Advanced Planar Antenna Designs for Wireless Devices

翁金輅(Kin-Lu Wong) 國立中山大學電機系

Dept. of Electrical Engineering National Sun Yat-Sen University Kaohsiung 80424, Taiwan E-mail: wongkl@mail.nsysu.edu.tw

Introduction (1)

Number of the second second

- Cellular phones (bar type, folder type)
- Laptops or Tablet PCs
- Personal digital assistants (PDAs)
- WLAN in-building access points (on-ceiling, on-wall, or-desk)

n Operating bands

- AMPS, GSM, DCS, PCS, UMTS, etc. (850, 900, 1800, 1900, 2050 MHz bands, etc.)
- ⁿ WLAN band (2.4, 5.2, 5.8 GHz)
- Iltra-wide band (3.1~10.6 GHz)

Introduction (2)

Some Promising planar antenna types

- Planar inverted-F antennas (PIFAs)
- Nery-low-profile monopoles (bent, folded)
- Printed monopole/dipole antennas
- Metal-plate antennas (constructed using line-cutting or stamping)
- Slot antennas (stamped from metal or integrated with system ground plane)
- n folded dipole antenna
- Ceramic chip antennas (SMT devices)

Conventional PIFAs

Conventional PIFAs comprise: a top patch, a shorting pin, and a feeding pin.

The top patch is mounted above a ground plane;

The shorting pin and feeding pin, connected at proper positions to the top patch, have the same length as the distance between the top patch and the ground plane

Some dual-frequency top patches for PIFAs

(d)

(g)

These top patches are mainly printed on a thin dielectric substrate, and then supported above a ground plane

(h)

PIFA- Folded top patch, stamped from a metal plate

Patch stamped from a single metal plate;

Then folded and attached to two sides of a dielectric slab

PIFA- PIFA printed on an FPCB

PIFA- PIFA printed on an FPCB

Length of the meandered radiating arm is ~ 95 mm, about 0.251 at 900 MHz

BW (2.5:1 VSWR) covers the GSM and DCS bands;

Gain about 0.5-1.4 dBi for GSM band,

and about 1.3-3.2 dBi for DCS band

Very-Low-Profile Monopole 1-Planar monopole with slits

Inner sub-patch resonates at 0.25λ for upper band; outer sub-patch at 0.25 and 0.5λ for lower and upper bands

Very-Low-Profile Monopole 2-Planar spiral monopole

Placing monopole in perpendicular to the circuit board

Monopole size 7 x 30 mm²; 7 mm to the system ground; Covering GSM/DCS/PCS bands

Very-Low-Profile Monopole 3for folder-type handset (2)

Antenna printed on two sides of a dielectric substrate; BW (2:1 VSWR) covers the GSM/DCS/PCS bands

Gain level about 1 dBi for GSM band,

and about 2 dBi for DCS/PCS bands

Ground plane (length) effect on antenna performance

•	Effect on f _r	Effect on BW	Effect on pattern
Monopole	Large (> 15%)	large	large
Shorted monopole	Large (> 15%)	large	large
PIFA	Small (~ 5%)	large	large

- 1. GP length varies from $40 \sim 200 \text{ mm} (0.25 \sim 1.251)$, f = 1800 MHz (l ~ 160 mm)
- For PIFA, max BW occurs when GP length ~ <u>0.351 (60 mm)</u>, 0.851 (140 mm), 1.351 (220 mm)
- 3. Period of null currents on GP is ~ 0.51 (80 mm)

Simulated Surface Current Distributions⁻ Using Ansoft HFSS

Dark regions indicate null currents and are spaced about 0.51

L = 200 mm case shows 1.51 dipole-like patterns

For WLAN mobile units-Surface-mount antenna

 Regular patch antennas (ceramic chip as a substrate)
 Monopoles (ceramic chip as a support for the monopole)

SMA- Ceramic Chip Antenna (2.1)

CP Design, dual side-feed, feed at A for RHCP, feed at B for LHCP; Gain level about 3.0 dBic (test board 50 mm x 50 mm) for GPS operation at 1575 GHz

SMA- Ceramic Chip Antenna (2.2)

CP Design, dual side-feed ceramic chip antenna

SMA- Ceramic Chip Antenna (2.3) 3D Model in Ansoft HFSS

SMA- Ceramic Chip Antenna (2.4) Current Plot

Ansoft HFSS simulation results

SMA- Ceramic Chip Antenna (3)

Helix monopole embedded within the ceramic chip

Printed Dipoles/Monopoles/Slot Antennas/ PIFAs Applied to Notebook Computer

US Patents 6344825, 6297779, 6008774, 6295029, 6339400, 2001/0040529, 2002/0021250

WLAN Slot Antennas/PIFAs Applied to Laptops

WLAN 2.4/5.2 GHz Dual-Band Dual-Slot Antenna

Antenna gain level in both 2.4 and 5.2 GHz about 6.0~7.0 dBi

Patent pending

WLAN Metal-Plate Antenna (2), dual-band operation

Antenna size = $1 \times 3 \times 60 \text{ mm}^3$; gain level ~3.0/3.6 dBi in 2.4/5.2 GHz bands

WLAN Metal-Plate Array Antenna

WLAN Access-Point Antennas

- n On-wall, on-ceiling, on-desk designs
 n Printed dipole array for omni or diversity radiation
- n Printed folded dipole (or loop) array for omni or diversity radiation

WLAN AP Antenna-Omnidirectional dipole array (1)

5 GHz AP dipole array: 1.5:1 VSWR: 5.15-5.35 GHz Peak gain: > 5.5 dBi (Duroid sub) Omnidirectional ripple: < 2 dBi Size: 12 mm x 90 mm

Ports 1, 2: 0°, 1/4 power Ports 3, 4: 180°, 1/4 power

WLAN AP Antenna-Diversity dual-band dipole

WLAN AP Antenna-Omnidirectional folded dipole

5 GHz AP dipole array:

2:1 VSWR: 5.0-6.1 GHz

Peak gain: > 4.5 dBi (FR4 substrate)

Omnidirectional ripple: < 1.8 dBi

Size: 18 mm x 68 mm

WLAN AP Antenna-Omnidirectional folded dipole

Conclusions

Planar antennas are good candidates for wireless devices applications

More promising planar antenna designs and applications are in progress