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Abstract. This paper presents some basic topics in probability and statistics, including
sample spaces, probabilistic events, expectations, the binomial and normal distributions,
the Central Limit Theorem, Bayesian analysis, and statistical hypothesis testing. These
topics are applied to gambling games involving dice, cards, and coins.

1. Introduction. In 1654, the well-known gambler the Chevalier de Mere posed a set
of problems concerning gambling odds to Blaise Pascal. These problems initiated a series
of letters between Pascal and Pierre de Fermat, which established the basis of modern
probability theory [1, pp. 229�53].

The Chevalier de Mere was an astute gambler who observed a slight advantage in
attempting to roll a 6 in four tosses of a single die and a slight disadvantage in attempting
to throw two 6s, a result referred to as a �double-6,� in twenty-four tosses of two dice
[1, p. 89]. De Mere noticed that the proportion of the number of tosses to the number of
possible outcomes is the same for both games (4:6 for the single-die game, and 24:36 for
the double-die game). Thus he concluded that the odds of winning each game should be
equal. Yet from his experience of playing these two games, he felt confident that there
was an advantage to the single-die game and a disadvantage to the double-die game.
Thus he asked Pascal for an explanation for this discrepancy. In their correspondence,
Pascal and Fermat laid the groundwork for the concepts of sample space, probabilistic
events, expectations, and the binomial distribution.

Section 2 of this paper introduces the ideas of sample spaces and events, and applies
these concepts to de Mere’s die games, poker, and coin-tossing games. The work in
this section confirms de Mere’s intuition that the single-die game has a slight advantage
(p = 0.5177) and the double-die game has a slight disadvantage (p = 0.4914). Section
3 defines expectations, and finds the expected payoff for a single trial of the games
discussed in Section 2. Section 4 presents the binomial and normal distributions, and
explains how these distributions can be used to calculate the odds of making a profit
in a large number of trials of these games. Finally, Section 5 develops the concepts of
Bayesian analysis and statistical hypothesis testing, and shows how these methods can
be used to calculate the likelihood that a given result came from a particular distribu-
tion.

2. Sample Spaces and Events. A sample space Ω is a set of all possible outcomes
of a model of an experiment [2, p. 6]. This set is �finest grain�; in other words, all
distinct experimental outcomes are listed separately. In addition, the elements in the
set are �mutually exclusive�; each trial of the experiment can result in only one of
the possible outcomes. The words �outcome� and �event� are commonly interchanged;
however, in probability theory these two words have distinct meanings. An event is a
subset of possible outcomes. As an example, a single roll of a die is an experiment with
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six possible outcomes, corresponding to the faces that land up. Rolling an even number
is an event that includes the experimental outcomes 2, 4, and 6.

The conditional probability is the probability of Event A given Event B, and is
defined by

P (A|B) =
P (A ∩B)

P (B)

for P (B) > 0; see [2, pp. 13�16]. Event B is a conditioning event, and redefines the
sample space for Event A. This new sample space includes only the outcomes in which
B occurs.

Events A and B are called independent if the occurrence of one event does not affect
the likelihood of the occurrence of the other [2, p. 17]. More formally, Events A and B
are independent if

P (A|B) = P (A) and P (B|A) = P (B).

The concepts of conditional probability and independence are useful for Bayesian anal-
ysis, discussed in Section 5. The idea of independence is also important for the binomial
distribution, discussed in Section 4.

We now consider three examples of sample spaces and probabilities. First we discuss
die games. A single roll of a die has six possible outcomes, corresponding to the faces
that land up. If the die is fair, then the probability of any particular face landing up is
1/6. More formally, the sample space Ω is the set {1, 2, 3, 4, 5, 6}, and the probability
is P (X = i) = 1/6. Games that involve rolling two dice have thirty-six possible out-
comes since the roll of each die has six possible outcomes. In these games, the dice are
distinguishable; therefore, the outcomes (i, j) and (j, i) are counted separately. More
formally, the sample space Ω is the set of pairs (i, j) where i, j ∈ {1, 2, 3, 4, 5, 6}, and
the probability is P(X=i,Y=j) =1/36.

The first game that the Chavalier de Mere discussed with Pascal involves rolling a
die four times [1, pp. 88�89]. If the die lands on a 6 at least once in four trials, then the
gambler wins. If the die never lands on a 6 in the four trials, then the gambler loses. The
four tosses are independent. Hence, the probability of not getting a 6 in four trials is
(5/6)4, or 0.4823. It follows that the probability of getting at least one 6 in four trials
is equal to 1− 0.4823, or 0.5177.

The second game discussed by Pascal and de Mere involves simultaneously rolling
two dice twenty-four times [1, pp. 88�89]. If both dice land on 6, an outcome called
a �double-6,� then the gambler wins the bet. If a double-6 does not occur, then the
gambler loses the bet. As in the first game, the trials are independent. Hence, the
probability of not getting a double-6 in twenty-four trials is (35/36)24, or 0.5086. It
follows that the probability of getting a double-6 in twenty-four trials is equal to 1 −
0.5086, or 0.4914. De Mere noticed the slight advantage of betting on the first game
and the slight disadvantage of betting on the second game. To discern these small
diffferences, de Mere must have played these games a large number of times. An estimate
for this number is obtained by using statistical hypothesis testing in Section 5.

As a second example of sample spaces and probabilities, we consider card games. A
standard deck of cards consists of fifty-two cards, divided into four suits and thirteen
ranks [4, pp. 47�51]. In the simple case of drawing one card from the deck, the sample
space Ω is the fifty-two possible cards, and the probability of getting any particular card
is 1/52. Most card games involve hands of cards in which the order of the cards does
not matter. The number of possible hands is the binomial coefficent

(

n
x

)

, where n is the
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size of the deck of cards and x is the size of a hand. The binomial coefficient
(

n
x

)

is
defined by

(

n

x

)(

n
x

)

=
n!

(n− x)!x!
.

The symbol
(

n
x

)

is read �n choose x.�
In a standard poker game, each player receives a hand of five cards [4, p. 51�55].

The sample space Ω for poker is the set of all possible five-card hands, in which order is
irrelevant. The size of this sample space is

(52
5

)

, or 2, 598, 960. Thus the probability of
getting a hand with five particular cards is 1/2, 598, 960, or 3.85 · 10−7. The probability
of getting a particular type of hand is computed as follows: Count the number of ways
this type of hand can occur, then divide this result by the total number of hands.

For example, a straight flush is a run of five consecutive cards in a particular suit. A
straight flush can occur in any of the four suits, and can begin in ten possible positions,
2 through Jack. Thus, there are forty ways to obtain a staight flush. The probability
of getting a straight flush is, therefore, 40/2, 598, 960, or 0.000015.

As another example, a full house consists of three of a kind and one pair. There are
(13
1

)

, or 13, possible ranks for the three of a kind and
(4
3

)

, or 4, possible combinations

of the four cards of this rank. There are
(12
1

)

, or 12, remaining ranks for the pair and
(4
2

)

, or 6, possible combinations of the four cards of this rank. Thus, the probability of
getting a full house is

(13
1

)

·
(4
3

)

·
(12
1

)

·
(4
2

)

(52
5

) =
3, 744

2, 598, 960
= 0.001441.

Table 2-1 lists possible poker hands, the number of ways in which they can occur, and
their probabilities of occurring; it was taken from [4, p. 53].

Table 2-1
A table of poker hands and their probabilities

HAND NUMBER of WAYS PROBABILITY

Straight flush 40 0.000015
Four of a kind 624 0.000240
Full House 3,744 0.001441
Flush 5,108 0.001965
Straight 10,200 0.003925
Three of a kind 54,912 0.021129
Two pair 123,552 0.047539
One pair 1,098,240 0.422569
Worse than one pair 1,302,540 0.501177

TOTALS
(52
5

)

= 2, 598, 960 1.000000

As the last example of sample spaces and probabilities, we discuss coin-tossing games.
The sample space Ω for a single toss of a coin consists of two outcomes: heads H, and
tails T. If the coin is fair, then the probability of heads and the probability of tails are
both 1/2. The sample space for a game consisting of five tosses of a coin is 25, or 32,
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sequences of the form X1X2X3X4X5, where each Xi is H with probability 1/2, or T
with probability 1/2. The tosses are independent. Therefore, the probability of getting

no heads in five tosses is (1/2)5, or 0.03125. Consequently, the probability of getting at
least one head in five tosses of a fair coin is 1− 0.03125, or 0.96875.

Consider another game that consists of attempting to toss exactly three heads in four
trials. The sample space for this game is 24, or 16, sequences of the form X1X2X3X4,
where each Xi is H with probability 1/2, or T with probability 1/2. The event of getting
exactly three heads corresponds to the following sequences: HHHT, HHTH, HTHH, and
THHH. Thus, the probability of winning this bet is 4/24, or 0.25. Another expression

for this probability is
(4
3

)

· (1/2)3 · (1/2), which is interpreted as the number of ways to
choose three of the four positions for the heads multiplied by the probability of getting
three heads and the probability of getting one tail.

3. Expectations. For an integer random variable X, the expectation E(X) is defined
to be the sum of all possible experimental values of the variable weighted by their
probabilities [5, pp. 86�87]. The expectation is written as

E(X) =
∑

n

n · P (X = n).

The expectation of a random variable is its �mean� or �expected value.� One application
of the concept of expectation is to formalize the idea of the expected payoff of a game.
For an integer random variable X with mean E(X) = µ, the variance σ2X is defined
by the formula,

σ2X = E[(X − µ)2],
see [3, p. 119]. The variance can also be expressed as σ2X = E(X2)− µ2; this equation
is proved in [3, p. 119]. The variance measures the spread of the distribution. The
standard deviation σX is the positive square root of the variance. This concept is used
in Sections 4 and 5.

We now compute the expected payoffs of the games discussed in Section 2. First we
find the expected payoffs for die games. Suppose a gambler gains one dollar for winning
a game, and gives up one dollar for losing. In de Mere’s single-die game, the expected
payoff is

E(X) = $1 · (0.5177) + (−1$) · (0.4823) = $0.0354,

or approximately four cents. In his double-die game, the expected payoff is

E(X) = $1 · (0.4914) + (−1$) · (0.5086) = −$0.0172,

or approximately a two-cent loss.
Next we compute the expected payoff for casino poker. Suppose a gambler wages a

one-dollar bet on a five-card hand. The gambler’s payoff depends on the type of hand,
with a rare hand such as a straight flush resulting in a higher payoff than a more common
hand such as one pair. Table 3-1 provides one possible payoff scheme. According to this
scheme, the expected earnings for one game are

E(X) = $1000 · (0.000015) + $500 · (0.000240) + $50 · (0.001441)
+ $25 · (0.001965) + $10 · (0.03925) + $5 · (0.021129)
+ $1 · (0.047539) + $0 · (0.422569) + (−$1) · (0.501177)

= −$0.052568,
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or approximately a five-cent loss.

Table 3-1
A table of poker hands and their payoffs

HAND PROBABILITY PAYOFF

Straight flush 0.000015 $1000
Four of a kind 0.000240 $500
Full House 0.001441 $50
Flush 0.001965 $25
Straight 0.003925 $10
Three of a kind 0.021129 $5
Two pair 0.047539 $1
One pair 0.422569 $0
Worse than one pair 0.501177 −$1

TOTAL 1.000000

Finally, we find the expected payoffs for coin-tossing games. Suppose a gambler wins
one dollar for tossing heads and loses one dollar for tossing tails with a fair coin. His
expected payoff is

E(X) = $1 · (0.5) + (−1$) · (0.5) = 0.

Suppose he bets one dollar on getting exactly three heads in four tosses. Then his
expected payoff is

E(X) = $1 · (0.25) + (−1$) · (0.75) = −$0.50,

or a fifty-cent loss.

4. Repeated Trials. The previous section explored a gambler’s expected earnings
on a single trial of a game. A gambler may, however, want to calculate his expected
earnings if he plays the game many times. This section presents methods for calculating
the expected payoff and estimating the chances of making a profit on many repetitions
of a game.

Consider the problem of calculating the probability of winning t trials out of n, when
the probability of winning each trial is set [2, pp. 124�26]. The n trials can be expressed
as independent, identically distributed random variables X1, · · · , Xn. Each Xi has two
outcomes: 1, which represents a winning trial, and occurs with probability p, and 0,
which represents a losing trial, and occurs with probability 1 − p. The expectation for
each Xi is

E(Xi) = 1 · p+ 0 · (1− p) = p.

The random variable Sn represents the number of winning trials in a series of n trials,
and is given by

Sn = X1 +X2 + · · ·+Xn.
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Therefore, the expected number of winning trials is

E(Sn) = E(X1 +X2 + · · ·+Xn)

= E(X1) + E(X2) + · · ·+ E(Xn)

= n · E(Xi) = n · p,

since the random variables Xi are independent and identically distributed.
Furthermore, the probability of winning exactly t trials out of n can be calculated

by multiplying the number
(

n
t

)

of ways to choose t of the n trials to be successes by the
probability pt of winning t games, and the probability (1− p)n−t of losing n− t games.
This is the binomial distribution, and is defined by

P (Sn = t) =

(

n
t

)

· pt · (1− p)n−t,

for 0 ≤ t ≤ n. As calculated above, the expectation of Sn is

E(Sn) = n · p.

Moreover, the variance of Sn is

σ2Sn = n · p · (1− p).

The probability of winning at least t games out of n is the sum of the probabilities of
winning t through n games since these events are mutually exclusive. This probability
is denoted by

P (Sn ≥ t) =
n
∑

i=t

(

n
i

)

· pi · (1− p)n−i,

for 0 ≤ t ≤ n.
As an example, consider de Mere’s single-die game, in which the probability of

success on each trial is 0.5177. In thirty trials, the expected number of successes is

E(S30) = 30 · (0.5177) = 15.5,

which rounds to 16. The probability of winning exactly nineteen trials out of thirty is

P (S30 = 19) =

(

30
19

)

· (0.5177)19 · (0.4823)11 = 0.0663.

Furthermore, the probability of winning at least nineteen trials out of thirty is

P (S30 ≥ 19) =
30
∑

i=19

(

30
19

)

· (0.5177)i · (0.4823)30−i = 0.1388.

The normal, or Gaussian, distribution is important because it describes many prob-
abilistic phenomena [2, pp. 207�11]. Consider a normal random variable w with mean
µ and variance σ2. The normal distribution is defined by

P (w ≤ a) =
∫ a

−∞

1

σ
√
2π
e−((w−µ)/σ)

2/2dw.
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A standard normal random variable z has µ = 0 and variance σ2 = 1. The standard
normal distribution is defined by

P (z ≤ a) =
∫ a

−∞

1√
2π
e−z

2/2dz = Φ(a).

Most probability and statistics textbooks provide tables for Φ(x); for example, see [3,
pp. 676�77] and [5, p. 177].

The Central Limit Theorem states that the probability distribution for a sum Sn of
independent, identically distributed random variables Xi approaches the normal distri-
bution as the number of random variables goes to infinity [2, pp. 215�19]. This result
is remarkable as it does not depend on the distribution of the random variables. The
Central Limit Theorem states that

lim
n→∞

P (Sn ≤ t) = Φ

(

t− E(Sn)

σSn

)

.

Hence, for finite, but large values of n, the following approximation holds:

P (Sn ≤ t) ≈ Φ

(

t− E(Sn)

σSn

)

.

For example, in de Mere’s single-die game, the random variable S30 represents the
number of winning games out of thirty. The random variable

z =
S30 − E(S30)

σS30

is approximately standard normal. Therefore, the probability of winning at least nine-
teen trials out of thirty is

P (S30 ≥ 19) = 1− P (S30 ≤ 19)

= 1− P
(

z ≤
(

19− E(Sn)

σSn

))

≈ 1− Φ

(

19− (30 · 0.5177)√
30 · 0.5177 · 0.4823

)

= 1− 0.8577

= 0.1423.

This probability provides a close estimate of the actual value (0.1388), which was
found using the binomial distribution. Most probability and statistics textbooks provide
graphs of the binomial and normal distributions for various values of n; for example, see
[2, p. 217] and [3, p. 272]. The graphs indicate that as n→∞, the normal distribution
forms a good approximation for the binomial distribution.

5. Bayesian Analysis and Statistical Hypothesis Testing. So far we have looked
only at the probabilities of observing particular outcomes and the expected payoffs for
various games with known distributions. This last section focuses on estimating the
likelihood that an observed outcome came from a particular distribution. For example,
a gambler tosses forty-one heads in one-hundred tosses of a coin, and wishes to know
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if the coin is fair. Bayesian analysis and statistical hypothesis testing are two methods
for determining the likelihood that an outcome came from a particular distribution.

Bayesian analysis tests the likehlihood that an observed outcome came from a par-
ticular probability distribution by treating unknown parameters of the distribution as
random variables [2, pp. 250�57]. These unknown parameters have their own probabil-
ity distributions, which often are derived from the assumed probability distribution of
the outcome. The derivations use Bayes’ Theorem, which states that

P (Ai|B) =
P (B|Ai) · P (Ai)

∑N
i=1 P (B|Ai) · P (Ai)

.

For example, let θ be an unknown parameter that has two possible values, corre-
sponding to the events A1 = {θ = θ1} and A2 = {θ = θ2}. The a priori probabilities
for A1 and A2 are P (A1) and P (A2). They do not take the information gained from
the occurrence of event B into account. Event B is an observed outcome, which has an
assumed probability ditribution that depends on the unknown parameter θ. Consider
the event A1 = {θ = θ1}. By Bayes’ Theorem, the probability of A1 given B is

P (A1|B) =
P (B|A1) · P (A1)

P (B|A1) · P (A1) + P (B|A2) · P (A2)
.

Bayesian analysis can be applied to the example of the gambler who tossed forty-one
heads in one-hundred coin tosses, and wishes to know if his coin is fair. Assume that
the gambler has two coins, a fair coin (p = 1/2) and a biased coin (p = 1/4). Event A1

corresponds to his selecting the fair coin, and Event A2 corresponds to his selecting the
biased coin. He randomly selects the coin; therefore, the a priori probabilites, P (A1)
and P (A2), are both equal to 1/2. Event B is the observed outcome that S100 = 41.
By Bayes’ Theorem, the probability that the gambler used the fair coin is

P
(

p =
1

2

∣

∣

∣ S100 = 41
)

=
P
(

S100 = 41
∣

∣ p = 1
2

)

· P
(

p = 1
2

)

P
(

S100 = 41
∣

∣ p = 1
2

)

· P
(

p = 1
2

)

+ P
(

S100 = 41
∣

∣ p = 1
4

)

· P
(

p = 1
4

)

=
( 10041 ) ·

(

1
2

)41 ·
(

1
2

)59 ·
(

1
2

)

( 10041 ) ·
(

1
2

)41 ·
(

1
2

)59 ·
(

1
2

)

+ ( 10041 ) ·
(

1
4

)41 ·
(

3
4

)59 ·
(

1
2

)

= 0.989.

Bayesian analysis combines prior knowledge of the unknown parameter (in this case,
the a priori probabilities P (p = 1/2) and P (p = 1/4) with experimental evidence to
form a better estimate of this parameter.

In statistical hypothesis testing, an observed outcome is compared to an assumed
model to determine the likelihood that the outcome came from the model [5, pp. 163�
65]. If the outcome deviates significantly from the expected outcome of the assumed
model, then it is unlikely that the result came from this model. Statistical hypothesis
testing, therefore, involves determing what level of deviation from the expected outcome
is significant.

Consider a random variable Y that has a probability distribution that relies on the
parameter θ. This method tests a null hypothesis H0 : θ = θ0 against an alternative
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hypothesis H1, which may take the form θ < θ0, θ > θ0, or θ 6= θ0; see [3, pp. 336�39].
A significance level α is chosen for the test, and a critical value c that depends on α
is calculated. The critical region consists of the critical value, and all values that are
more extreme in the direction of the alternative hypothesis. If the observed outcome of
Y falls within the critical region, then H0 is rejected and H1 is accepted. However, if
the observed outcome of Y does not fall within the critical region, then H0 is accepted.

The coin-tossing example can be worked out using statistical hypothesis testing. The
hypothesis H0 : p = 1/2 is tested against an alternative hypothesis H1 : p 6= 1/2. In the
model where H0 is true, the expectation is E(S100) = 100 · 1/2 = 50, and the variance
is σ2S100 = 100 ·1/2 ·1/2 = 25. By the Central Limit Theorem, the variable S100 has an
almost normal distribution. Therefore, the variable z = S100−50

5 has an approximately
standard normal distribution. Thus,

P
(

−1.96 ≤ S100 − 50

5
≤ 1.96

)

= 0.95, or P (40.2 ≤ S100 ≤ 59.8) = 0.95.

Since the observed outcome, S100 = 41, falls within this interval, H0 is accepted
at the α = 0.05 significance level. The significance level is the probability that the
assumed model H0 is erroneously rejected. This error is commonly referred to as a type
I error. Likewise, a type II error is the event that the assumed model H0 is erroneously
accepted. The probability of this type of error is denoted as β. Ideally, we want α and
β to be as small as possible; however, decreasing both involves increasing the sample
size.

For example, when H0 : p = 1/2 is tested against H1 : p = 1/4 in a coin-tossing
model, H0 will be rejected if the number of heads S100 is below some value c, known
as the critical value . In this case, α represents the probability that S100 is less than
c when p = 1/2, and β represents the probability that S100 is greater than c when
p = 1/4. For instance, if α = 0.001 and β = 0.001, this critical value c and the sample
size n can be found by solving the equations for α and β. Namely,

α = 0.001 = P
(

S ≤ c
∣

∣

∣ p =
1

2

)

= P

(

S − n
2

√

n
4

≤
c− n

2
√

n
4

)

= P (z ≤ z0.001).

Because z0.001 = −3.090, it follows that

c− n
2

√

n
4

≤ −3.090, and c ≈ −3.090 ·
√

n

4
+
n

2
. (5− 1)

Likewise,

β = 0.001 = P
(

S ≥ c
∣

∣

∣ p =
1

4

)

= P

(

S − n
4

√

n · 14 ·
3
4

≥
c− n

4
√

n · 14 ·
3
4

)

= P (z ≥ z0.001).

Because z0.001 = 3.090, it follows that

c− n
4

√

n · 14 ·
3
4

≥ 3.090, and c ≈ 3.090 ·
√

n · 1
4
· 3
4
+
n

4
. (5− 2)

Combining Expressions (5-1) and (5-2) yields that

−3.090 ·
√

n

4
+
n

2
≈ 3.090 ·

√

n · 1
4
· 3
4
+
n

4
.
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Thus, n is equal to 132.8, which is rounded to 133, and c is equal to 48.6, which is
rounded to 49. To reduce the probabilities of Type I and Type II errors, α and β, to
0.001, the number of trials must be increased to 133.

As mentioned in the Introduction, the Chevalier de Mere noticed that his bet on the
double-die game was less than chance [1, pp. 183�84]. Some of the techniques in this
last section can provide an estimate for the number of trials de Mere must have played
to legitimately claim that the probability of success was indeed less than 1/2. Assume
that de Mere played the game a large number of times, and found that he rolled a
double-6 in 49% of the games. To determine whether he could legitimately accept that
p < 1/2, de Mere would need to test the hypothesis H0 : p = 1/2 against the hypothesis
H1 : p < 1/2. Let Y be the number of times de Mere rolled a double-6 in n trials. From
the Central Limit Theorem, it follows that Y has an almost normal distribution. Thus,
the variable

z =
Y − np

√

n · p · (1− p)
=

Y
n − p

√

p·(1−p)
n

has an approximate standard normal distribution. For a 0.05 significance level, it follows
that

P

(

Y
n −

1
2

√

1
2 ·

1
2
n

≤ z0.05

)

= 0.05 = α.

If de Mere estimated that Y
n is 49

100 , then

49
100 −

1
2

√

1
4n

≤ z0.05 = −1.645.

Consequently,
n = 6765.

To legitimately accept the hypothesis H1 : p < 1/2 for the double-die game, de Mere
must have played 6765 games.
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