Modeling, Design and Optimization of On-Chip Inductors and Transformers

Sunderarajan S. Mohan

Center for Integrated Systems

Stanford University

THE GOAL

Simple, Accurate Expressions for Inductance

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

OUTLINE

- Background
- Current Sheet Approach
- Accurate Inductance Expressions
- Optimization of Inductor Circuits
- Transformer Modeling
- Contributions

ON-CHIP INDUCTORS AND TRANSFORMERS

- Essential for radio frequency integrated circuits (RFICs)
- Narrowband circuits
 - **{** Low noise amplifiers, oscillators, filters, matching networks, baluns
- Broadband circuits
 - { Shunt-peaking to enhance bandwidth

ON-CHIP INDUCTOR OPTIONS

Attribute	Bond wire	Planar Spiral
Inductance	$0.5 - 4 \mathrm{nH}$	0.2 - 100 nH
Q	30 - 60	< 10
Parasitics	$C_{\rm Bondpad}$	$R_{ m s}$, $C_{ m ox}$, $C_{ m si}$, $R_{ m si}$
Fluctuations	Large	Small

LATERAL PARAMETERS

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

LATERAL PARAMETERS

- 1. Shape: square, hexagonal, octagonal, ...
- 2. Number of turns, n
- 3. Conductor width, \boldsymbol{w}
- 4. Conductor spacing, s

5.
$$d_{\text{out}}$$
, d_{in} , $d_{\text{avg}} = 0.5(d_{\text{out}} + d_{\text{in}})$, or $\rho = \frac{d_{\text{out}} - d_{\text{in}}}{d_{\text{out}} + d_{\text{in}}}$

VERTICAL PARAMETERS

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

MODELING APPROACHES

- 3-D field solvers
- Segmented models
- Lumped, Scalable models

3-D FIELD SOLVERS

- General Purpose Tools
 - { Solve Maxwell's equations numerically
 - { Accurate, but slow and memory intensive
 - { Examples: *Maxwell*, *MagNet*
- Custom Tools for Spiral Inductors and Transformers
 - **{** Electrostatic and Magnetostatic approximations
 - { Good for verification, but inconvenient for circuit design and synthesis
 - { Examples: ASITIC, SPIRAL

SEGMENTED MODELS

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

LUMPED, SCALABLE MODELS

- Simple expressions for $R_{
 m s}$, $C_{
 m ox}$ and $C_{
 m s}$
- **NEED** simple, accurate expression for inductance!
- Limitations:
 - { Magnetic coupling to substrate **NOT** modeled
 - { Lumped approximation not valid beyond self-resonant frequency

Find self inductance of, and mutual inductance between every segment of spiral:

$$\mathcal{M}_{gen,i,j} = \begin{bmatrix} L_1 & M_{1,2} & \dots & M_{1,(n-1)} & M_{1,n} \\ M_{1,2} & L_2 & \dots & M_{2,(n-1)} & M_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ M_{1,(n-1)} & M_{2,(n-1)} & \dots & L_{(n-1)} & M_{n,(n-1)} \\ M_{1,n} & M_{2,n} & \dots & M_{n,(n-1)} & L_n \end{bmatrix}$$
$$L_{\mathrm{T}} = \sum_{i=1}^n L_i + \sum_{i=1}^n \sum_{j=1, j \neq i}^n M_{i,j}$$

PREVIOUSLY REPORTED EXPRESSIONS

Voorman :
$$L_{voo} = 10^{-3} n^2 d_{avg}$$

Dill : $L_{dil} = 8.5 \cdot 10^{-4} n^{5/3} d_{avg}$
Bryan : $L_{bry} = 2.41 \cdot 10^{-3} n^{5/3} d_{avg} \log(4/\rho)$
Ronkanien : $L_{ron} = 1.5 \mu_0 n^2 e^{-3.7(n-1)(w+s)/d_{out}}$
Crols : $L_{cro} = 1.3 \cdot 10^{-4} (d_{out}^3/w^2) \eta_a^{5/3} \eta_w^{1/4}$

- Empirical expressions
- Significant mean offset errors
- Even when corrected, errors > 15 20%

DERIVATION OF ACCURATE EXPRESSIONS

• Use equivalent current sheet to simplify problem:

• Use GMD, AMD and AMSD to derive simple expression

GEOMETRIC MEAN DISTANCE (GMD)

• For distances d_1 and d_2 :

$$\text{GMD} = \sqrt{d_1 d_2}$$

$$\ln(\text{GMD}) = \frac{1}{2} \left[\ln(d_1) + \ln(d_2) \right]$$

• For n distances:

$$\ln(\text{GMD}) = \frac{1}{n} \left[\ln(d_1) + \ln(d_2) \cdots + \ln(d_n) \right]$$

GMD IN INDUCTANCE CALCULATIONS

Need to evaluate of GMD of conductor cross-section(s):
 { Self: GMD of conductor cross-section from itself

{ Mutual: GMD between two conductor cross-sections

- Use continuous variable definition of GMD
 { Need integrals rather than sums
- GMD introduced in to inductance calculations by J. C. Maxwell

GMD IN INDUCTANCE CALCULATIONS

• For cross sections in one dimension (current sheets):

$$l_1 l_2 \ln(\text{GMD}) = \iint \ln(r) \, dx \, dx'$$

{ l_1 and l_2 are the lengths of the cross-sections { dx and dx' are the elements of the cross-sections { r is the distance between the elements

GMD BETWEEN TWO LINES

 Basis for mutual inductance calculations in Greenhouse method

GMD, AMD AND AMSD OF A LINE

PARALLEL LINES OF EQUAL LENGTH

INDUCTANCE OF CURRENT SHEET

$$M = \frac{\mu l}{2\pi} \left[\ln(2l) - \ln(R) - 1 + \frac{R}{l} - \frac{R^2}{4l^2} \right]$$
$$L_{\rm s} = \frac{\mu l}{2\pi} \left[\ln(2l) - \ln(\text{GMD}) - 1 + \frac{\text{AMD}}{l} - \frac{\text{AMSD}^2}{4l^2} \right]$$

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

INDUCTANCE OF RECTANGULAR CURRENT SHEET

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

EQUIVALENT RECTANGULAR CURRENT SHEET

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

APPROXIMATING A SQUARE SPIRAL

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

One Side of a Square Spiral: $L_{\rm s}$

Opposite Sides of a Square Spiral: $M_{\rm opp}$

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

CURRENT SHEET EXPRESSION FOR A SQUARE SPIRAL

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

CONCENTRIC CIRCULAR CONDUCTORS

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

CURRENT SHEET EXPRESSIONS

$$L_{\rm cursh} = \frac{\mu n^2 d_{\rm avg} c_1}{2} \left[\ln(c_2/\rho) + c_3 \rho + c_4 \rho^2 \right]$$

Layout	c_1	c_2	c_3	c_4
Square	1.27	2.07	0.18	0.13
Hexagonal	1.09	2.23	0.00	0.17
Octagonal	1.07	2.29	0.00	0.19
Circle	1.00	2.46	0.00	0.20

OTHER INDUCTANCE EXPRESSIONS

• Monomial Expression :

$$L_{\rm mon} = \beta d_{\rm out}^{\alpha_1} w^{\alpha_2} d_{\rm avg}^{\alpha_3} n^{\alpha_4} s^{\alpha_5}$$

• Modified Wheeler Expression :

$$L_{\rm mw} = K_1 \mu_0 \frac{n^2 d_{\rm avg}}{1 + K_2 \rho}$$

COMPARISON TO FIELD SOLVERS: PREVIOUS WORK

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

COMPARISON TO FIELD SOLVERS: NEW WORK

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

EXPERIMENTAL SET-UP

COMPARISON TO EXPERIMENTS: PREVIOUS WORK

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

COMPARISON TO EXPERIMENTS: NEW WORK

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

PARAMETERS OF INTEREST

• Inductor quality factor ($Q_{\rm L}$)

$$Q_L = 2\pi \frac{\left[\text{peak magnetic energy} - \text{peak electric energy}\right]}{\text{energy loss in one oscillation cycle}}$$

• Tank quality factor (Q_{tank})

 $Q_{\rm tank} = 2\pi \frac{\rm peak\ magnetic\ energy}{\rm energy\ loss\ in\ one\ oscillation\ cycle}$

• Self-resonance frequency ($\omega_{\rm res}$), frequency at which $Q_{\rm L}=0$

Example: Maximum Q_L @ 2GHz for L = 8nH

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

EXAMPLE: SHUNT-PEAKED AMPLIFIER

Common Source Amplifier

Shunt-peaked Amplifier

- Bandwidth enhancement using zeros
- No additional power dissipation

ON-CHIP SHUNT PEAKING

- Work with inductor parasitics
- *R*_s is **not** an issue (now part of load resistance)
- Inductor Q is not relevant
- Minimize area and $C_{\rm L}$
- L determined by R , $C_{\rm load}$, $C_{\rm L}$ and $C_{\rm d}$

SHUNT-PEAKED TRANSIMPEDANCE AMPLIFIER

- Input current drive
- Cascode stage
- On-chip shunt-peaking

• Feedback

DESIGN METHODOLOGY

- 1. Design and optimize transimpedance stage without shunt peaking
- 2. Transistor current determines conductor width, \boldsymbol{w}
- 3. Lithography sets spacing, s
- 4. Choose n and AD to realize desired L while minimizing parasitic capacitance and area
- 5. Maximize transimpedance resistance, $R_{
 m f}$

TRANSFORMER

•
$$v_1 = L_1 \frac{\partial i_1}{\partial t} + M \frac{\partial i_2}{\partial t}$$

 $v_2 = L_2 \frac{\partial i_2}{\partial t} + M \frac{\partial i_1}{\partial t}$

• Mutual coupling coefficient, $k = \frac{M}{\sqrt{L_1 L_2}}$

•
$$|k| \leq 1$$

NON-IDEAL TRANSFORMER

- Series resistance.
- Port-to-port & port-to-substrate capacitances

TAPPED TRANSFORMER

- advantages: { High L_1 , L_2
 - { Top metal layer
 - { Low port-to-port capacitance
- disadvantages: { Asymmetric { Low $k (\approx 0.3 - 0.5)$

INTERLEAVED TRANSFORMER

- advantages:
 - { Medium k $(\approx 0.7 0.8)$
 - { Symmetric
 - { Top metal layer
- disadvantages:
 - { Medium port-to-port capacitance
 - { Low L_1 , L_2

STACKED TRANSFORMER

Top View

- advantages: { High $k (\approx 0.9)$
 - { High L_1 , L_2
 - { Area efficient
- disadvantages:
 - { Multiple metal layers
 - { High port-to-port &
 port-to-substrate
 capacitances

STACKED TRANSFORMER VARIATIONS

- Shift top and bottom spirals laterally or diagonally
- Trade-off lower k for reduced port-to-port capacitance

COMPARISON OF TRANSFORMER REALIZATIONS

Transformer	Area	Coupling	Self-	Self-resonant
type		coefficient, k	inductance	frequency
Tapped	High	Low	Mid	High
Interleaved	High	Mid	Low	High
Stacked	Low	High	High	Low

- Non-idealities result in trade-offs
- Optimal choice determined by circuit application
- Transformer models needed for comparison

TAPPED TRANSFORMER MODEL

- Evaluate $C_{\rm ov,o}$, $C_{\rm ox,o}$, $C_{\rm ox,i}$, $R_{\rm s,o}$ & $R_{\rm s,i}$ by extending previous work
- Use inductance expression for $L_{\rm s,o}$, $L_{\rm s,i}$
- $\bullet \ {\rm Calculate} \ M$

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

MUTUAL INDUCTANCE CALCULATION

Single inductor.

Tapped transformer.

Interleaved transformer.

STACKED TRANSFORMER MODEL

- Evaluate $C_{\rm ov}$, $C_{\rm ox,t}$, $C_{\rm oxm}$, $C_{\rm ox,b}$, $R_{\rm s,t}$ & $R_{\rm s,b}$ by extending previous work
- \bullet Use inductance expression for $L_{\rm s,t}$, $L_{\rm s,b}$
- $\bullet \ {\rm Calculate} \ M$
- S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

CURRENT SHEET APPROACH FOR k

- \bullet Reduce complexity by $4n^2$
- Use symmetry
- Derive simple expression using electromagnetic theory

<u>k for Stacked Transformers</u>

• Metal and oxide thicknesses have only 2nd order effects on k

EXPERIMENTAL SET-UP

EXPERIMENTAL VERIFICATION: TAPPED

- $OD_o = 290 \mu m$, $n_o = 2.5$
- $OD_i = 190 \mu m$, $n_i = 4.25$

1.0

0.5

0.0

-0.5

-1.0 ∟ 0.8

 \mathbf{S}_{21}

• $w = 13 \mu m, s = 7 \mu m$

 \blacktriangle real(S₂₁) meas

• $imag(S_{21})$ meas

1.6

Frequency (GHz)

2.0

2.4

- real(S_{21}) calc - imag(S_{21}) calc

1.2

EXPERIMENTAL VERIFICATION: STACKED 1

- Stacked transformer with top spiral overlapping bottom one
- OD = $180\mu \text{m}$, n = 11.75, $w = 3.2\mu \text{m}$, $s = 2.1\mu \text{m}$
- $x_{
 m s}=0\mu{
 m m}, y_{
 m s}=0\mu{
 m m},$ $d_{
 m s}=0\mu{
 m m}$

S. S. Mohan, PhD Oral Exam, June 9, 1999, CIS, Stanford University

FUTURE WORK

- Incorporate inductive coupling to substrate: significant in CMOS epi processes
- Improve expressions for the series resistance to include proximity effects
- Extend current sheet approach to handle non-uniform current distributions

CONTRIBUTIONS

- Current sheet approach to inductance calculation
- Simple accurate expression for inductance of sdquare, hexagonal, octagonal and circular spirals
- Expressions for mutual inductance and mutual coupling coefficient
- On-chip transformer models
- Basis for design and synthesis of on-chip inductor and transformer circuits
- Shunt-peaked amplifier with optimized on-chip inductor

• Design

{ Scalable, analytical models for synthesis and optimization

Verification
 { Field solvers