

tecn	Engineering S Technological Campus	ichool San Sebastián s of the University of Na	varra 🛄 L	Jniversity of N	avarra			
C	Comparing set	ON (III) ome electi	rical storage	systems:				
	System	Power Density (kW/kg)	Energy Density (Wh/kg - MJ/kg)	Mean life (No. of cycles)				
	Compressed air	10	180 - 0.65	10,000,000				
	Lead-acid battery	0.2	50 - 0.18	1,000				
	Nickel-cadmium battery	0.2	50 - 0.18	2,000				
	Steel flywheel	10	55 - 0.20	100,000				
	Fused silica flywheel	-	870 - 3.13	100,000	16			
Energy Technology A. Y. 2006-07								

Pumped hydro storage (V)

- Global efficiency: » 65-75%.
- Stored energy: between 200 and 2.000 MWh.
- Main Spanish pumping power stations:

Power plant	River	Province	Power (MW)
Villarino	Tormes	Salamanca	810
La Muela (*)	Júcar	Valencia	628
Estany-Gento-Saliente (*)	Flamisell	Lérida	451
Aldeadávila II	Duero	Salamanca	421
Tajo de la Encantada (*)	Guadalhorce	Málaga	360
Aguayo (*)	Torina	Cantabria	339
Conso	Camba-Conso	Orense	228
Valdecañas	Tajo	Cáceres	225
TOTAL			5.120

(*) Pure pumping power plant

Energy Technology

25

A. Y. 2006-07

tecnun	Engi Technologica	neering School San Sebast I Campus of the University	ián of Navarra	Univers	ity of Navarra
Com	npres	ssed air	(VIII)		
• CAI	ES pla	nts example	es:		
– H	luntorf	, Germany (*	1978):		
			cavern location	– top - bottom	≃ 650 m ≃ 800 m
output			maximum diame	eter	≃ 60 m
turbine opera	ation	290 MW (< 3 hrs)	well spacing		220 m
compressor of oir flow rates	operation	<u>60 ₩₩ (≤ 12 nrs)</u>	cavern pressure	es	
 turbine opera 	ation	417 ka/s	minimum per	ermissible	1 bar
 compressor (operation	108 kg/s	minimum op (exceptional)	oerational	20 bar
air mass flow rati	io in/out	1/4	> minimum or	perational	43 bar
number of air cav	verns	2	(regular)		40 1041
air cavern volum	es (single)	≃ 140 000 m³	➤ maximum p	ermissible	70 bar
		≃ 170 000 m³	& operation	al	
total cavern volu	me	≃ 310 000 m³	maximum press tion rate	sure reduc-	15 bar/h
					35
Energy Techr	nology				A. Y. 2006-07

tecnur	Engineering School Sa Technological Campus of the U	n Sebastián niversity of Navarra	🖤 Uni	versity of	Navarra
Fly	wheels (IV)				
• Pr	operties of flyw	heel mate	erials:		
	Material	Density	E _{max}	a m	
		(kg/m³)	(Wh/kg)	(m/s)	
	Aluminium	2,700	20	190	
	Treated steel		55	280]
	E-glass fiber	2,500	190	570	
	Carbon fiber	1,800	200	600	
	S-glass fiber	2,500	240	660	
	Fused silica	2,100	870	1,200	
•		-	-		
					45
Energy Tecl	nnology			A. Y. 2	2006-07

Energy Technology

tecnun	Engineering School San Sebastián Technological Campus of the University of N	Navarra	University of Navarra
Flyw	/heels (V)		
• Pro	perties of flywheel	materials:	
Ma Fly	ximum Specific Energy wheel with Various Rin	Storable in a 1 n Materials	Thin Rim
Wh	eel Material	Maximum Spe Storable	ecific Energy Wh/kg
Alu	minum alloy	2	25
Ma	raging steel	5	50
E-g	lass composite	20	00
Car	bon fiber composite	22	20
S-gi	lass composite	25	50
Pol	ymer fiber composite	35	50
Fus	ed silica fiber composite	100	00
Lea	d-acid battery	30-	40
Lith	nium-ion battery	90-3	¹²⁰ 46
Energy Techn	nology		A. Y. 2006-07

te	Engineering School San Sebastián Technological Campus of the University of Navarra University of Navarra									
Batteries (VII)										
Γ	Type of	Pb-	Ni-Cd	Ni-metal	Na-S	Li-	Li-	Zn-	Zn-	Li-
	battery	acid		hydride		ion	poly	CI	air	FeS ₂
	V _{max} (V)	2.5	1.35	-	2.75	-	-	2.12	-	2.4
	V _{min} (V)	1.75	-	-	1.83	-	-	1.98	-	1
	τ(°C)	25	25	25	300- 350	25	50- 70	30- 50	-	400- 450
	h e	70-80	-	-	85	-	-	70	-	70
	Life (No. of cycles)	1,500- 2,000	1,500- 3,000	1,000- 2,000	1,000- 2,000	500- 1,000	500- 1,000	500- 1,000	200- 300	200- 1,000
	Energy density (Wh/kg)	150- 200	200	150-200	200	100	100- 200	150	200	170
	Power density (W/kg)	100- 150	150- 200	150	100	200	>200	90	150	>100
	Self- discharge rate (%/month)	3-5	20-30	20-30	-	5-10	1-2	-	4-6	- 79

Energy Technology

tecnur	Engineering School San Sebastián Technological Campus of the University of Navarra	l di l	Jniversity of N	avarra					
Hybrid electric vehicles (III)									
• Co Er	omparision between en Inter ngine (ICE) and a HEV:	nal Com	nbustion						
Γ		ICE	HEV						
	Fuel	100	50 (+50)						
	Transmission losses	-6	-6						
	Idling losses	-11	0						
	Accessory loads	-2	-2						
	Engine losses	-65	-32						
	Regenerative braking	0	+4						
	Total energy remaining	16	14 (+50)						
• Tł de	here are three main types of esigns of HEVs: series, paral	configu Iel, and	rations and dual-mode.	84					

