowing, non-compressible 
liquid.  When working with gases one has to take adequate account of the fact that the 
density it not constant, that the gas is compressible, and that the gas temperature changes 
as the pressure changes.  The mathematics for that case is a bit more involved than we 
want to address here.  Therefore, we will only look at the simplest case.  Elevation will 
not be an issue since the center points of our Venturi Tube are at the same elevation 
everywhere along its length.  Even though we envision measuring the pressure difference 
using a mercury manometer, these are hardly ever used any longer.  There are many 
ingenious mechanical devices used instead for measuring pressure differences.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The centers of all the tubes have a common elevation; therefore the gravity-terms drop 
out of Bernoulli�s equation.  This leaves 
 
 P1 + ½ρv1

2 = P2 + ½ρv2
2     or     P1 - P2  = ½ρv2

2 - ½ρv1
2 = ½ρ (v2

2 - v1
2)  

 
The pressure difference measured by the mercury manometer is  
 
 P1 - P2  = ρ�gh 
 
Assuming we know v1 and need to find v2, we begin by assuming an incompressible fluid 
and use the constant volume flow equation to remove v1 by substitution.  Thus, 
 
 A1v1 = A2v2 
So 
 v1 = A2v2 / A1 



Physics � Trinity Valley School                                                                               Page 6 
Dr. Mitch Hoselton                                                                                                 6/29/2003 
Physics: An Incremental Development, John H. Saxon, Jr. 
 
Therefore, substituting these results into Bernoulli�s equation, yields 
 
 ρ�gh = ½ρ (v2

2 � (A2v2 / A1)2) 
 
 ρ�gh = ½ρ v2

2 (1 � (A2 / A1)2)  
 
This can be solved for v2

2, as follows, 
 
 v2

2 = h � 2g (ρ�/ ρ) / {1 � (A2 / A1)2}  
 
Everything to the right of the h consists of constants.  The details depend on the sizes of 
the pipes, the densities of the liquids, and the local value of g.  For simplicity, we collect 
most of these constants into one equipment-constant; call it K2.  Then,  
 
 v2

2 = K2 (h / ρ) where K2 = 2g ρ�/ {1 � (A2 / A1)2} 
 
If, instead, we know v2 and need to find v1, the same method applies.  This time,  
 
 v1

2 = K1 (h / ρ) where K1 = 2g ρ� / { (A1 / A2)2 − 1} 
 
Since K1 and K2 are apparatus specific, it is often easier to simply calibrate the apparatus 
and find the values of these constants under known conditions rather than trying to 
calculate them.  Proper calibrations mean that only two careful measurements, of K and 
ρ, are required; not five careful measurements of g, ρ�, ρ, A1, and A2.   
 
 


