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1. Introduction

Interests in triangle geometry have been rekindled in recent years with
the availability of dynamic software such as the Geometer’s Sketchpad and
Cabri for geometric constructions. In this paper we outline some interesting
results with illustrations made by such software. We shall center around the
notions of reflection and isogonal conjugation, and introduce a number of
interesting triangle centers,1 lines, conics, and a few cubic curves.2 Many
results in triangle geometry can be discovered from such dynamic sketches,
and proved either synthetically or by calculations. Although we do not
present any proof, all results without references have been confirmed by
calculations using barycentric coordinates.3 The reader is invited to repro-
duce the figures in this paper as dynamic sketches using computer software,
and to discover further results.

The conics in this paper are constructed by the five-point-conic command
available in both Geometer’s Sketchpad and Cabri. The location of the
center of a rectangular hyperbola will be treated in detail in§?? below. In

The 37th Annual Meeting of the Florida Section of the Mathematical Association of
America, University of Central Florida, Orlando, Florida, USA.

1Most of the triangle centers in this paper appear in Kimberling’sEncyclopedia of Tri-
angle Centers [10], hereafterETC. For example, the centroid, circumcenter, orthocenter,
and incenter appear asX2, X3, X4, andX1 respectively. We shall reference occurrences
in ETC of other triangle centers in footnotes.

2Most of the questions we consider are about the concurrency of three lines. We say that
two triangles are perspective if the lines joining their corresponding vertices are concurrent.
The point of concurrency is called the perspector of the triangles.

3For an introduction to the use of barycentric coordinates in triangle geometry, see [14,
15].
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2 A tour of triangle geometry

§10 we give a number of ruler-and-compass constructions for conics, which
can be incorporated into efficient tools of the dynamic software.4

Part I: Some Interesting Triangle Centers

1.1. The classical centers. The most well known of triangle centers are cer-
tainly the centroid, the circumcenter, the orthocenter, and the incenter. The
existence of each of these is due to the concurrency of three lines, respec-
tively the medians, the perpendicular bisectors, the altitudes, and the inter-
nal angle bisectors.

Figure 1 shows the cirumcenterO and the orthocenterH. Note that the
linesOA andHA are isogonal (or symmetric) with respect the sidesAB
andAC; similarly for OB, HB, andOC, HC.

A

B C

A

B C

H
O

Figure 1
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Figure 2

1.2. The tritangent circles. The tritangent circles are the one tangent to all
three sidelines of triangleABC. There are four of them, the incircle and
the thee excircles.

The incircle touches each of the sidesBC, CA, AB. Figure 2 shows
the incenterI along with the Gergonne pointGe, the point of concurrency
of the lines joining the point of tangency of the incircle with a side to the
opposite vertex.

An excircle touches one side of the triangle and the extensions of the
remaining two sides. The lines joining the points of tangency of theA-
excircle withBC, theB-excircle withCA, and theC-excircle withAB, to
the opposite vertices all pass through the Nagel pointNa.

1.3. The symmedian point.

4The intersections of conics and lines can be easily marked with Cabri, but not with the
Geometer’s Sketchpad. Figure 57, for example, is drawn with Cabri. Most of the sketches
in this paper are drawn with the Geometer’s Sketchpad.
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Figure 3. The excircles and the Nagel point
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Figure 4.

2. Isogonal conjugates

Consider a point with reflectionsPa, Pb, Pc in the sidelinesBC, CA,
AB. Let Q be a point on the line isogonal toAP with respect to angle
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A, i.e., the linesAQ andAP are symmetric with respect to the bisector of
angleBAC. See Figure 5.
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Pb
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Figure 5.

It is easy to show that the trianglesAQPb andAQPc are congruent, so
that Q is equidistant fromPb andPc. For the same reason, any point on
a line isogonal toBP is equidistant fromPc andPa. It follows that the
intersectionP ∗ of two lines isogonal toAP andBP is equidistant from the
three reflectionsPa, Pb, Pc. Furthermore,P ∗ is on a line isogonal toCP .
For this reason, we callP ∗ the isogonal conjugate of P . It is the center of
the circle of reflections ofP . See Figure 6.
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Figure 6.
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Clearly, (P ∗)∗ = P . Moreover, the circles of reflections ofP andP ∗

are congruent, since, in Figure 3, the trapezoidPP ∗P ∗
a Pa being isosceles,

PP ∗
a = P ∗Pa. It follows that the pedals ofP andP ∗ on the sidelines all

lie on the same circle with center the midpoint ofPP ∗. We call this the
commonpedal circle of P andP ∗.

M

P*

A

B
C

P

Figure 7.
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2.1. The circumcenter O and the orthocenter H . The circumcenterO and
the orthocenterH are isogonal conjugates. SinceOOa = AH, AOOaH is
a parallelogram, andHOa = AO. See Figure 4. This means that the circle
of reflections ofO is congruent to the circumcircle. Therefore, the circle
of reflections ofH is the circumcircle, and the reflections ofH lie on the
circumcircle.
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Figure 8.

2.1.1. The nine-point circle and the Euler line. The common pedal circle
of O andH has centerN at the midpoint ofOH. 5 See Figure 5. This
circle is usually called thenine-point circle since it also passes through the
midpoints of the three segmentsAH, BH, andCH. The line containingO
andH is called theEuler line of triangleABC. It contains, apart from the
nine-point centerN , also the centroidG and the deLongchamps pointL, 6

which is the reflection ofH in O, and

HN : NG : GO : OL = 3 : 1 : 2 : 6.

L

N

O

H

B C

A

Figure 9.

5The nine-point centerN is X5 in ETC.
6The deLongchamps point isX20 in ETC.
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2.2. The Feuerbach point Fe . The remarkable Feuerbach theorem asserts
that the nine-point circle of a triangle is tangent internally to the incircle
and externally to each of the excircles. The Feuerbach pointFe is the point
of tangency with the incircle.7

F'e
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Fe
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Figure 10.

If X ′, Y ′, Z ′ are the point of tangency of the nine-point circle with the
excircles, thenAX ′, BY ′, CZ ′ are concurrent at a pointF ′

e on the line
joining I to N . 8

7The Feuerbach point isX11 in ETC.
8This is the pointX12 in ETC.
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2.3. The symmedian point K. The isogonal conjugate of the centroidG is
called the symmedian pointK. 9 Honsberger [6, p.53] calls it “a crown
jewel of modern geometry”. It has many interesting properties.

2.3.1. The symmedian point K and the tangential triangle. The symmedian
pointK is the perspector of the tangential triangle: ifA′B′C ′ is the triangle
bounded by the tangents to the circumcircle at the vertices, the linesAA′,
BB′, CC ′ intersect atK. See Figure 11.
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Figure 11.

The circumcenter of the tangential triangle is a point on the Euler line.10

For further properties ofK, see§9.1.

9The symmedian point isX6 in ETC.
10This is the pointX26 in ETC.
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2.4. The Gergonne point and the internal center of similitude of the circum-
circle and incircle . It is clear that the incenter is the isogonal conjugate of
itself. The Gergonne pointGe is the perspector of the intouch triangle: if
the incircle of triangleABC is tangent to the sidesBC, CA, AB atX, Y ,
Z respectively, thenAX, BY , CZ are concurrent atGe. 11 The isogonal
conjugate ofGe is the internal center of similitude of the circumcircle and

the incircle.12 See Figure 12. The reflections
X ′

Y ′

Z ′
of

X
Y
Z

in the bisectors of

angles
A
B
C

all lie on the incircle. A simple calculation shows that the oriented

angle betweenIY ′ andBC is π
2
−A. Likewise, the oriented angle between

IZ ′ andCB is alsoπ
2
− A. This means thatIY ′ andIZ ′ are isogonal with

respect to the lineBC. Let R andr be respectively the circumradius and
the inradius of triangleABC. SinceIY ′ = IZ ′, Y ′Z ′ is parallel toBC and
has length2r sin A. Sincea = 2R sin A, the ratio of homothety isr : R. It
follows that the isogonal conjugate ofGe is the internal center of similitude
of the circumcircle and the circle.

Ge

Z'
Y'

X'

Z

X

Y

I O

A

B C

Figure 12.

If A′, B′, C ′ are the midpoints of the sidesBC, CA, AB respectively,
then the linesA′X ′, B′Y ′, C ′Z ′ intersect at the Feuerbach pointFe. 13

11The Gergonne point isX7 in ETC.
12The internal center of similitude of the circumcircle and incircle isX 55 in ETC.
13International Mathematical Olympiad, 1982, Problem 2.



10 A tour of triangle geometry

2.5. The Nagel point and the external center of similitude of the circum-
circle and incircle. The Nagel pointNa is the perspector of the extouch

triangle: if the excircle on the side
BC
CA
AB

of triangleABC is tangent to this

side at
X
Y
Z

, thenAX, BY , CZ are concurrent atNa.
14 If

X ′

Y ′

Z ′
is the reflection

of
X
Y
Z

in the bisector of angle
A
B
C

, the linesAX ′, BY ′, CZ ′ all intersectOI at

the point which divides it in the ratioR : −r. This is the external center of
similitude of the circumcircle and the circle, and is the isogonal conjugate
of Na. 15
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Figure 13.

14The Nagel point isX8 in ETC.
15The external center of similitude of the circumcircle and incircle isX 56 in ETC.
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2.6. Gergonne and Nagel points as isotomic conjugates . The Gergonne
point Ge and the Nagel pointNa form a pair of isotomic conjugates. See
Figure 14 below. In general, letP be a point with tracesX, Y , Z on the
sidelines ofABC. If X ′, Y ′, Z ′ are the reflections ofX, Y , Z in the mid-
points of the respective sides, then the linesAX ′, BY ′, CZ ′ are concurrent
at a pointP ′ which we call theisotomic conjugate of P . Like isogonal con-
jugation, we have(P ′)′ = P for every pointP . The centroid is clearly the
isotomic conjugate of itself.

NaGe I

Figure 14.
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2.7. The isogonal conjugate of a point on the circumcircle. To find the isog-
onal conjugate of a pointP on the circumcircle, we reflect the linesAP ,
BP , CP in the respective angle bisectors. These reflected lines do not in-
tersect at a finite point. They are parallel. We say that the isogonal conjugate
of P is an infinite point (which is the common point of a family of parallel
lines). See Figure 15.

O

A

B C

P

Figure 15. Isogonal conjugates of points on the circumcircle

2.8. Isotomic conjugates of infinite points . The isotomic conjugate of an
infinite point lies on the circum-ellipse with centerG. See Figure 16. This
is called the Steiner circum-ellipse.
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Figure 16.
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3. Simson line and line of reflections

3.1. Simson line. Let P be a point on the circumcircle of triangleABC,
with pedalsX, Y , Z on the sidelines. It is well known thatX, Y , Z are
collinear. The line containing them is theSimson line of P . The converse
is also true: if the pedals of a point on the sidelines are collinear, then the
point lies on the circumcircle. Now, the reflections ofP in the sidelines
are the images of the pedals under the homothetyh(P, 2). It follows that
the reflections ofP are collinear if and only ifP lies on the circumcircle.
It is remarkable that the line of reflections (of a point on the circumcircle)
always passes through the orthocenterH. (See [6, pp.43–46]).

H
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Figure 17. Simson and reflection lines

The Simson lines of antipodal points intersect orthogonally on the nine-
point circle.
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3.2. Line of reflections and reflections of line. Given a line� throughH,
what is the point on the circumcircle whose line of reflections is� ? This
question is most elegantly answered by the following theorem of Collings
and Longuet-Higgins [2, 11]:The reflections of a line � through H in the
sidelines of triangle ABC intersect at a point F on the circumcircle whose
line of reflections is �. See Figure 18.

H

O

Figure 18.

In particular, the reflections of the Euler lineOH in the sidelines intersect
at theEuler reflection point E on the circumcircle.16

E

O

H

B C

A

Figure 19.

16The Euler reflection point isX110 in ETC. It is also called the Kiepert focus. For
more about this point, see [12].
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3.2.1. Consider a line through the circumcenterO, intersecting the cir-
cumcircle at antipodal pointsQ andQ′, and the sidelinesBC, CA, AB at
X, Y , Z respectively. The three circles with diametersAX, BY , CZ have
two common points,T on the circumcircle andW on the nine-point circle.
The pointW is the intersection of the orthogonal Simson lines ofQ andQ ′.
The lineTW passes through the orthocenterH. See Figure 20.
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Figure 20.

The lineTW is the line of reflections of the reflection ofT in QQ′.

T '
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Figure 21.
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4. Rectangular circum-hyperbolas

4.1. Brianchon-Poncelet theorem. A conic through the vertices of a trian-
gle is a rectangular hyperbola if and only if it passes through the orthocenter
of the triangle. In this case, the center of the conic lies on the nine-point
circle. The perpendicular asymptotes of the rectangular hyperbola are the
Simson lines of two antipodal points on the circumcircle. The conjugates
of these points are infinite points, which are the infinite points of the hy-
perbola. The rectangular hyperbola can be considered as the locus of the
isogonal conjugates of points on a line through the circumcenter.17

P*

W(P)

OH

P

Figure 22.

4.1.1. Given a pointP not on the sidelines and other than the orthocenter,
we denote byH(P ) the rectangular circum-hyperbola throughP . It is the
isogonal conjugate of the lineOP ∗. The fourth intersection ofH(P ) with
the circumcircle is the isogonal conjugate of the infinite point ofOP ∗. It
is the antipode of the orthocenterH on the hyperbolaH(P ). The antipode
of this fourth intersection on the circumcircle is the intersection of the re-
flections of the line throughH parallel toOP ∗ in the sidelines of triangle
ABC. See Figure 22.

17More generally, the isogonal conjugate of a line is a circumconic (through the vertices)
of triangle. It is an ellipse, a parabola, or a hyperbola according as the line intersects the
circumcircle at 0, 1, 2 real points.
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4.1.2. In §3.2.1, the lineTW passes through orthocenterH. It intersects
the circumcircle again at the fourth intersection of the rectangular circum-
hyperbola which is the isogonal conjugate ofQQ′. The pointT is the inter-
section of the reflections of the tangent of the hyperbola atH in the sidelines
of triangleABC. 18
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Figure 23.

18For a construction of the tangent to a conic, see§10.
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4.2. Some examples of rectangular circum-hyperbolas.

4.2.1. The Jerabek hyperbola . The Jerabek hyperbola is the isogonal con-
jugate of the Euler line. It intersects the circumcircle at the antipode of the
Euler reflection pointE. 19 Its centerJe

20 is also the intersection of the
Euler lines of trianglesAY Z, BZX, andCXY , whereXY Z is the orthic
triangle.21

Je

H

O

Figure 24.

Given a pointP , letX, Y , Z be the intersections of the circumcircle with
the linesAP , BP , CP respectively,22 andX ′, Y ′, Z ′ their reflections in the
respective sidelines. The linesAX ′, BY ′, CZ ′ are concurrent if and only if
P lies on the Jerabek hyperbola.23

19The antipode of the Euler reflection point isX74 in ETC.
20The center of the Jerabek hyperbola isX125 in ETC.
21Thébault’s theorem; see also [3].
22XY Z is called the circumcevian triangle ofP .
23For the locus of the point of concurrency, see§8.3.



P. Yiu 19

4.2.2. The Kiepert hyperbola. The Kiepert hyperbola is the isogonal con-
jugate of the Brocard axisOK. Its centerKi

24 is also the intersection of
the Brocard axes of trianglesAY Z, BZX, andCXY , whereXY Z is the
orthic triangle.25 It is also the midpoint of the Fermat points.

N

X
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Z

Ki

G

K
O

H
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B C

Figure 25. The Kiepert hyperbola

The centers of the Jerabek and Kiepert hyperbolas can be constructed as
the intersections of the nine-point circle and the common pedal circles ofG
andK. See§6.1 and Figure?? below.

24The center of the Kiepert hyperbola isX115 in ETC.
25Floor van Lamoen, Hyacinthos, message 1251, 8/19/00.
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4.2.3. The Feuerbach hyperbola. The Feuerbach hyperbola is the isogonal
conjugate of the lineOI. Its center is the Feuerbach pointFe. Its tangent at
I passes throughO.

N

Fe

I
O

H

Figure 26. The Feuerbach hyperbola

The pedal circles of points on the Feuerbach hyperbola pass through the
Feuerbach point.
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4.2.4. The Stammler hyperbola . The Stammler hyperbola is the one that
passes through the circumcenter, the incenter, and the excenters. This is a
rectangular hyperbola since the incenter is the orthocenter of the triangle
formed by the excenters. Its center is the Euler reflection pointE. The
asymptotes are the lines joiningE to the intersections of the Euler line with
the circumcircle.26 The Stammler hyperbola is tangent to the Euler line. It
also passes through the symmedian pointK.

The Stammler hyperbola also contains the vertices of the tangential tri-
angle. It is the Feuerbach hyperbola of the tangential triangle.

E

I
O

H

Figure 27. The Stammler hyperbola

The Stammler hyperbola is the locus ofP whose pedals on the perpen-
dicular bisectors are perspective.27

26The intersections of the Euler line with the circumcircle areX1113 andX1114 in ETC.
27See§7.3 for the locus of the perspector.
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5. Conics

5.1. Circumconics with given center. Given a pointP , it is easy to con-
struct the conic through the vertices of triangleABC and with centerP .
This conic, which we denote byCc(P ), also contains the reflections ofA,
B, C in P . The circumconicCc(G) is called the Steiner circum-ellipse.28

It intersects the circumcircle at the Steiner pointSt,
29 which can be con-

structed by extending the segmentKiG such thatKiSt = 3KiG.

St

Ki

G

O

H

Figure 28.

28See§2.8.
29The Steiner pointX is X99 in ETC.
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5.1.1. Fourth intersection of Cc(P ) and circumcircle . More generally, the
fourth interesection of a circumconic and the circumcircle can be constructed
as follows. LetA′, B′, C ′ be the antipodes ofA, B, C in the circumconic
Cc(P ). The circlesAB′C ′, BC ′A′, CA′B′ intersect at the fourth intersec-
tion T with the circumcircle.

T

C'
B'

A'

O

A

B C

P

Figure 29.

The circlesABC ′, BCA′, CAB′, on the other hand, intersect at the an-
tipode ofT ′ in Cc(P ).
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Figure 30.
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5.2. Conics through the traces of two points. Given two pointsP andQ,
there is a unique conic through the traces of these two points on the sidelines
of the reference triangleABC. We denote this conic byC(P, Q). The
simplest example is the nine-point circle; it isC(G, H).

5.2.1. Let P be a point on the circumcircle, the conicC(G, P ) is a rect-
angular hyperbola since it passes throughO, the orthocenter of the triangle
formed by the midpoints of the sides.

O

H

P

Figure 31.

5.2.2. Central conic cevian complement. It is easy to construct a conic
through the traces of a pointP which is also the center of the conic. This is
C(P, Q) for some pointQ. We callQ the central conic cevian complement
of P .

QP

Figure 32.
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Here are two interesting examples.
(i) If P is the incenter,Q is the homothetic center of the excentral and

intouch triangles.30 It is a point on the line joining the circumcenter to the
incenter.

I

O

Figure 33.

(ii) If P is the symmedian point,Q is the homothetic center of the tan-
gential and orthic triangles.31 It is a point on the Euler line. See§9.1.1 and
Figure 52.

30The homothetic center of the excentral and intouch triangle isX 57 in ETC.
31The homothetic center ofX25 in ETC.
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5.3. Inscribed conics. Given a pair of isogonal conjugatesP andP ∗, there
is a conic with these as foci and tangent to the sidelines of triangleABC.
The center of the conic is the midpointM of PP ∗, the center of the common
pedal circle ofP andP ∗. To construct the conic (using the five-point conic
command), we find the points of tangency with the sidelines. For this, ex-
tendMG to Q′ such thatMQ′ = 3MG. Let X ′, Y ′, Z ′ be the traces ofQ′.
The points of tangency with the sidelines are the reflections of triad X’Y’Z’

in the midpoints of
BC
CA
AB

. Their reflections inM are also on the conic.

Q

X'X

Z

Y
Z'

Y'

Q'

G

M

P*

B
C

A

P

Figure 34.

The linesAX, BY , CZ are concurrent at a pointQ, called the perspector
(or the Brianchon point) of the inscribed conic. This is the isotomic conju-
gate of the pointQ′ constructed above. The common pedal circle ofP and
P ∗ is the auxiliary circle of the inscribed conic.
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5.3.1. The inscribed conic with fociO andH has centerN . It is the enve-
lope of the perpendicular bisector of segmentHP , for P on the circumcir-
cle.

N O

H

P

Figure 35.

5.3.2. The inscribed conic with centerK touches the sideslines at the ver-
tices of the orthic triangle.

5.4. Inscribed parabolas. If F is a point on the circumcircle, its isogonal
conjugate is an infinite point. The inscribed conic withF as a focus is
therefore a parabola. The directrixL is the line of reflections ofF . The
points of tangencyX, Y , Z with the sidelines are such thatXFa, Y Fb, ZFc

are perpendicular toL. The axis is the perpendicular fromF to L. This is
enough to construct the parabola (by the 5-point conic command).

5.4.1. The perspector of an inscribed parabola. The perspector of the in-
scribed parabola,i.e., the intersection of the linesAX, BY , CZ, is a point
on the Steiner circum-ellipse, the circumconic with centroidG. It is indeed
the second intersection with the line joiningF to the Steiner point.

If the focus isE, then the directrix is the Euler line. The perspector is the
Steiner pointSt.
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P

St

G

O

H

F

Figure 36.

5.4.2. Inscribed parabola tangent to a given line. Given a line�, there is a
unique inscribed parabola tangent to� and to the sidelines of the reference
triangle.

Suppose the line� intersects the sidelinesBC, CA, AB at X, Y , Z
respectively. LetX ′, Y ′, Z ′ be the reflections of these points in the midpoint
of the respective sides. ThenX ′, Y ′, Z ′ are also collinear. The focusF
of the parabola is the isogonal conjugate of the infinite point of the line
containing them. This can be easily constructed.

To find the point of tangency with�, reflectF in �. This reflection lies
on the line of reflections ofF , which is the directrix of the parabola. The
perpendicular to the line of reflection at this point intersects� at the point
of tangency.
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6. Further examples of reflections

6.1. The reflection conjugate . Let P �= H be a point not on the circumcir-
cle, nor any of the circles throughH with centersOa, Ob, Oc. The circles
PaBC, PbCA, andPcAB intersect at a pointr(P ) on the circle of reflec-
tions ofP . We callr(P ) thereflection conjugate of P , sincer(r(P )) = P .

P*

Pc

Pb

Pa

r(P)

A

B
C

P

Figure 37.

The reflection conjugater(P ) also lies on the rectangular circum-hyperbola
H(P ). Indeed,P andr(P ) are antipodal on this hyperbola. The center of
the hyperbolaH(P ) is therefore the midpoint ofP and its reflection conju-
gate.
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6.2. Let Pa, Pb, Pc be the reflections ofP in the sidelines of triangleAC.
The circlesAPbPc, BPcPa, CPaPb have a common pointT on the circum-
circle. If P is not on the circumcircle, andQ is the fourth intersection of
the circumcircle and the rectangular circum-hyperbolaH(P ), then the line
PQ intersects the circumcircle again atT .

T

Q
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H
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B C

P

Figure 38.
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6.3. Reflections of H in cevian lines. Given a pointP , let X, Y , Z be the
reflections of the orthocenterH in the linesAP , BP , CP respectively. The
circlesAPX, BPY , CPZ have a second common point other thanP . This
is the second intersection ofH(P ) with the circumcircle.

Q

Z
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X

O
H
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B C

P

Figure 39.
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6.4. Perspector of orthic and reflection triangles . The orthic triangle is the
pedal triangle ofH. Every reflection triangle is perspective with the orthic
triangle. It is easy to see that the perspector is the isogonal conjugate ofP
in the orthic triangle.

Pc

Pb

Pa

X

Y

Z
O

H

A

B C

P

Figure 40.

6.4.1. Reflection triangle of K . An interesting example isP = K. The
reflections are on the lines joining the corresponding vertices of the tangen-
tial and orthic triangles, which are homothetic. The homothetic center is a
point on the Euler line. This point is the intersection of the Euler line and
the tangent to the Jerabek hyperbola atK.

Kc

Kb

Ka

K

X

Y

Z

O

H

A

B C

Figure 41.
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6.5. The reflection triangle. Let
A′

B′

C′
be the reflection of

A
B
C

in its opposite side

BC
CA
AB

. We callA′B′C ′ the reflection triangle ofABC.

Let O′ be the circumcenter of the reflection triangle.32 The midpoint of
OO′ is the isogonal conjugate of the nine-point center.33

Clearly, the circlesA′BC, AB′C andABC ′ hasH as a common point.
On the other hand, the circlesAB ′C ′, A′BC ′ andA′B′C also have a com-
mon point.34 It lies on the lineOO′.

O
O'C'

A'

B'
A

B
C

Figure 42.

32O′ is X195 in ETC.
33The isogonal conjugate of the nine-point center isX54 in ETC.
34This common point isX1157 in ETC.
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7. Some loci related to reflections

7.1. Perspective reflection triangles. The locus ofP whose reflection tri-
angle is perspective is the Neuberg cubic. This is also the locus ofP for
which the linePP ∗ is parallel to the Euler line. Furthermore, ifP is on the
Neuberg cubic, the perspector of the reflection triangle lies on the linePP ∗.

A

B C

O

H

P

Pa

Pb

Pc

P*

Q

Figure 43.
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7.2. Reflections in perpendicular bisectors. Given a pointP with reflec-
tionsX, Y , Z in the perpendicular bisectors ofBC, CA, AB respectively,
the triangleXY Z is perspective withABC if and only if P lies on the cir-
cumcircle or the Euler line. IfP is on the circumcircle, the linesAX, BY ,
CZ are parallel. The perspector is the isogonal conjugate ofP . If P tra-
verses the Euler line, the locus of the perspector is the Jerabek hyperbola.35

Je

Q

Z

Y

X
O

H

A

P

Figure 44.

35JPE, Hyacinthos, message 2204; PY, 2205, 12/26/00.
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7.3. Pedals on perpendicular bisectors. In §4.2.4, we consider points whose
pedals on the perpendicular bisectors are perspective. Such points lie on the
Stammler hyperbola. The locus of the perspector is a singular cubic that
can be constructed as the locus of the intersectionOP ∩ HP ∗ for P on the
circumcircle.36

Q

O

H

P

Figure 45.

36This is called the third Musselman cubic. inCTC.
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7.4. Reflections in altitudes. Let X, Y , Z be the reflections ofP in the al-
titudes of triangleABC. The linesAX, BY , CZ are concurrent (at a point
Q) if and only if P lies on a certain cubic curve which can be constructed
as follows. We make use of an auxiliary triangleA′B′C ′. Let DEF be the

orthic triangle ofABC. The lines
EF
FD
DE

intersects
BC
CA
AB

at
D′

E′

F ′
respectively. The

pointsD′, E ′, F ′ are collinear. The lineLH containing them is called the

orthic axis ofABC. Construct parallels toLH through
A
B
C

to intersect
EF
FD
DE

at

A′

B′

C′
. 37

C'

B'

A'

E'

F'

D'

E

F

D

H

A

B C

Figure 46.

Let � be a line through the orthocenterH. There is a unique pointP on�
for which XY Z is perspective. Construct the perpendiculars to� from A′,
B′, C ′ intersecting the corresponding sidelines ofABC atX ′, Y ′, Z ′. The
linesAX ′, BY ′, CZ ′ intersect at a pointP ′. The pedal ofP ′ on � is the
unique pointP on � for whichXY Z is perspective. See Figure 47.

37A′B′C′ is the anticevian triangle of the infinite point of the orthic axis.
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X'

A'

P'
P

Z'

C'

Y'

B'

H

A

B C

Figure 47.

8. Some more examples of loci

8.1. Points collinear with isogonal and isotomic conjugates. The locus of
P which lies on the line joining its isogonal and isotomic conjugates38 is
the conic through the centroid, the incenter, and the vertices of the superior
triangle. Its center is the Steiner point. For everyP on the conic, the line
containingP ∗ andP ′ is the tangent to the conic atP . This is a rectangular
hyperbola since it passes through the excenters as well. The asymptotes are
the lines joining the Steiner point to the intersections of the circumcircle
with the Brocard axisOK.

P'
P*

OGI P

Figure 48.

38For the notion of isotomic conjugate, see 2.6.
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8.2. Inversive images of traces in circumcircle. Let P be a point with traces
X, Y , Z on the sidelinesBC, CA, AB. The inverses ofX, Y , Z form a
perspective triangle if and only ifP lies on the circumcircle or the Euler
line. If P lies on the circumcircle, the locus of the perspector is the isogonal
conjugate of the nine-point circle.

Q*

Q

O
H

P

Figure 49.

If P lies on the Euler line, the locus of the perspector is the conicC(J ∗
e , K∗

i ). 39

Ki*

Ki

J*

QG

J

K O

H

P

Figure 50.

39The isogonal conjugates of the Jerabek and Kiepert centers are the pointsX 250 and
X249 respectively inETC.
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8.3. In §4.2.1 we have seen that the Jerabek hyperbola is the locus ofP
the triangle formed by the reflections of the vertices of whose circumcevian
triangle is perspective. The locus of the point of concurrencyQ is a curve
which is the isotomic conjugate of the conicC(J ′

e, K
′
i ) through the traces of

of J ′
e andK ′

i , the isotomic conjugates ofJe andKi.
40

J'e

Je

K'i

Ki

Q

O

H

A

B C

P

Figure 51.

40The isotomic conjugates of the Jerabek and Kiepert centers do not appear in the cur-
rent (April, 2004) edition ofETC.
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9. Select properties of triangle centers

9.1. The symmedian point .

9.1.1. The reflection triangle ofK is perspective to the tangential triangle
at a point on the Euler line.41 See Figure 52. Note that this is also the
homothetic center of the tangential and orthic triangles.

H

K
O

Figure 52.

This phenomenon is true in general. The reflection triangle and the an-
ticevian triangle of a pointP are always perspective.42 See§6.4.

41This is the pointX25 in ETC.
42The vertices of the anticevian triangle ofP areAP ∩ PaX , BP ∩ PbY , CP ∩ PcZ,

whereXY Z is the orthic triangle,i.e., X , Y , Z are the pedals of the orthocenterH on the
sidelines of triangleABC.
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9.1.2. The first Lemoine circle. The symmedian pointK is the only point
P with the property that the 6 intercepts of parallels throughP to the sides
lie on a circle. See Figure 53. The center of the circle is the midpoint of
OK. 43

O

Ya

XbXc

Za

Zb

Yc

K

A

B C

Figure 53.

9.1.3. The second Lemoine circle. Let XY Z be the orthic triangle. The 6
intercepts of parallels throughK to Y Z, ZX, XY on the sidelines are on a
circle whose center isK.

XcXb

Zb Yc

X

Za

Ya
Y

Z
H

K

CB

A

Figure 54.

43The midpoint ofOK is the pointX182 in ETC.
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9.1.4. The symmedian point and squares erected on the sides. The symme-
dian point is also the perspector of the triangleA′B′C ′ bounded by the outer
sides of the squares erected externally on the sides of triangleABC. See
Figure 55. For other interesting properties ofK, see§??.

K

A'

B' C'

B

A

C

Figure 55.
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9.2. The deLongchamps point L . This is the reflection ofH in O.

9.2.1. A tetrahedron is said to be isosceles if its four faces are congruent
triangles. In an isosceles tetrahedron, the pedal44 of each vertex on its oppo-
site face is the deLongchamps point of the triangle formed by the remaining
three vertices.

9.2.2. It is the radical center of the three circlesA(a), B(b), C(c).

O

GH L

Figure 56.

44In this paper, we use the wordpedal in the sense oforthogonal projection.
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9.2.3. LetE(A) be the ellipse with fociB, C, and passing throughA. Sim-
ilarly, consider the ellipsesE(B) andE(C). Each pair of these ellipses has
a common chord. The three common chords intersect at the deLongchamps
pointL.

Z'

A

B C

H O

L

X'

Y'

Figure 57.
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9.3. The Schiffler point Sc. The Schiffler pointSc is the common point of
the Euler lines of the trianglesIBC, ICA, IAB, andABC. 45 Here,I is
the incenter of triangleABC.

Sc

H

O
I

Figure 58.

45The Schiffler point isX21 in ETC. For interesting properties of the Schiffler point,
see [5].
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9.3.1. If
X
Y
Z

is the intersection of
OIa

OIb

OIc

and
BC
CA
AB

, the triangleXY Z is perspec-

tive with ABC at the Schiffler pointSc.

ScH

O

Figure 59.
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9.3.2. The centroid of the cevian triangle of the Euler infinity point. Con-
struct lines through the vertices parallel to the Euler line to intersect the
opposite sidelines atX, Y , Z respectively. The centroid of triangleXY Z
is a point on the Euler line.46 The Euler line is the only line throughO with
this property.47

G'

O

H

Figure 60.

46This point does not appear in the current (April, 2004) edition ofETC.
47More generally, letP be a given point.Select a line� throughP (not parallel to any

of the sidelines) and construct the parallels to� through the verticesA, B, C to intersect
their opposite sides atX , Y , Z. Construct the centroid of triangleABC. There is a
unique line� which contains this centroid. What is this line? What minor modification
should be made on the pointP to guarantee uniqueness?
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9.4. The reflection of I in O. TIf X ′, Y ′, Z ′ are the points of tangency of
the excircles with the respective sides, the circlesAY ′Z ′, BZ ′X ′, CX ′Y ′

has a common point, which is the reflection ofI in O. 48

I

Y'

Z'

X'

O

A

B C

Figure 61.

The reflection ofI in O is also the circumcenter of the excentral triangle.

48The reflection of the incenter in the circumcenter isX40 in ETC.
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9.5. Reflection conjugate of I . The reflection conjugate ofI is the reflec-
tion of I in the Feuerbach pointFe. 49 It is the isogonal conjugate of the
inversive image ofI in the circumcircle. It is also the perspector of the
reflections of the excenters in the respective sides.

Fe

I'a

r(I)

I'b

I'c

Ib

Ic

Ia

I OH

A

B C

Figure 62.

49The reflection conjugater(I) is X80 in ETC.
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10. Constructions for conics

We list a number of basic ruler-and-compass constructions for conics de-
fined by 5 points, no three of which are concurrent, and no four are con-
cyclic.

10.1. The tangent at a point on C.
(1) P := AC ∩ BD;
(2) Q := AD ∩ CE;
(3) T := PQ ∩ BE.
AT is the tangent atA.

10.2. The second intersection of C and a line � through A.
(1) P := AC ∩ BE;
(2) Q := � ∩ BD;
(3) R := PQ ∩ CD;
(4) A′ := � ∩ ER.
A′ is the second intersection ofC and�.

10.3. The center of C.
(1) B′ := the second intersection ofC with the parallel throughB to AC;
(2) �b := the line joining the midpoints ofBB ′ andAC;
(3) C ′ := the second intersection ofC with the parallel throughC to AB;
(4) �c := the line joining the midpoints ofCC ′ andAB;
(5) O := �b ∩ �c is the center of the conicC.

10.4. Principal axes of C. (1) K(O) := any circle through the centerO of
the conicC.

(2) LetM be the midpoint ofAB. Construct (i)OM and (ii) the parallel
throughO toAB each to intersect the circle at a point. Join these two points
to form a line�.

(3) Repeat (2) for another chordAC, to form a line�′.
(4) P := � ∩ �′.
(5) LetKP intersect the circleK(O) atX andY .
Then the linesOX andOY are the principal axes of the conicC.
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