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1. Introduction

Interests in triangle geometry have been rekindled in recent years with
the availability of dynamic software such as the Geometer’s Sketchpad and
Cabri for geometric constructions. In this paper we outline some interesting
results with illustrations made by such software. We shall center around the
notions of reflection and isogonal conjugation, and introduce a number of
interesting triangle centersJines, conics, and a few cubic curvésMany
results in triangle geometry can be discovered from such dynamic sketches,
and proved either synthetically or by calculations. Although we do not
present any proof, all results without references have been confirmed by
calculations using barycentric coordinaté3he reader is invited to repro-
duce the figures in this paper as dynamic sketches using computer software,
and to discover further results.

The conics in this paper are constructed by the five-point-conic command
available in both Geometer's Sketchpad and Cabri. The location of the
center of a rectangular hyperbola will be treated in detai?? below. In
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Most of the triangle centers in this paper appear in Kimberlifgisyclopedia of Tri-
angle Centers [10], hereaftelETC. For example, the centroid, circumcenter, orthocenter,
and incenter appear a6, X3, X4, andX; respectively. We shall reference occurrences
in ETC of other triangle centers in footnotes.

2Most of the questions we consider are about the concurrency of three lines. We say that
two triangles are perspective if the lines joining their corresponding vertices are concurrent.
The point of concurrency is called the perspector of the triangles.

3For an introduction to the use of barycentric coordinates in triangle geometry, see [14,
15].
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2 A tour of triangle geometry

610 we give a number of ruler-and-compass constructions for conics, which
can be incorporated into efficient tools of the dynamic software.

Part I: Some Interesting Triangle Centers

1.1 Theclassical centers. The most well known of triangle centers are cer-
tainly the centroid, the circumcenter, the orthocenter, and the incenter. The
existence of each of these is due to the concurrency of three lines, respec-
tively the medians, the perpendicular bisectors, the altitudes, and the inter-
nal angle bisectors.

Figure 1 shows the cirumcentérand the orthocentelf. Note that the
linesOA and H A are isogonal (or symmetric) with respect the sidg3
andAC'; similarly for OB, HB, andOC, HC.

Figure 1 Figure 2

1.2 Thetritangent circles. The tritangent circles are the one tangent to all
three sidelines of triangld BC'. There are four of them, the incircle and
the thee excircles.

The incircle touches each of the sidB¢’, CA, AB. Figure 2 shows
the incenter/ along with the Gergonne poili,, the point of concurrency
of the lines joining the point of tangency of the incircle with a side to the
opposite vertex.

An excircle touches one side of the triangle and the extensions of the
remaining two sides. The lines joining the points of tangency ofAhe
excircle withBC, the B-excircle withC A, and theC-excircle withAB, to
the opposite vertices all pass through the Nagel pdint

1.3, The symmedian point.
“*The intersections of conics and lines can be easily marked with Cabri, but not with the

Geometer’s Sketchpad. Figure 57, for example, is drawn with Cabri. Most of the sketches
in this paper are drawn with the Geometer’s Sketchpad.
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Figure 3. The excircles and the Nagel point

Figure 4.

2. Isogonal conjugates

Consider a point with reflections,, P,, P. in the sidelinesBC, C'A,
AB. Let @ be a point on the line isogonal tdP with respect to angle
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A, i.e, the linesAQ and AP are symmetric with respect to the bisector of
angleBAC'. See Figure 5.

Figure 5.

It is easy to show that the triangle®) P, and AQ P. are congruent, so
that Q is equidistant fromP, and P.. For the same reason, any point on
a line isogonal toB P is equidistant fromP,. and P,. It follows that the
intersectionP* of two lines isogonal tod P and B P is equidistant from the
three reflections’,, P,, P.. FurthermoreP* is on a line isogonal ta’P.
For this reason, we calP* theisogonal conjugate of P. It is the center of
the circle of reflections oP. See Figure 6.

Figure 6.
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Clearly, (P*)* = P. Moreover, the circles of reflections &f and P*
are congruent, since, in Figure 3, the trapezBid* P; P, being isosceles,
PPr = P*P,. It follows that the pedals oP and P* on the sidelines all
lie on the same circle with center the midpoint®f*. We call this the
commonpedal circle of P and P*.

Figure 7.
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2.1 The circumcenter O and the orthocenter H. The circumcente© and
the orthocenter{ are isogonal conjugates. SinG®, = AH, AOO,H is

a parallelogram, an& O, = AO. See Figure 4. This means that the circle
of reflections ofO is congruent to the circumcircle. Therefore, the circle
of reflections ofH is the circumcircle, and the reflections Hf lie on the
circumcircle.

Figure 8.

2.1.1 The nine-point circle and the Euler line. The common pedal circle
of O and H has centerV at the midpoint ofOH. °> See Figure 5. This
circle is usually called thaeine-point circle since it also passes through the
midpoints of the three segmemd?, BH, andC'H. The line containing)
andH is called theEuler line of triangle ABC. It contains, apart from the
nine-point centerV, also the centroid: and the deLongchamps point °
which is the reflection off in O, and

HN :NG:GO:0OL=3:1:2:6.

Figure 9.

5The nine-point centeN is X5 in ETC.
5The deLongchamps point i, in ETC.
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2.2 The Feuerbach point F, . The remarkable Feuerbach theorem asserts
that the nine-point circle of a triangle is tangent internally to the incircle
and externally to each of the excircles. The Feuerbach @i the point

of tangency with the incirclé.

Figure 10.

If X', Y’, Z' are the point of tangency of the nine-point circle with the
excircles, thenAX’, BY', CZ' are concurrent at a poirft, on the line
joining/toN. 8

"The Feuerbach point i ;; in ETC.
8This is the pointX;5 in ETC.



8 A tour of triangle geometry

2.3, The symmedian point &. The isogonal conjugate of the centraidis
called the symmedian poirt. ° Honsberger [6, p.53] calls it “a crown
jewel of modern geometry”. It has many interesting properties.

2.3.1 Thesymmedian point K and thetangential triangle. The symmedian
point K is the perspector of the tangential triangleAif3’C” is the triangle
bounded by the tangents to the circumcircle at the vertices, the Aidés
BB, CC'"intersect at. See Figure 11.

Figure 11.

The circumcenter of the tangential triangle is a point on the Eulerhe.
For further properties ok, see9.1.

9The symmedian point i& ¢ in ETC.
10This is the pointX o6 in ETC.
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2.4. The Gergonne point and the internal center of similitude of the circum-
circleand incircle. Itis clear that the incenter is the isogonal conjugate of
itself. The Gergonne poirt. is the perspector of the intouch triangle: if
the incircle of triangleABC' is tangent to the sideBC', CA, AB atX, Y,

Z respectively, theml X, BY, CZ are concurrent afi.. ** The isogonal
conjugate ofG, is the internal center of similitude of the circumcircle and

XX
the incircle.'? See Figure 12. The reflectiong of v in the bisectors of
z  Z
A
angless all lie on the incircle. A simple calculation shows that the oriented
C

angle betweedY”’ andBC'is § — A. Likewise, the oriented angle between
IZ"andCB is alsof — A. This means thatY” and/Z’ are isogonal with
respect to the lind3C'. Let R andr be respectively the circumradius and
the inradius of triangle\BC'. SincelY' = 1Z',Y'Z’ is parallel toBC and
has length2r sin A. Sincea = 2R sin A, the ratio of homothety is : R. It
follows that the isogonal conjugate @f, is the internal center of similitude
of the circumcircle and the circle.

Figure 12.

If A’, B’, C' are the midpoints of the siddsC', C A, AB respectively,
then the linesd’ X', B'Y’, C' Z' intersect at the Feuerbach poiit 13

UThe Gergonne point iX7 in ETC.
12The internal center of similitude of the circumcircle and incircliss in ETC.
Binternational Mathematical Olympiad, 1982, Problem 2.
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2.5. The Nagel point and the external center of similitude of the circum-
circle and incircle. The Nagel pointVV, is the perspector of the extouch
BC
triangle: if the excircle on the sideA of triangle ABC' is tangent to this
AB
X X'
side aty, thenAX, BY, CZ are concurrent aV,. * If Y is the reflection
Z z'
X A
of v in the bisector of angl®, the linesAX’, BY', CZ' all intersectO[ at
Z C
the point which divides it in the rati® : —r. This is the external center of
similitude of the circumcircle and the circle, and is the isogonal conjugate

of N,. 1

Figure 13.

14The Nagel point isXs in ETC.
15The external center of similitude of the circumcircle and incircl&is; in ETC.
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2.6. Gergonne and Nagel pointsasisotomic conjugates.  The Gergonne
point G, and the Nagel poiniV, form a pair of isotomic conjugates. See
Figure 14 below. In general, Iét be a point with traces(, Y, Z on the
sidelines ofABC. If X', Y’, Z’ are the reflections ok, Y, Z in the mid-
points of the respective sides, then the liges’, BY’, C'Z’ are concurrent
at a pointP’ which we call thasotomic conjugate of P. Like isogonal con-
jugation, we haveé P’)’ = P for every pointP. The centroid is clearly the
isotomic conjugate of itself.

Figure 14.
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2.7. Theisogonal conjugate of a point onthecircumcircle. To find the isog-

onal conjugate of a poinP on the circumcircle, we reflect the linesP,

BP, CP in the respective angle bisectors. These reflected lines do not in-
tersect at a finite point. They are parallel. We say that the isogonal conjugate
of P is an infinite point (which is the common point of a family of parallel
lines). See Figure 15.

—
%

Figure 15. Isogonal conjugates of points on the circumcircle

2.8 Isotomic conjugates of infinite points . The isotomic conjugate of an
infinite point lies on the circum-ellipse with centét See Figure 16. This
is called the Steiner circum-ellipse.

Figure 16.
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3. Simson line and line of reflections

3.1 Smson line. Let P be a point on the circumcircle of triangléBC,

with pedalsX, Y, Z on the sidelines. It is well known that, Y, 7 are
collinear. The line containing them is thEmson line of P. The converse

is also true: if the pedals of a point on the sidelines are collinear, then the
point lies on the circumcircle. Now, the reflections Bfin the sidelines

are the images of the pedals under the homothély2). It follows that

the reflections of” are collinear if and only ifP lies on the circumcircle.

It is remarkable that the line of reflections (of a point on the circumcircle)
always passes through the orthocerfler(See [6, pp.43—-46]).
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Figure 17. Simson and reflection lines

The Simson lines of antipodal points intersect orthogonally on the nine-
point circle.
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3.2 Line of reflections and reflections of line. Given a line/ through H,
what is the point on the circumcircle whose line of reflectioné % This
guestion is most elegantly answered by the following theorem of Collings
and Longuet-Higgins [2, 11]The reflections of a line ¢ through H in the
sidelines of triangle ABC' intersect at a point F' on the circumcircle whose

line of reflectionsis /. See Figure 18.

Figure 18.

In particular, the reflections of the Euler ling in the sidelines intersect
at theEuler reflection point £ on the circumcirclet®

Figure 19.

6The Euler reflection point is{110 in ETC. It is also called the Kiepert focus. For
more about this point, see [12].
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3.2.1 Consider a line through the circumcent@r intersecting the cir-
cumcircle at antipodal pointg and(@’, and the sideline®C, C A, AB at
X, Y, Z respectively. The three circles with diameter&’, BY, C'Z have
two common points]’ on the circumcircle an@l” on the nine-point circle.
The pointlV is the intersection of the orthogonal Simson line§)and(@’.
The lineTW passes through the orthocentér See Figure 20.

Figure 20.

The lineTW is the line of reflections of the reflection @fin QQ’.

Figure 21.
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4. Rectangular circum-hyperbolas

4.1 Brianchon-Poncelet theorem. A conic through the vertices of a trian-

gle is arectangular hyperbola if and only if it passes through the orthocenter
of the triangle. In this case, the center of the conic lies on the nine-point
circle. The perpendicular asymptotes of the rectangular hyperbola are the
Simson lines of two antipodal points on the circumcircle. The conjugates
of these points are infinite points, which are the infinite points of the hy-
perbola. The rectangular hyperbola can be considered as the locus of the
isogonal conjugates of points on a line through the circumcetter.

Figure 22.

4.1.1 Given a pointP not on the sidelines and other than the orthocenter,
we denote byH(P) the rectangular circum-hyperbola through It is the
isogonal conjugate of the lin@ P*. The fourth intersection of{(P) with

the circumcircle is the isogonal conjugate of the infinite poinOd?*. It

is the antipode of the orthocent&r on the hyperbolé&i(P). The antipode

of this fourth intersection on the circumcircle is the intersection of the re-
flections of the line througl# parallel toO P* in the sidelines of triangle
ABC'. See Figure 22.

"More generally, the isogonal conjugate of a line is a circumconic (through the vertices)
of triangle. Itis an ellipse, a parabola, or a hyperbola according as the line intersects the
circumcircle at 0, 1, 2 real points.
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4.1.2 1In §3.2.1, the lin€l'W passes through orthocentdr. It intersects

the circumcircle again at the fourth intersection of the rectangular circum-
hyperbola which is the isogonal conjugateig®’. The pointT’ is the inter-
section of the reflections of the tangent of the hyperbol &t the sidelines

of triangle ABC'. 8

Figure 23.

8 or a construction of the tangent to a conic, $&@.
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4.2. Some examples of rectangular circum-hyperbolas.

4.2.1 The Jerabek hyperbola. The Jerabek hyperbola is the isogonal con-
jugate of the Euler line. It intersects the circumcircle at the antipode of the
Euler reflection pointz. ° Its centerJ, % is also the intersection of the
Euler lines of triangles\Y 7, BZ X, andC XY, whereXY Z is the orthic
triangle.?!

Figure 24.

Given a pointP, let X, Y, Z be the intersections of the circumcircle with
the linesAP, BP, C P respectively?* andX’, Y’, Z' their reflections in the
respective sidelines. The lingsX’, BY’, C'Z’" are concurrent if and only if
P lies on the Jerabek hyperbofa.

19The antipode of the Euler reflection points;, in ETC.
20The center of the Jerabek hyperboldiss in ETC.
2ITheébault's theorem; see also [3].

22Xy 7 is called the circumcevian triangle &F

23For the locus of the point of concurrency, $@e3.
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4.2.2 The Kiepert hyperbola. The Kiepert hyperbola is the isogonal con-
jugate of the Brocard axi® K. lts centerk; ?*is also the intersection of
the Brocard axes of triangle$Y 7, BZ X, andC XY, whereXY 7 is the
orthic triangle ® It is also the midpoint of the Fermat points.

Figure 25. The Kiepert hyperbola

The centers of the Jerabek and Kiepert hyperbolas can be constructed as
the intersections of the nine-point circle and the common pedal circlés of
andK. Seet6.1 and Figure®? below.

24The center of the Kiepert hyperbolaig; 5 in ETC.
25Floor van Lamoen, Hyacinthos, message 1251, 8/19/00.
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4.2.3 The Feuerbach hyperbola. The Feuerbach hyperbola is the isogonal
conjugate of the lin@ 1. Its center is the Feuerbach poirit Its tangent at
I passes through.

Figure 26. The Feuerbach hyperbola

The pedal circles of points on the Feuerbach hyperbola pass through the
Feuerbach point.
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4.2.4 The Sammler hyperbola . The Stammler hyperbola is the one that
passes through the circumcenter, the incenter, and the excenters. This is a
rectangular hyperbola since the incenter is the orthocenter of the triangle
formed by the excenters. Its center is the Euler reflection pBinfThe
asymptotes are the lines joinirigto the intersections of the Euler line with
the circumcircle?® The Stammler hyperbola is tangent to the Euler line. It
also passes through the symmedian péint

The Stammler hyperbola also contains the vertices of the tangential tri-
angle. Itis the Feuerbach hyperbola of the tangential triangle.

N

Figure 27. The Stammler hyperbola

The Stammler hyperbola is the locus Bfwhose pedals on the perpen-
dicular bisectors are perspectivé.

26The intersections of the Euler line with the circumcircle &rg 13 andX;114 in ETC.
273ee47.3 for the locus of the perspector.
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5. Conics

5.1 Circumconics with given center. Given a pointP, it is easy to con-
struct the conic through the vertices of triangl&C' and with centerP.
This conic, which we denote by, (P), also contains the reflections df
B, C'in P. The circumconic,.(G) is called the Steiner circum-ellips&.
It intersects the circumcircle at the Steiner posht 2° which can be con-
structed by extending the segméniz such thatk;.S; = 3K;G.

Figure 28.

2835ee52.8.
29The Steiner poinf is Xg9 in ETC.
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5.1.1 Fourth intersection of C.(P) and circumcircle . More generally, the
fourth interesection of a circumconic and the circumcircle can be constructed
as follows. LetA’, B’, C’ be the antipodes ofl, B, C in the circumconic
C.(P). The circlesAB'C’, BC'A', C A’ B’ intersect at the fourth intersec-
tion 7" with the circumcircle.

Figure 29.

The circlesABC’, BC'A’, CAB’, on the other hand, intersect at the an-
tipode of 7" in C.(P).

Figure 30.
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5.2 Conics through the traces of two points. Given two pointsP and @,

there is a unique conic through the traces of these two points on the sidelines
of the reference trianglelBC. We denote this conic b¢(P, Q). The
simplest example is the nine-point circle; itds§G, H).

5.2.1 Let P be a point on the circumcircle, the cori¢G, P) is a rect-
angular hyperbola since it passes throagtthe orthocenter of the triangle
formed by the midpoints of the sides.

Figure 31.

5.2.2 Central conic cevian complement. It is easy to construct a conic
through the traces of a poiit which is also the center of the conic. This is
C(P, Q) for some point). We call@ the central conic cevian complement
of P.

Figure 32.
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Here are two interesting examples.

() If P is the incenter() is the homothetic center of the excentral and
intouch triangles®° It is a point on the line joining the circumcenter to the
incenter.

Figure 33.

(ii) If P is the symmedian point) is the homothetic center of the tan-
gential and orthic triangles! It is a point on the Euler line. Sé®.1.1 and
Figure 52.

30The homothetic center of the excentral and intouch trianglégsin ETC.
31The homothetic center of 55 in ETC.
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5.3 Inscribed conics. Given a pair of isogonal conjugatésand P*, there

is a conic with these as foci and tangent to the sidelines of triangi€'.

The center of the conic is the midpoint of P P*, the center of the common

pedal circle ofP and P*. To construct the conic (using the five-point conic

command), we find the points of tangency with the sidelines. For this, ex-

tendM G to Q' such thatM Q' = 3MG. Let X', Y’, Z' be the traces of)’.

The points of tangency with the sidelines are the reflections of triad X'Y'Z’
BC

in the midpoints ofC A. Their reflections inV/ are also on the conic.
AB

Figure 34.

The linesAX, BY, CZ are concurrent at a poift, called the perspector
(or the Brianchon point) of the inscribed conic. This is the isotomic conju-
gate of the poin)’ constructed above. The common pedal circlé’aind
P~ is the auxiliary circle of the inscribed conic.
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5.3.1 The inscribed conic with fodd and H has centefV. It is the enve-
lope of the perpendicular bisector of segmé&in®, for P on the circumcir-
cle.

7 . TR TR N TR N
,/f//x%/& PRI I T RO
Figure 35.

5.3.2 The inscribed conic with centét touches the sideslines at the ver-
tices of the orthic triangle.

5.4. Inscribed parabolas. If F'is a point on the circumcircle, its isogonal
conjugate is an infinite point. The inscribed conic withas a focus is
therefore a parabola. The directrkis the line of reflections of’. The
points of tangency, Y, Z with the sidelines are such thatF,, Y £y, ZF.
are perpendicular td. The axis is the perpendicular fromto £. This is
enough to construct the parabola (by the 5-point conic command).

5.4.1 The perspector of an inscribed parabola. The perspector of the in-
scribed parabola,e., the intersection of the lined X, BY, C'Z, is a point
on the Steiner circum-ellipse, the circumconic with centi@idt is indeed
the second intersection with the line joiniagto the Steiner point.

If the focus isF, then the directrix is the Euler line. The perspector is the
Steiner points;.
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Figure 36.

5.4.2 Inscribed parabolatangent to a given line. Given a line/, there is a
unique inscribed parabola tangent/tand to the sidelines of the reference
triangle.

Suppose the liné intersects the sidelineBC, CA, AB at X, Y, Z
respectively. LeX’, Y’, Z’ be the reflections of these points in the midpoint
of the respective sides. TheXY, Y’, Z’ are also collinear. The focus
of the parabola is the isogonal conjugate of the infinite point of the line
containing them. This can be easily constructed.

To find the point of tangency with, reflect  in ¢. This reflection lies
on the line of reflections of’, which is the directrix of the parabola. The
perpendicular to the line of reflection at this point intersécis the point
of tangency.
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6. Further examples of reflections

6.1 Thereflection conjugate. Let P # H be a point not on the circumcir-
cle, nor any of the circles through with centersO,, O, O.. The circles

P,BC, P,CA, and P.AB intersect at a point(P) on the circle of reflec-
tions of P. We callr(P) thereflection conjugate of P, sincer(r(P)) = P.

Figure 37.

The reflection conjugate P) also lies on the rectangular circum-hyperbola
H(P). Indeed,P andr(P) are antipodal on this hyperbola. The center of
the hyperbola@{(P) is therefore the midpoint aP and its reflection conju-
gate.
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6.2 LetP,, P, P.be the reflections oP in the sidelines of trianglelC'.
The circlesAP,P., BP.P,, C P, P, have a common poirit on the circum-
circle. If P is not on the circumcircle, an@ is the fourth intersection of
the circumcircle and the rectangular circum-hypertié(a), then the line
PQ intersects the circumcircle againat

Figure 38.



P. Yiu 31

6.3 Reflections of H in cevian lines. Given a pointP, let X, Y, Z be the
reflections of the orthocentéf in the linesAP, BP, C' P respectively. The
circlesAPX, BPY, CPZ have a second common point other tlianThis
is the second intersection ®f( P) with the circumcircle.

Figure 39.
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6.4. Perspector of orthic and reflection triangles. The orthic triangle is the
pedal triangle off{. Every reflection triangle is perspective with the orthic
triangle. It is easy to see that the perspector is the isogonal conjug&te of
in the orthic triangle.

Figure 40.

6.4.1 Reflection triangle of K . An interesting example i = K. The
reflections are on the lines joining the corresponding vertices of the tangen-
tial and orthic triangles, which are homothetic. The homothetic center is a
point on the Euler line. This point is the intersection of the Euler line and
the tangent to the Jerabek hyperboldat

Figure 41.
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A A
6.5. Thereflectiontriangle. Let B’ be the reflection of in its opposite side
c’ C
BC
CA. We call A’ B’C’ the reflection triangle oA BC'.
AB
Let O’ be the circumcenter of the reflection triangi® The midpoint of
OO’ is the isogonal conjugate of the nine-point centér.
Clearly, the circlesA’ BC, AB'C' and ABC' hasH as a common point.
On the other hand, the circlesB’'C’, A’BC" and A’ B'C' also have a com-
mon point.3* It lies on the lineDO'.

Figure 42.

320’ is X195 in ETC.
33The isogonal conjugate of the nine-point centeXis; in ETC.
34This common pointis{y157 in ETC.
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7. Someloci related to reflections

7.1 Perspective reflection triangles. The locus of P whose reflection tri-
angle is perspective is the Neuberg cubic. This is also the locésfof
which the lineP P* is parallel to the Euler line. Furthermore Afis on the
Neuberg cubic, the perspector of the reflection triangle lies on thélife

Figure 43.
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7.2 Reflections in perpendicular bisectors. Given a pointP with reflec-
tions X, Y, Z in the perpendicular bisectors 6fC, C' A, AB respectively,

the triangleX'Y 7 is perspective wittA BC' if and only if P lies on the cir-
cumcircle or the Euler line. IP is on the circumcircle, the lined X, BY,

CZ are parallel. The perspector is the isogonal conjugate.off P tra-
verses the Euler line, the locus of the perspector is the Jerabek hypérbola.

Figure 44.

35JPE, Hyacinthos, message 2204; PY, 2205, 12/26/00.
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7.3, Pedalson perpendicular bisectors. In §4.2.4, we consider points whose
pedals on the perpendicular bisectors are perspective. Such points lie on the
Stammler hyperbola. The locus of the perspector is a singular cubic that
can be constructed as the locus of the intersectiém H P* for P on the
circumcircle 3

Figure 45.

36This is called the third Musselman cubic.@TC.
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7.4. Reflectionsin altitudes. Let X, Y, Z be the reflections of in the al-
titudes of triangleA BC'. The linesAX, BY, C'Z are concurrent (at a point
Q) if and only if P lies on a certain cubic curve which can be constructed
as follows. We make use of an auxiliary triangléB’'C’. Let DEF be the

EF BC D
orthic triangle ofABC'. The linesrD intersects” A at E’ respectively. The
DE AB F'
points D', E’, F’ are collinear. The lin& 5 containing them is called the
A EF
orthic axis of ABC. Construct parallels td 5 throughp to intersectr D at
C DE
A/
B.3¥
C/

Figure 46.

Let 7 be a line through the orthocent&r. There is a unique poin® on ¢
for which XY 7 is perspective. Construct the perpendicularé fimm A’,
B’, C" intersecting the corresponding sidelinesAdBC' at X', Y’, Z’. The
lines AX’, BY’, C'Z' intersect at a poinP’. The pedal ofP’ on/ is the
unique pointP on/ for which XY 7 is perspective. See Figure 47.

374’ B'C is the anticevian triangle of the infinite point of the orthic axis.
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Figure 47.

8. Some more examples of loci

8.1 Points collinear with isogonal and isotomic conjugates. The locus of

P which lies on the line joining its isogonal and isotomic conjugéftis

the conic through the centroid, the incenter, and the vertices of the superior
triangle. Its center is the Steiner point. For evétyn the conic, the line
containingP* and P’ is the tangent to the conic &. This is a rectangular
hyperbola since it passes through the excenters as well. The asymptotes are
the lines joining the Steiner point to the intersections of the circumcircle
with the Brocard axi®) K .

Figure 48.

38or the notion of isotomic conjugate, see 2.6.
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8.2 Inversiveimagesof tracesin circumcircle. Let P be a point with traces

X, Y, Z on the sidelineBC, CA, AB. The inverses o, Y, Z form a
perspective triangle if and only iP lies on the circumcircle or the Euler
line. If P lies on the circumcircle, the locus of the perspector is the isogonal
conjugate of the nine-point circle.

Figure 49.

If Plies on the Euler line, the locus of the perspector is the adpi¢, k7). 3

Figure 50.

3%The isogonal conjugates of the Jerabek and Kiepert centers are the Fejitand
Xo49 respectively ireTC.
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8.3 In §4.2.1 we have seen that the Jerabek hyperbola is the locHs of
the triangle formed by the reflections of the vertices of whose circumcevian
triangle is perspective. The locus of the point of concurrepag a curve
which is the isotomic conjugate of the cowi¢J/, K) through the traces of

of J/ and K7, the isotomic conjugates of and K;. *°

Figure 51.

4OThe isotomic conjugates of the Jerabek and Kiepert centers do not appear in the cur-
rent (April, 2004) edition oETC.
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9. Select properties of triangle centers
9.1 The symmedian point .

9.1.1 The reflection triangle ok is perspective to the tangential triangle
at a point on the Euler liné! See Figure 52. Note that this is also the
homothetic center of the tangential and orthic triangles.

Figure 52.

This phenomenon is true in general. The reflection triangle and the an-
ticevian triangle of a poinP are always perspectivé See§6.4.

*This is the pointX 5 in ETC.

42The vertices of the anticevian triangle Bfare AP N P, X, BP N P,Y,CP N P.Z,
whereXY Z is the orthic trianglei.e., X, Y, Z are the pedals of the orthocentéron the
sidelines of triangled BC.
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9.1.2 Thefirst Lemoine circle. The symmedian poink’ is the only point
P with the property that the 6 intercepts of parallels throdto the sides

lie on a circle. See Figure 53. The center of the circle is the midpoint of
OK.%

B X, X, c

Figure 53.

9.1.3 The second Lemoine circle. Let XY Z be the orthic triangle. The 6

intercepts of parallels throughki to Y Z, ZX, XY on the sidelines are on a
circle whose center i&'.

Figure 54.

43The midpoint ofOK is the pointX g, in ETC.
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9.1.4 The symmedian point and squares erected onthe sides. The symme-
dian pointis also the perspector of the trianglds’C’ bounded by the outer
sides of the squares erected externally on the sides of triahgte. See
Figure 55. For other interesting propertiesiof see§??.

Figure 55.
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9.2 ThedeLongchampspoint . . This is the reflection off in O.

9.2.1 A tetrahedron is said to be isosceles if its four faces are congruent
triangles. In an isosceles tetrahedron, the p&ttsfleach vertex on its oppo-
site face is the deLongchamps point of the triangle formed by the remaining
three vertices.

9.2.2 ltis the radical center of the three circlds$a), B(b), C(c).

Figure 56.

*n this paper, we use the wopgdal in the sense ofrthogonal projection.
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9.2.3 Let&(A) be the ellipse with focB, C, and passing through. Sim-

ilarly, consider the ellipse$§(B) and&(C'). Each pair of these ellipses has

a common chord. The three common chords intersect at the deLongchamps
point L.

Figure 57.
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9.3 The <hiffler point S.. The Schiffler pointS. is the common point of
the Euler lines of the triangleBBC, IC A, IAB, andABC. * Here,I is
the incenter of trianglel BC.

Figure 58.

45The Schiffler point isX,; in ETC. For interesting properties of the Schiffler point,
see [5].
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X Ol, BC
9.3.1 If vy istheintersection obr, andC 4, the triangleX'Y 7 is perspec-
A OlI. AB

tive with ABC' at the Schiffler point..

Figure 59.
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9.3.2 The centroid of the cevian triangle of the Euler infinity point. Con-
struct lines through the vertices parallel to the Euler line to intersect the
opposite sidelines aX, Y, Z respectively. The centroid of triangléY 7

is a point on the Euler liné® The Euler line is the only line through with

this property?’

Figure 60.

46This point does not appear in the current (April, 2004) editioBE BE .

4"More generally, lef” be a given pointSelect a line throughP (not parallel to any
of the sidelines) and construct the parallel€ through the verticesl, B, C to intersect
their opposite sides aX, Y, Z. Construct the centroid of triangleABC. There is a
unique line? which contains this centroid. What is this line? What minor modification
should be made on the poiRtto guarantee uniqueness?
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9.4. Thereflection of 7 in O. TIf X', Y’, Z’ are the points of tangency of
the excircles with the respective sides, the circlés 7', BZ' X', CX'Y’
has a common point, which is the reflection/ah O.

Figure 61.

The reflection off in O is also the circumcenter of the excentral triangle.

48The reflection of the incenter in the circumcentekXig, in ETC.
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9.5. Reflection conjugate of /. The reflection conjugate df is the reflec-
tion of I in the Feuerbach poinft.. *° It is the isogonal conjugate of the
inversive image off in the circumcircle. It is also the perspector of the
reflections of the excenters in the respective sides.

Figure 62.

49The reflection conjugate(I) is X g, in ETC.
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10. Constructionsfor conics

We list a number of basic ruler-and-compass constructions for conics de-
fined by 5 points, no three of which are concurrent, and no four are con-
cyclic.

10.1 Thetangent at a pointon C.
Q) P:=ACNBD,
2)Q:=ADNCE,

()T := PQNBE.

AT is the tangent atl.

10.2 The second intersection of C and a line ¢ through A.
(1) P := AC N BE;

(2)Q := (N BD;
(3)R:= PQNCD;
(4) A’ := (N ER.

A’ is the second intersection 6fand/.

10.3 The center of C.

(1) B’ := the second intersection Gfwith the parallel througtB to AC
(2) ¢, := the line joining the midpoints oB B’ and AC;

(3) C" .= the second intersection 6fwith the parallel througld’ to AB;
(4) ¢. = the line joining the midpoints af'C’ and AB;

(5) O := 1, N L. is the center of the coniC.

10.4 Principal axesof C. (1) K(O) := any circle through the centér of
the conicC.

(2) Let M be the midpoint ofAB. Construct (i)\OM and (ii) the parallel
throughO to AB each to intersect the circle at a point. Join these two points
to form a line’.

(3) Repeat (2) for another chortt”, to form a line?'.

AP .=int.

(5) Let K P intersect the circléd (O) at X andY'.

Then the line$) X andOY are the principal axes of the cortic
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